1
|
Shaker FH, Sanad EF, Elghazaly H, Hsia SM, Hamdy NM. piR-823 tale as emerging cancer-hallmark molecular marker in different cancer types: a step-toward ncRNA-precision. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:47-68. [PMID: 39102033 PMCID: PMC11787197 DOI: 10.1007/s00210-024-03308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
PIWI-interacting RNAs (piRNAs) have received a lot of attention for their functions in cancer research. This class of short non-coding RNAs (ncRNA) has roles in genomic stability, chromatin remodeling, messenger RNA (mRNA) integrity, and genome structure. We summarized the mechanisms underlying the biogenesis and regulatory molecular functions of piRNAs. Among all piRNAs studied in cancer, this review offers a comprehensive analysis of the emerging roles of piR-823 in various types of cancer, including colorectal, gastric, liver, breast, and renal cancers, as well as multiple myeloma. piR-823 has emerged as a crucial modulator of various cancer hallmarks through regulating multiple pathways. In the current review, we analyzed several databases and conducted an extensive literature search to explore the influence of piR-823 in carcinogenesis in addition to describing the potential application of piR-823 as prognostic and diagnostic markers as well as the therapeutic potential toward ncRNA precision.
Collapse
Affiliation(s)
- Fatma H Shaker
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Eman F Sanad
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Hesham Elghazaly
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Shih-Min Hsia
- School of Food and Safety, Nutrition Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 110301, Taiwan
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt.
| |
Collapse
|
2
|
Li B, Wang K, Cheng W, Fang B, Li YH, Yang SM, Zhang MH, Wang YH, Wang K. Recent advances of PIWI-interacting RNA in cardiovascular diseases. Clin Transl Med 2024; 14:e1770. [PMID: 39083321 PMCID: PMC11290350 DOI: 10.1002/ctm2.1770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The relationship between noncoding RNAs (ncRNAs) and human diseases has been a hot topic of research, but the study of ncRNAs in cardiovascular diseases (CVDs) is still in its infancy. PIWI-interacting RNA (piRNA), a small ncRNA that binds to the PIWI protein to maintain genome stability by silencing transposons, was widely studied in germ lines and stem cells. In recent years, piRNA has been shown to be involved in key events of multiple CVDs through various epigenetic modifications, revealing the potential value of piRNA as a new biomarker or therapeutic target. CONCLUSION This review explores origin, degradation, function, mechanism and important role of piRNA in CVDs, and the promising therapeutic targets of piRNA were summarized. This review provide a new strategy for the treatment of CVDs and lay a theoretical foundation for future research. KEY POINTS piRNA can be used as a potential therapeutic target and biomaker in CVDs. piRNA influences apoptosis, inflammation and angiogenesis by regulating epigenetic modificaions. Critical knowledge gaps remain in the unifying piRNA nomenclature and PIWI-independent function.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of ChinaShandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao UniversityJinanShandongChina
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Kai Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Wei Cheng
- Department of Cardiovascular SurgeryBeijing Children's Hospital, Capital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Bo Fang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Ying Hui Li
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Su Min Yang
- Department of Cardiovascular SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Mei Hua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of ChinaShandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao UniversityJinanShandongChina
| | - Yun Hong Wang
- Hypertension CenterBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of ChinaShandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao UniversityJinanShandongChina
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| |
Collapse
|
3
|
Chaudhary U, Banerjee S. Decoding the Non-coding: Tools and Databases Unveiling the Hidden World of "Junk" RNAs for Innovative Therapeutic Exploration. ACS Pharmacol Transl Sci 2024; 7:1901-1915. [PMID: 39022352 PMCID: PMC11249652 DOI: 10.1021/acsptsci.3c00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Non-coding RNAs are pivotal regulators of gene and protein expression, exerting crucial influences on diverse biological processes. Their dysregulation is frequently implicated in the onset and progression of diseases, notably cancer. A profound comprehension of the intricate mechanisms governing ncRNAs is imperative for devising innovative therapeutic interventions against these debilitating conditions. Significantly, nearly 80% of our genome comprises ncRNAs, underscoring their centrality in cellular processes. The elucidation of ncRNA functions is pivotal for grasping the complexities of gene regulation and its implications for human health. Modern genome sequencing techniques yield vast datasets, stored in specialized databases. To harness this wealth of information and to understand the crosstalk of non-coding RNAs, knowledge of available databases is required, and many new sophisticated computational tools have emerged. These tools play a pivotal role in the identification, prediction, and annotation of ncRNAs, thereby facilitating their experimental validation. This Review succinctly outlines the current understanding of ncRNAs, emphasizing their involvement in disease development. It also highlights the databases and tools instrumental in classifying, annotating, and evaluating ncRNAs. By extracting meaningful biological insights from seemingly "junk" data, these tools empower scientists to unravel the intricate roles of ncRNAs in shaping human health.
Collapse
Affiliation(s)
- Uma Chaudhary
- Department of Biotechnology,
School of Biosciences and Technology, Vellore
Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Satarupa Banerjee
- Department of Biotechnology,
School of Biosciences and Technology, Vellore
Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| |
Collapse
|
4
|
Jiang M, Hong X, Gao Y, Kho AT, Tantisira KG, Li J. piRNA associates with immune diseases. Cell Commun Signal 2024; 22:347. [PMID: 38943141 PMCID: PMC11214247 DOI: 10.1186/s12964-024-01724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024] Open
Abstract
PIWI-interacting RNA (piRNA) is the most abundant small non-coding RNA in animal cells, typically 26-31 nucleotides in length and it binds with PIWI proteins, a subfamily of Argonaute proteins. Initially discovered in germ cells, piRNA is well known for its role in silencing transposons and maintaining genome integrity. However, piRNA is also present in somatic cells as well as in extracellular vesicles and exosomes. While piRNA has been extensively studied in various diseases, particular cancer, its function in immune diseases remains unclear. In this review, we summarize current research on piRNA in immune diseases. We first introduce the basic characteristics, biogenesis and functions of piRNA. Then, we review the association of piRNA with different types of immune diseases, including autoimmune diseases, immunodeficiency diseases, infectious diseases, and other immune-related diseases. piRNA is considered a promising biomarker for diseases, highlighting the need for further research into its potential mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Mingye Jiang
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yunfei Gao
- Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jiang Li
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Guangdong, Shenzhen, China.
| |
Collapse
|
5
|
Wang X, Lin DH, Yan Y, Wang AH, Liao J, Meng Q, Yang WQ, Zuo H, Hua MM, Zhang F, Zhu H, Zhou H, Huang TY, He R, Li G, Tan YQ, Shi HJ, Gou LT, Li D, Wu L, Zheng Y, Fu XD, Li J, Liu R, Li GH, Liu MF. The PIWI-specific insertion module helps load longer piRNAs for translational activation essential for male fertility. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-023-2390-5. [PMID: 37335463 DOI: 10.1007/s11427-023-2390-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
PIWI-clade proteins harness piRNAs of 24-33 nt in length. Of great puzzles are how PIWI-clade proteins incorporate piRNAs of different sizes and whether the size matters to PIWI/piRNA function. Here we report that a PIWI-Ins module unique in PIWI-clade proteins helps define the length of piRNAs. Deletion of PIWI-Ins in Miwi shifts MIWI to load with shorter piRNAs and causes spermiogenic failure in mice, demonstrating the functional importance of this regulatory module. Mechanistically, we show that longer piRNAs provide additional complementarity to target mRNAs, thereby enhancing the assembly of the MIWI/eIF3f/HuR super-complex for translational activation. Importantly, we identify a c.1108C>T (p.R370W) mutation of HIWI (human PIWIL1) in infertile men and demonstrate in Miwi knock-in mice that this genetic mutation impairs male fertility by altering the property of PIWI-Ins in selecting longer piRNAs. These findings reveal a critical role of PIWI-Ins-ensured longer piRNAs in fine-tuning MIWI/piRNA targeting capacity, proven essential for spermatid development and male fertility.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Di-Hang Lin
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Yan
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - An-Hui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiaoyang Liao
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qian Meng
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Heng Zuo
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min-Min Hua
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, 200032, China
| | - Fengjuan Zhang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian-Yu Huang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rui He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Guangyong Li
- Department of Urology, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, 750004, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, 410000, China
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, 200032, China
| | - Lan-Tao Gou
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dangsheng Li
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiang-Dong Fu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Jinsong Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Rujuan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Guo-Hui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Mo-Fang Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
6
|
Perera BPU, Morgan RK, Polemi KM, Sala-Hamrick KE, Svoboda LK, Dolinoy DC. PIWI-Interacting RNA (piRNA) and Epigenetic Editing in Environmental Health Sciences. Curr Environ Health Rep 2022; 9:650-660. [PMID: 35917009 DOI: 10.1007/s40572-022-00372-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW: The epigenome modulates gene expression in response to environmental stimuli. Modifications to the epigenome are potentially reversible, making them a promising therapeutic approach to mitigate environmental exposure effects on human health. This review details currently available genome and epigenome editing technologies and highlights ncRNA, including piRNA, as potential tools for targeted epigenome editing. RECENT FINDINGS: Zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR) associated nuclease (CRISPR/Cas) research has significantly advanced genome editing technology, with broad promise in genetic research and targeted therapies. Initial epigenome-directed therapies relied on global modification and suffered from limited specificity. Adapted from current genome editing tools, zinc finger protein (ZFP), TALE, and CRISPR/nuclease-deactivated Cas (dCas) systems now confer locus-specific epigenome editing, with promising applicability in the field of environmental health sciences. However, high incidence of off-target effects and time taken for screening limit their use. FUTURE DEVELOPMENT: ncRNA serve as a versatile biomarker with well-characterized regulatory mechanisms that can easily be adapted to edit the epigenome. For instance, the transposon silencing mechanism of germline PIWI-interacting RNAs (piRNA) could be engineered to specifically methylate a given gene, overcoming pitfalls of current global modifiers. Future developments in epigenome editing technologies will inform risk assessment through mechanistic investigation and serve as potential modes of intervention to mitigate environmentally induced adverse health outcomes later in life.
Collapse
Affiliation(s)
- Bambarendage P U Perera
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Rachel K Morgan
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katelyn M Polemi
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Kimmie E Sala-Hamrick
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Laurie K Svoboda
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
- School of Public Health, Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Zhang T, Chen L, Li R, Liu N, Huang X, Wong G. PIWI-interacting RNAs in human diseases: databases and computational models. Brief Bioinform 2022; 23:6603448. [PMID: 35667080 DOI: 10.1093/bib/bbac217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are short 21-35 nucleotide molecules that comprise the largest class of non-coding RNAs and found in a large diversity of species including yeast, worms, flies, plants and mammals including humans. The most well-understood function of piRNAs is to monitor and protect the genome from transposons particularly in germline cells. Recent data suggest that piRNAs may have additional functions in somatic cells although they are expressed there in far lower abundance. Compared with microRNAs (miRNAs), piRNAs have more limited bioinformatics resources available. This review collates 39 piRNA specific and non-specific databases and bioinformatics resources, describes and compares their utility and attributes and provides an overview of their place in the field. In addition, we review 33 computational models based upon function: piRNA prediction, transposon element and mRNA-related piRNA prediction, cluster prediction, signature detection, target prediction and disease association. Based on the collection of databases and computational models, we identify trends and potential gaps in tool development. We further analyze the breadth and depth of piRNA data available in public sources, their contribution to specific human diseases, particularly in cancer and neurodegenerative conditions, and highlight a few specific piRNAs that appear to be associated with these diseases. This briefing presents the most recent and comprehensive mapping of piRNA bioinformatics resources including databases, models and tools for disease associations to date. Such a mapping should facilitate and stimulate further research on piRNAs.
Collapse
Affiliation(s)
- Tianjiao Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| | - Liang Chen
- Department of Computer Science, School of Engineering, Shantou University, Shantou, China
| | - Rongzhen Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| | - Ning Liu
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| | - Xiaobing Huang
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| | - Garry Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| |
Collapse
|
8
|
Hanusek K, Poletajew S, Kryst P, Piekiełko-Witkowska A, Bogusławska J. piRNAs and PIWI Proteins as Diagnostic and Prognostic Markers of Genitourinary Cancers. Biomolecules 2022; 12:biom12020186. [PMID: 35204687 PMCID: PMC8869487 DOI: 10.3390/biom12020186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
piRNAs (PIWI-interacting RNAs) are small non-coding RNAs capable of regulation of transposon and gene expression. piRNAs utilise multiple mechanisms to affect gene expression, which makes them potentially more powerful regulators than microRNAs. The mechanisms by which piRNAs regulate transposon and gene expression include DNA methylation, histone modifications, and mRNA degradation. Genitourinary cancers (GC) are a large group of neoplasms that differ by their incidence, clinical course, biology, and prognosis for patients. Regardless of the GC type, metastatic disease remains a key therapeutic challenge, largely affecting patients’ survival rates. Recent studies indicate that piRNAs could serve as potentially useful biomarkers allowing for early cancer detection and therapeutic interventions at the stage of non-advanced tumour, improving patient’s outcomes. Furthermore, studies in prostate cancer show that piRNAs contribute to cancer progression by affecting key oncogenic pathways such as PI3K/AKT. Here, we discuss recent findings on biogenesis, mechanisms of action and the role of piRNAs and the associated PIWI proteins in GC. We also present tools that may be useful for studies on the functioning of piRNAs in cancers.
Collapse
Affiliation(s)
- Karolina Hanusek
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
| | - Sławomir Poletajew
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Piotr Kryst
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Agnieszka Piekiełko-Witkowska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| | - Joanna Bogusławska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| |
Collapse
|
9
|
Huang S, Yoshitake K, Asakawa S. A Review of Discovery Profiling of PIWI-Interacting RNAs and Their Diverse Functions in Metazoans. Int J Mol Sci 2021; 22:ijms222011166. [PMID: 34681826 PMCID: PMC8538981 DOI: 10.3390/ijms222011166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs (sncRNAs) that perform crucial biological functions in metazoans and defend against transposable elements (TEs) in germ lines. Recently, ubiquitously expressed piRNAs were discovered in soma and germ lines using small RNA sequencing (sRNA-seq) in humans and animals, providing new insights into the diverse functions of piRNAs. However, the role of piRNAs has not yet been fully elucidated, and sRNA-seq studies continue to reveal different piRNA activities in the genome. In this review, we summarize a set of simplified processes for piRNA analysis in order to provide a useful guide for researchers to perform piRNA research suitable for their study objectives. These processes can help expand the functional research on piRNAs from previously reported sRNA-seq results in metazoans. Ubiquitously expressed piRNAs have been discovered in the soma and germ lines in Annelida, Cnidaria, Echinodermata, Crustacea, Arthropoda, and Mollusca, but they are limited to germ lines in Chordata. The roles of piRNAs in TE silencing, gene expression regulation, epigenetic regulation, embryonic development, immune response, and associated diseases will continue to be discovered via sRNA-seq.
Collapse
Affiliation(s)
- Songqian Huang
- Correspondence: (S.H.); (S.A.); Tel.: +81-3-5841-5296 (S.A.); Fax: +81-3-5841-8166 (S.A.)
| | | | - Shuichi Asakawa
- Correspondence: (S.H.); (S.A.); Tel.: +81-3-5841-5296 (S.A.); Fax: +81-3-5841-8166 (S.A.)
| |
Collapse
|
10
|
Chen S, Ben S, Xin J, Li S, Zheng R, Wang H, Fan L, Du M, Zhang Z, Wang M. The biogenesis and biological function of PIWI-interacting RNA in cancer. J Hematol Oncol 2021; 14:93. [PMID: 34118972 PMCID: PMC8199808 DOI: 10.1186/s13045-021-01104-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Small non-coding RNAs (ncRNAs) are vital regulators of biological activities, and aberrant levels of small ncRNAs are commonly found in precancerous lesions and cancer. PIWI-interacting RNAs (piRNAs) are a novel type of small ncRNA initially discovered in germ cells that have a specific length (24-31 nucleotides), bind to PIWI proteins, and show 2'-O-methyl modification at the 3'-end. Numerous studies have revealed that piRNAs can play important roles in tumorigenesis via multiple biological regulatory mechanisms, including silencing transcriptional and posttranscriptional gene processes and accelerating multiprotein interactions. piRNAs are emerging players in the malignant transformation of normal cells and participate in the regulation of cancer hallmarks. Most of the specific cancer hallmarks regulated by piRNAs are involved in sustaining proliferative signaling, resistance to cell death or apoptosis, and activation of invasion and metastasis. Additionally, piRNAs have been used as biomarkers for cancer diagnosis and prognosis and have great potential for clinical utility. However, research on the underlying mechanisms of piRNAs in cancer is limited. Here, we systematically reviewed recent advances in the biogenesis and biological functions of piRNAs and relevant bioinformatics databases with the aim of providing insights into cancer diagnosis and clinical applications. We also focused on some cancer hallmarks rarely reported to be related to piRNAs, which can promote in-depth research of piRNAs in molecular biology and facilitate their clinical translation into cancer treatment.
Collapse
Affiliation(s)
- Silu Chen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lulu Fan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China. .,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. .,Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Wang K, Wang T, Gao XQ, Chen XZ, Wang F, Zhou LY. Emerging functions of piwi-interacting RNAs in diseases. J Cell Mol Med 2021; 25:4893-4901. [PMID: 33942984 PMCID: PMC8178273 DOI: 10.1111/jcmm.16466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
PIWI‐interacting RNAs (piRNAs) are recently discovered small non‐coding RNAs consisting of 24‐35 nucleotides, usually including a characteristic 5‐terminal uridine and an adenosine at position 10. PIWI proteins can specifically bind to the unique structure of the 3′ end of piRNAs. In the past, it was thought that piRNAs existed only in the reproductive system, but recently, it was reported that piRNAs are also expressed in several other human tissues with tissue specificity. Growing evidence shows that piRNAs and PIWI proteins are abnormally expressed in various diseases, including cancers, neurodegenerative diseases and ageing, and may be potential biomarkers and therapeutic targets. This review aims to discuss the current research status regarding piRNA biogenetic processes, functions, mechanisms and emerging roles in various diseases.
Collapse
Affiliation(s)
- Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xiang-Qian Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xin-Zhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lu-Yu Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Computational Methods and Online Resources for Identification of piRNA-Related Molecules. Interdiscip Sci 2021; 13:176-191. [PMID: 33886096 DOI: 10.1007/s12539-021-00428-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
piRNAs are a class of small non-coding RNA molecules, which interact with the PIWI family and have many important and diverse biological functions. The present review is aimed to provide guidelines and contribute to piRNA research. We focused on the four types of identification models on piRNA-related molecules, including piRNA, piRNA cluster, piRNA target, and disease-related piRNA. We evaluated the types of tools for the identification of piRNAs based on five aspects: datasets, features, classifiers, performance, and usability. We found the precision of 2lpiRNApred was the highest in datasets of model organisms, piRNN had a better performance of datasets of non-model organisms, and 2L-piRNA had the fastest recognition speed of all tools. In addition, we presented an overview of piRNA databases. The databases were divided into six categories: basic annotation, comprehensive annotation, isoform, cluster, target, and disease. We found that piRNA data of non-model organisms, piRNA target data, and piRNA-disease-associated data should be strengthened. Our review might assist researchers in selecting appropriate tools or datasets for their studies, reveal potential problems and shed light on future bioinformatics studies.
Collapse
|
13
|
Lin Y, Zheng J, Lin D. PIWI-interacting RNAs in human cancer. Semin Cancer Biol 2020; 75:15-28. [PMID: 32877760 DOI: 10.1016/j.semcancer.2020.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
P-element-induced wimpy testis (PIWI) interacting RNAs (piRNAs) are a class of small regulatory RNAs mechanistically similar to but much less studied than microRNAs and small interfering RNAs. Today the best understood function of piRNAs is transposon control in animal germ cells, which has earned them the name 'guardians of the germline'. Several molecular/cellular characteristics of piRNAs, including high sequence diversity, lack of secondary structures, and target-oriented generation seem to serve this purpose. Recently, aberrant expressions of piRNAs and PIWI proteins have been implicated in a variety of malignant tumors and associated with cancer hallmarks such as cell proliferation, inhibited apoptosis, invasion, metastasis and increased stemness. Researchers have also demonstrated multiple mechanisms of piRNA-mediated target deregulation associated with cancer initiation, progression or dissemination. We review current research findings on the biogenesis, normal functions and cancer associations of piRNAs, highlighting their potentials as cancer diagnostic/prognostic biomarkers and therapeutic tools. Whenever applicable, we draw connections with other research fields to encourage intercommunity conversations. We also offer recommendations and cautions regarding the general process of cancer-related piRNA studies and the methods/tools used at each step. Finally, we call attention to some issues that, if left unsolved, might impede the future development of this field.
Collapse
Affiliation(s)
- Yuan Lin
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China; Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
14
|
Wang J, Zhang P, Lu Y, Li Y, Zheng Y, Kan Y, Chen R, He S. piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res 2020; 47:D175-D180. [PMID: 30371818 PMCID: PMC6323959 DOI: 10.1093/nar/gky1043] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
PIWI-interacting RNAs are a class of small RNAs that is most abundantly expressed in animal germline. Substantial research is going on to reveal the functions of piRNAs in the epigenetic and post-transcriptional regulation of transposons and genes. To collect and annotate these data, we developed piRBase, a database assisting piRNA functional study. Since its launch in 2014, piRBase has integrated 264 data sets from 21 organisms, and the number of collected piRNAs has reached 173 million. The latest piRBase release (v2.0, 2018) was more focused on the comprehensive annotation of piRNA sequences, as well as the increasing number of piRNAs. In addition, piRBase release v2.0 also contained the potential information of piRNA targets and disease related piRNA. All datasets in piRBase is free to access, and available for browse, search and bulk downloads at http://www.regulatoryrna.org/database/piRNA/.
Collapse
Affiliation(s)
- Jiajia Wang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001,China
| | - Yanyan Li
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Yu Zheng
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Yunchao Kan
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, Henan 473061,China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Chetta M, Di Pietro L, Bukvic N, Lattanzi W. Rising Roles of Small Noncoding RNAs in Cotranscriptional Regulation: In Silico Study of miRNA and piRNA Regulatory Network in Humans. Genes (Basel) 2020; 11:genes11050482. [PMID: 32365489 PMCID: PMC7290514 DOI: 10.3390/genes11050482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 01/10/2023] Open
Abstract
Gene expression regulation is achieved through an intricate network of molecular interactions, in which trans-acting transcription factors (TFs) and small noncoding RNAs (sncRNAs), including microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), play a key role. Recent observations allowed postulating an interplay between TFs and sncRNAs, in that they may possibly share DNA-binding sites. The aim of this study was to analyze the complete subset of miRNA and piRNA sequences stored in the main databases in order to identify the occurrence of conserved motifs and subsequently predict a possible innovative interplay with TFs at a transcriptional level. To this aim, we adopted an original in silico workflow to search motifs and predict interactions within genome-scale regulatory networks. Our results allowed categorizing miRNA and piRNA motifs, with corresponding TFs sharing complementary DNA-binding motifs. The biological interpretation of the gene ontologies of the TFs permitted observing a selective enrichment in developmental pathways, allowing the distribution of miRNA motifs along a topological and chronological frame. In addition, piRNA motifs were categorized for the first time and revealed specific functional implications in somatic tissues. These data might pose experimental hypotheses to be tested in biological models, towards clarifying novel in gene regulatory routes.
Collapse
Affiliation(s)
- Massimiliano Chetta
- U.O.C. Genetica Medica e di Laboratorio, Ospedale Antonio Cardarelli, 80131 Napoli, Italy
- Correspondence: (M.C.); (L.D.P.); Tel.: +39-333187551 (M.C.); +39-0630154464 (L.D.P.)
| | - Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Biologia Applicata, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: (M.C.); (L.D.P.); Tel.: +39-333187551 (M.C.); +39-0630154464 (L.D.P.)
| | - Nenad Bukvic
- UOC Lab. di Genetica Medica, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Biologia Applicata, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
16
|
Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Perrier JP, Fritz S, Le Danvic C, Boussaha M, Kiefer H, Jammes H, Schibler L. A comprehensive overview of bull sperm-borne small non-coding RNAs and their diversity across breeds. Epigenetics Chromatin 2020; 13:19. [PMID: 32228651 PMCID: PMC7106649 DOI: 10.1186/s13072-020-00340-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background Mature sperm carry thousands of RNAs, including mRNAs, lncRNAs, tRNAs, rRNAs and sncRNAs, though their functional significance is still a matter of debate. Growing evidence suggests that sperm RNAs, especially sncRNAs, are selectively retained during spermiogenesis or specifically transferred during epididymis maturation, and are thus delivered to the oocyte at fertilization, providing resources for embryo development. However , a deep characterization of the sncRNA content of bull sperm and its expression profile across breeds is currently lacking. To fill this gap, we optimized a guanidinium–Trizol total RNA extraction protocol to prepare high-quality RNA from frozen bull sperm collected from 40 representative bulls from six breeds. Deep sequencing was performed (40 M single 50-bp reads per sample) to establish a comprehensive repertoire of cattle sperm sncRNA. Results Our study showed that it comprises mostly piRNAs (26%), rRNA fragments (25%), miRNAs (20%) and tRNA fragments (tsRNA, 14%). We identified 5p-halves as the predominant tsRNA subgroup in bull sperm, originating mostly from Gly and Glu isoacceptors. Our study also increased by ~ 50% the sperm repertoire of known miRNAs and identified 2022 predicted miRNAs. About 20% of sperm miRNAs were located within genomic clusters, expanding the list of known polycistronic pri-miRNA clusters and defining several networks of co-expressed miRNAs. Strikingly, our study highlighted the great diversity of isomiRs, resulting mainly from deletions and non-templated additions (A and U) at the 3p end. Substitutions within miRNA sequence accounted for 40% of isomiRs, with G>A, U>C and C>U substitutions being the most frequent variations. In addition, many sncRNAs were found to be differentially expressed across breeds. Conclusions Our study provides a comprehensive overview of cattle sperm sncRNA, and these findings will pave the way for future work on the role of sncRNAs in embryo development and their relevance as biomarkers of semen fertility.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.
| | - Sylvain Marthey
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Aurelie Bonnet
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | - Jean-Philippe Perrier
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Sébastien Fritz
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | | | - Mekki Boussaha
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Hélène Kiefer
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | | |
Collapse
|
17
|
Zhu Y, Fan C, Zhao B. Differential expression of piRNAs in reprogrammed pluripotent stem cells from mouse embryonic fibroblasts. IUBMB Life 2019; 71:1906-1915. [PMID: 31317647 DOI: 10.1002/iub.2128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022]
Abstract
piRNAs are a large class of small noncoding RNA that interact with an animal-specific class of Argonaute proteins, P-element induced wimpy proteins. piRNAs were initially discovered in mouse testes to be a fundamental component of spermatogenesis. Outside of the germline, piRNAs were found to function in embryogenesis, development, regeneration and cancer cells. However, despite a decade of scrutiny, functional understanding of this class of small RNAs remains very limited. To determine whether there are piRNAs present and involved in the cellular reprogramming process, we extracted piwi-interacting RNA (piRNA) signatures from a small RNA deep sequencing data set of mouse embryonic fibroblasts (MEFs), mouse embryonic stem cells (mESCs) and reprogrammed stem cells by three different technologies. We successfully identified three piRNA families specifically expressed in these reprogrammed stem cells. Meanwhile, there were almost no piRNAs observed in MEFs and mESCs. Further analysis indicated that these piRNAs may associate with the reprogramming process but not cellular pluripotency. Target gene prediction suggested that at least one of piRNAs, piR-mmu-64162, may take part in the reprogramming process by regulating cell senescence. Overall, we firstly identified the potential reprogramming associated piRNAs, shedding new light on piRNA functions.
Collapse
Affiliation(s)
- Yanye Zhu
- National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai, 201210, China
| | - Chunsun Fan
- Department of Etiology, Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200, China
| | - Botao Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|