1
|
Orlov YL, Orlova NG. Bioinformatics tools for the sequence complexity estimates. Biophys Rev 2023; 15:1367-1378. [PMID: 37974990 PMCID: PMC10643780 DOI: 10.1007/s12551-023-01140-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 11/19/2023] Open
Abstract
We review current methods and bioinformatics tools for the text complexity estimates (information and entropy measures). The search DNA regions with extreme statistical characteristics such as low complexity regions are important for biophysical models of chromosome function and gene transcription regulation in genome scale. We discuss the complexity profiling for segmentation and delineation of genome sequences, search for genome repeats and transposable elements, and applications to next-generation sequencing reads. We review the complexity methods and new applications fields: analysis of mutation hotspots loci, analysis of short sequencing reads with quality control, and alignment-free genome comparisons. The algorithms implementing various numerical measures of text complexity estimates including combinatorial and linguistic measures have been developed before genome sequencing era. The series of tools to estimate sequence complexity use compression approaches, mainly by modification of Lempel-Ziv compression. Most of the tools are available online providing large-scale service for whole genome analysis. Novel machine learning applications for classification of complete genome sequences also include sequence compression and complexity algorithms. We present comparison of the complexity methods on the different sequence sets, the applications for gene transcription regulatory regions analysis. Furthermore, we discuss approaches and application of sequence complexity for proteins. The complexity measures for amino acid sequences could be calculated by the same entropy and compression-based algorithms. But the functional and evolutionary roles of low complexity regions in protein have specific features differing from DNA. The tools for protein sequence complexity aimed for protein structural constraints. It was shown that low complexity regions in protein sequences are conservative in evolution and have important biological and structural functions. Finally, we summarize recent findings in large scale genome complexity comparison and applications for coronavirus genome analysis.
Collapse
Affiliation(s)
- Yuriy L. Orlov
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University), Moscow, 119991 Russia
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Nina G. Orlova
- Department of Mathematics, Financial University under the Government of the Russian Federation, Moscow, 125167 Russia
| |
Collapse
|
2
|
Zaytsev K, Fedorov A, Korotkov E. Classification of Promoter Sequences from Human Genome. Int J Mol Sci 2023; 24:12561. [PMID: 37628742 PMCID: PMC10454140 DOI: 10.3390/ijms241612561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
We have developed a new method for promoter sequence classification based on a genetic algorithm and the MAHDS sequence alignment method. We have created four classes of human promoters, combining 17,310 sequences out of the 29,598 present in the EPD database. We searched the human genome for potential promoter sequences (PPSs) using dynamic programming and position weight matrices representing each of the promoter sequence classes. A total of 3,065,317 potential promoter sequences were found. Only 1,241,206 of them were located in unannotated parts of the human genome. Every other PPS found intersected with either true promoters, transposable elements, or interspersed repeats. We found a strong intersection between PPSs and Alu elements as well as transcript start sites. The number of false positive PPSs is estimated to be 3 × 10-8 per nucleotide, which is several orders of magnitude lower than for any other promoter prediction method. The developed method can be used to search for PPSs in various eukaryotic genomes.
Collapse
Affiliation(s)
- Konstantin Zaytsev
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexey Fedorov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Eugene Korotkov
- Institute of Bioengineering, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
3
|
Database of Potential Promoter Sequences in the Capsicum annuum Genome. BIOLOGY 2022; 11:biology11081117. [PMID: 35892972 PMCID: PMC9332048 DOI: 10.3390/biology11081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022]
Abstract
In this study, we used a mathematical method for the multiple alignment of highly divergent sequences (MAHDS) to create a database of potential promoter sequences (PPSs) in the Capsicum annuum genome. To search for PPSs, 20 statistically significant classes of sequences located in the range from −499 to +100 nucleotides near the annotated genes were calculated. For each class, a position–weight matrix (PWM) was computed and then used to identify PPSs in the C. annuum genome. In total, 825,136 PPSs were detected, with a false positive rate of 0.13%. The PPSs obtained with the MAHDS method were tested using TSSFinder, which detects transcription start sites. The databank of the found PPSs provides their coordinates in chromosomes, the alignment of each PPS with the PWM, and the level of statistical significance as a normal distribution argument, and can be used in genetic engineering and biotechnology.
Collapse
|
4
|
Zhang L, Sun PY, Xie HK, Zhang YH, Zhang YY, Peng XM, Yang Z. Characterization of γ-Radiation-Induced DNA Polymorphisms in the M1 Population of the Japonica Rice Variety Gaogengnuo by Whole-Genome Resequencing. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Suvorova YM, Korotkova MA, Skryabin KG, Korotkov EV. Search for potential reading frameshifts in cds from Arabidopsis thaliana and other genomes. DNA Res 2019; 26:157-170. [PMID: 30726896 PMCID: PMC6476729 DOI: 10.1093/dnares/dsy046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023] Open
Abstract
A new mathematical method for potential reading frameshift detection in protein-coding sequences (cds) was developed. The algorithm is adjusted to the triplet periodicity of each analysed sequence using dynamic programming and a genetic algorithm. This does not require any preliminary training. Using the developed method, cds from the Arabidopsis thaliana genome were analysed. In total, the algorithm found 9,930 sequences containing one or more potential reading frameshift(s). This is ∼21% of all analysed sequences of the genome. The Type I and Type II error rates were estimated as 11% and 30%, respectively. Similar results were obtained for the genomes of Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Rattus norvegicus and Xenopus tropicalis. Also, the developed algorithm was tested on 17 bacterial genomes. We compared our results with the previously obtained data on the search for potential reading frameshifts in these genomes. This study discussed the possibility that the reading frameshift seems like a relatively frequently encountered mutation; and this mutation could participate in the creation of new genes and proteins.
Collapse
Affiliation(s)
- Y M Suvorova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - M A Korotkova
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - K G Skryabin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - E V Korotkov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| |
Collapse
|
6
|
Suvorova YM, Korotkov EV. New Method for Potential Fusions Detection in Protein-Coding Sequences. J Comput Biol 2019; 26:1253-1261. [PMID: 31211597 DOI: 10.1089/cmb.2019.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Gene fusion is known to be one of the mechanisms of a new gene formation. Most bioinformatics methods for studying fused genes are based on the sequence similarity search. However, if the ancestral sequences were lost during evolution or changed too much, it is impossible to detect the fusion. Previously, we have developed a method of searching for triplet periodicity (TP) change points in protein-coding sequences (CDS) and showed the possible relation of this phenomenon with gene formation as a result of fusion. In this study, we improved the TP change point detection method and studied the genes of six eukaryotic genomes. At the level of 2%-3% of the probability of type I error, TP change points were found in 20%-40% of genes. Further analysis showed that about 30% of the TP change points can be explained by amino acid repeats. Another 30% can be potentially fused genes, alignment for which was detected by the BLAST program. We believe that the rest of the results can be fused genes, the ancestral sequences for which have been lost. The method is more sensitive to TP changes and allowed us to find up to two to three times more cases of significant TP change points than our previous method.
Collapse
Affiliation(s)
- Yulia M Suvorova
- Federal State Institution "Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences", Moscow, Russian Federation
| | - Eugene V Korotkov
- Federal State Institution "Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences", Moscow, Russian Federation.,Applied Mathematics Department, National Research Nuclear University MEPhI, Moscow, Russian Federation
| |
Collapse
|
7
|
Suvorova YM, Pugacheva VM, Korotkov EV. A Database of Potential Reading Frame Shifts in Coding Sequences from Different Eukaryotic Genomes. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Li Z, Guan Y, Yuan X, Zheng P, Zhu H. Prediction of Sphingosine protein-coding regions with a self adaptive spectral rotation method. PLoS One 2019; 14:e0214442. [PMID: 30943219 PMCID: PMC6447165 DOI: 10.1371/journal.pone.0214442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
Identifying protein coding regions in DNA sequences by computational methods is an active research topic. Welan gum produced by Sphingomonas sp. WG has great application potential in oil recovery and concrete construction industry. Predicting the coding regions in the Sphingomonas sp. WG genome and addressing the mechanism underlying the explanation for the synthesis of Welan gum metabolism is an important issue at present. In this study, we apply a self adaptive spectral rotation (SASR, for short) method, which is based on the investigation of the Triplet Periodicity property, to predict the coding regions of the whole-genome data of Sphingomonas sp. WG without any previous training process, and 1115 suspected gene fragments are obtained. Suspected gene fragments are subjected to a similarity search against the non-redundant protein sequences (nr) database of NCBI with blastx, and 762 suspected gene fragments have been labeled as genes in the nr database.
Collapse
Affiliation(s)
- Zhongwei Li
- College of Computer and Communication Engineering, China University of Petroleum, Qingdao, Shandong, China
| | - Yanan Guan
- College of Computer and Communication Engineering, China University of Petroleum, Qingdao, Shandong, China
| | - Xiang Yuan
- College of Computer and Communication Engineering, China University of Petroleum, Qingdao, Shandong, China
| | - Pan Zheng
- Department of Accounting and Information Systems, University of Canterbury, Christchurch, New Zealand
| | - Hu Zhu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| |
Collapse
|
9
|
Database of Periodic DNA Regions in Major Genomes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7949287. [PMID: 28182099 PMCID: PMC5274682 DOI: 10.1155/2017/7949287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Summary. We analyzed several prokaryotic and eukaryotic genomes looking for the periodicity sequences availability and employing a new mathematical method. The method envisaged using the random position weight matrices and dynamic programming. Insertions and deletions were allowed inside periodicities, thus adding a novelty to the results we obtained. A periodicity length, one of the key periodicity features, varied from 2 to 50 nt. Totally over 60,000 periodicity sequences were found in 15 genomes including some chromosomes of the H. sapiens (partial), C. elegans, D. melanogaster, and A. thaliana genomes.
Collapse
|
10
|
Suvorova YM, Korotkova MA, Korotkov EV. Study of the Paired Change Points in Bacterial Genes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:955-964. [PMID: 26356866 DOI: 10.1109/tcbb.2014.2321154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
It is known that nucleotide sequences are not totally homogeneous and this heterogeneity could not be due to random fluctuations only. Such heterogeneity poses a problem of making sequence segmentation into a set of homogeneous parts divided by the points called "change points". In this work we investigated a special case of change points-paired change points (PCP). We used a well-known property of coding sequences-triplet periodicity (TP). The sequences that we are especially interested in consist of three successive parts: the first and the last parts have similar TP while the middle part has different TP type. We aimed to find the genes with PCP and provide explanation for this phenomenon. We developed a mathematical method for the PCP detection based on the new measure of similarity between TP matrices. We investigated 66,936 bacterial genes from 17 bacterial genomes and revealed 2,700 genes with PCP and 6,459 genes with single change point (SCP). We developed a mathematical approach to visualize the PCP cases. We suppose that PCP could be associated with double fusion or insertion events. The results of investigating the sequences with artificial insertions/fusions and distribution of TP inside the genome support the idea that the real number of genes formed by insertion/ fusion events could be 5-7 times greater than the number of genes revealed in the present work.
Collapse
|
11
|
Pugacheva V, Frenkel F, Korotkov E. Investigation of phase shifts for different period lengths in the genomes of C. elegans, D. melanogaster and S. cerevisiae. Comput Biol Chem 2014; 51:12-21. [PMID: 24840641 DOI: 10.1016/j.compbiolchem.2014.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 11/26/2022]
Abstract
We describe a new mathematical method for finding very diverged short tandem repeats containing a single indel. The method involves comparison of two frequency matrices: a first matrix for a subsequence before shift and a second one for a subsequence after it. A measure of comparison is based on matrix similarity. The approach developed was applied to analysis of the genomes of Caenorhabditis elegans, Drosophila melanogaster and Saccharomyces cerevisiae. They were investigated regarding the presence of tandem repeats having repeat length equal to 2 - 11 nucleotides except equal to 3, 6 and 9 nucleotides. A number of phase shift regions for these genomes was approximately 2.2 × 10(4), 1.5 × 10(4) and 1.7 × 10(2), respectively. Type I error was less than 5%. The mean length of fuzzy periodicity and phase shift regions was about 220 nucleotides. The regions of fuzzy periodicity having single insertion or deletion occupy substantial parts of the genomes: 5%, 3% and 0.3%, respectively. Only less than 10% of these regions have been detected previously. That is, the number of such regions in the genomes of C. elegans, D. melanogaster and S. cerevisiae is dramatically higher than it has been revealed by any known methods. We suppose that some found regions of fuzzy periodicity could be the regions for protein binding.
Collapse
Affiliation(s)
| | - Felix Frenkel
- Bioengineering Centre of Russian Academy of Science, Moscow 117312, Russia
| | - Eugene Korotkov
- Bioengineering Centre of Russian Academy of Science, Moscow 117312, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| |
Collapse
|
12
|
Cheng Z, Lin J, Lin T, Xu M, Huang Z, Yang Z, Huang X, Zheng J. Genome-wide analysis of radiation-induced mutations in rice (Oryza sativa L. ssp. indica). MOLECULAR BIOSYSTEMS 2014; 10:795-805. [PMID: 24457353 DOI: 10.1039/c3mb70349e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Radiation has been efficiently used for rice germplasm innovation. However, the molecular mechanisms by which radiation induces mutations are still unclear. In this study, we performed whole genome sequencing to reveal the comprehensive mutations in rice treated with radiation. Red-1 (a rice rich in beneficial ingredients for human health) was derived from rice 9311 after γ-radiation. Solexa sequencing technology was applied to uncover the mutations. Compared with the 9311 genome, 9.19% of genome sequences were altered in the Red-1 genome. Among these alterations, there were 381,403 SNPs, 50,116 1-5 bp Indels, 1279 copy number variations, and 10,026 presence/absence variations. These alterations were located in 14,493 genes, the majority of which contained a kinase domain, leucine rich repeats, or Cyt_P450. Point mutations were the main type of variation in the Red-1 genome. Gene ontology clustering revealed that genes that are associated with cell components, binding function, catalytic activity and metabolic processes were susceptible to γ-radiation. It was also predicted that 8 mutated genes were involved in the biosynthetic pathways of beneficial products or pigment accumulation. We conclude that genome-wide analysis of mutations provides novel insights into the mechanisms by which radiation improves the beneficial ingredients in rice Red-1.
Collapse
Affiliation(s)
- Zuxin Cheng
- Crop Quality Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Korotkova MA, Kudryashov NA, Korotkov EV. An approach for searching insertions in bacterial genes leading to the phase shift of triplet periodicity. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 9:158-70. [PMID: 22196359 PMCID: PMC5054449 DOI: 10.1016/s1672-0229(11)60019-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/02/2011] [Indexed: 11/28/2022]
Abstract
The concept of the phase shift of triplet periodicity (TP) was used for searching potential DNA insertions in genes from 17 bacterial genomes. A mathematical algorithm for detection of these insertions has been developed. This approach can detect potential insertions and deletions with lengths that are not multiples of three bases, especially insertions of relatively large DNA fragments (>100 bases). New similarity measure between triplet matrixes was employed to improve the sensitivity for detecting the TP phase shift. Sequences of 17,220 bacterial genes with each consisting of more than 1,200 bases were analyzed, and the presence of a TP phase shift has been shown in ~16% of analysed genes (2,809 genes), which is about 4 times more than that detected in our previous work. We propose that shifts of the TP phase may indicate the shifts of reading frame in genes after insertions of the DNA fragments with lengths that are not multiples of three bases. A relationship between the phase shifts of TP and the frame shifts in genes is discussed.
Collapse
Affiliation(s)
- Maria A. Korotkova
- National University of Nuclear Investigations (MIFI), Moscow 115409, Russia
| | | | - Eugene V. Korotkov
- National University of Nuclear Investigations (MIFI), Moscow 115409, Russia
- Centre of Bioengineering, Russian Academy of Sciences, Moscow 117312, Russia
- Corresponding author.
| |
Collapse
|
14
|
Chen B, Ji P. Numericalization of the self adaptive spectral rotation method for coding region prediction. J Theor Biol 2011; 296:95-102. [PMID: 22178641 DOI: 10.1016/j.jtbi.2011.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 10/24/2011] [Accepted: 12/01/2011] [Indexed: 11/27/2022]
Abstract
Recently, for identifying protein coding regions in new sequences from unknown organisms without training sets, a Self Adaptive Spectral Rotation (SASR) method has been developed to visualize the Triplet Periodicity (TP) property, which is a simple and universal coding related property. The rough locations of coding regions can be visually revealed by the SASR method, without any training. However, the method does not numerically discriminate the locations of coding regions. Based on the SASR method, we develop a new approach, named the T-Z-T analysis, to provide numerical results of coding region prediction. This approach adopts a t-test segmentation to separate coding and non-coding regions in the SASR's output and further uses a z-test filter to recognize region patterns. After that, another t-test segmentation is conducted to break down adjacent coding regions by detecting the frame shifts. Since it is based on the graphic output of the SASR, this approach does not require any training. Meanwhile, this approach is more stable, because it is not sensitive to errors in the input DNA sequence. Such advantages make it suitable for coding region prediction in the early stage, when there is insufficient training set, and even the input data are inaccurate.
Collapse
Affiliation(s)
- Bo Chen
- College of Mathematics and Computer Science, Fuzhou University, China.
| | | |
Collapse
|
15
|
Trotta E. The 3-base periodicity and codon usage of coding sequences are correlated with gene expression at the level of transcription elongation. PLoS One 2011; 6:e21590. [PMID: 21738721 PMCID: PMC3125259 DOI: 10.1371/journal.pone.0021590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/03/2011] [Indexed: 11/18/2022] Open
Abstract
Background Gene transcription is regulated by DNA transcriptional regulatory elements, promoters and enhancers that are located outside the coding regions. Here, we examine the characteristic 3-base periodicity of the coding sequences and analyse its correlation with the genome-wide transcriptional profile of yeast. Principal Findings The analysis of coding sequences by a new class of indices proposed here identified two different sources of 3-base periodicity: the codon frequency and the codon sequence. In exponentially growing yeast cells, the codon-frequency component of periodicity accounts for 71.9% of the variability of the cellular mRNA by a strong association with the density of elongating mRNA polymerase II complexes. The mRNA abundance explains most of the correlation between the codon-frequency component of periodicity and protein levels. Furthermore, pyrimidine-ending codons of the four-fold degenerate small amino acids alanine, glycine and valine are associated with genes with double the transcription rate of those associated with purine-ending codons. Conclusions We demonstrate that the 3-base periodicity of coding sequences is higher than expected by the codon usage frequency (CUF) and that its components, associated with codon bias and amino acid composition, are correlated with gene expression, principally at the level of transcription elongation. This indicates a role of codon sequences in maximising the transcription efficiency in exponentially growing yeast cells. Moreover, the results contrast with the common Darwinian explanation that attributes the codon bias to translational selection by an adjustment of synonymous codon frequencies to the most abundant isoaccepting tRNA. Here, we show that selection on codon bias likely acts at both the transcriptional and translational level and that codon usage and the relative abundance of tRNA could drive each other in order to synergistically optimize the efficiency of gene expression.
Collapse
Affiliation(s)
- Edoardo Trotta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, Roma, Italy.
| |
Collapse
|
16
|
Vakhrusheva AA, Kazanov MD, Mironov AA, Bazykin GA. Evolution of prokaryotic genes by shift of stop codons. J Mol Evol 2010; 72:138-46. [PMID: 21082168 DOI: 10.1007/s00239-010-9408-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/29/2010] [Indexed: 11/30/2022]
Abstract
De novo origin of coding sequence remains an obscure issue in molecular evolution. One of the possible paths for addition (subtraction) of DNA segments to (from) a gene is stop codon shift. Single nucleotide substitutions can destroy the existing stop codon, leading to uninterrupted translation up to the next stop codon in the gene's reading frame, or create a premature stop codon via a nonsense mutation. Furthermore, short indels-caused frameshifts near gene's end may lead to premature stop codons or to translation past the existing stop codon. Here, we describe the evolution of the length of coding sequence of prokaryotic genes by change of positions of stop codons. We observed cases of addition of regions of 3'UTR to genes due to mutations at the existing stop codon, and cases of subtraction of C-terminal coding segments due to nonsense mutations upstream of the stop codon. Many of the observed stop codon shifts cannot be attributed to sequencing errors or rare deleterious variants segregating within bacterial populations. The additions of regions of 3'UTR tend to occur in those genes in which they are facilitated by nearby downstream in-frame triplets which may serve as new stop codons. Conversely, subtractions of coding sequence often give rise to in-frame stop codons located nearby. The amino acid composition of the added region is significantly biased, compared to the overall amino acid composition of the genes. Our results show that in prokaryotes, shift of stop codon is an underappreciated contributor to functional evolution of gene length.
Collapse
Affiliation(s)
- Anna A Vakhrusheva
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Vorbyevy Gory 1-73, Moscow 119992, Russia
| | | | | | | |
Collapse
|
17
|
Chen B, Ji P. Visualization of the protein-coding regions with a self adaptive spectral rotation approach. Nucleic Acids Res 2010; 39:e3. [PMID: 20947567 PMCID: PMC3017620 DOI: 10.1093/nar/gkq891] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying protein-coding regions in DNA sequences is an active issue in computational biology. In this study, we present a self adaptive spectral rotation (SASR) approach, which visualizes coding regions in DNA sequences, based on investigation of the Triplet Periodicity property, without any preceding training process. It is proposed to help with the rough coding regions prediction when there is no extra information for the training required by other outstanding methods. In this approach, at each position in the DNA sequence, a Fourier spectrum is calculated from the posterior subsequence. Following the spectrums, a random walk in complex plane is generated as the SASR's graphic output. Applications of the SASR on real DNA data show that patterns in the graphic output reveal locations of the coding regions and the frame shifts between them: arcs indicate coding regions, stable points indicate non-coding regions and corners’ shapes reveal frame shifts. Tests on genomic data set from Saccharomyces Cerevisiae reveal that the graphic patterns for coding and non-coding regions differ to a great extent, so that the coding regions can be visually distinguished. Meanwhile, a time cost test shows that the SASR can be easily implemented with the computational complexity of O(N).
Collapse
Affiliation(s)
- Bo Chen
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | | |
Collapse
|
18
|
Ma L, Zhang T, Huang Z, Jiang X, Tao S. Patterns of nucleotides that flank substitutions in human orthologous genes. BMC Genomics 2010; 11:416. [PMID: 20602772 PMCID: PMC2996944 DOI: 10.1186/1471-2164-11-416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 07/05/2010] [Indexed: 11/23/2022] Open
Abstract
Background Sequence context is an important aspect of base mutagenesis, and three-base periodicity is an intrinsic property of coding sequences. However, how three-base periodicity is influenced in the vicinity of substitutions is still unclear. The effect of context on mutagenesis should be revealed in the usage of nucleotides that flank substitutions. Relative entropy (also known as Kullback-Leibler divergence) is useful for finding unusual patterns in biological sequences. Results Using relative entropy, we visualized the periodic patterns in the context of substitutions in human orthologous genes. Neighbouring patterns differed both among substitution categories and within a category that occurred at three codon positions. Transition tended to occur in periodic sequences relative to transversion. Periodic signals were stronger in a set of flanking sequences of substitutions that occurred at the third-codon positions than in those that occurred at the first- or second-codon positions. To determine how the three-base periodicity was affected near the substitution sites, we fitted a sine model to the values of the relative entropy. A sine of period equal to 3 is a good approximation for the three-base periodicity at sites not in close vicinity to some substitutions. These periods were interrupted near the substitution site and then reappeared away from substitutions. A comparative analysis between the native and codon-shuffled datasets suggested that the codon usage frequency was not the sole origin of the three-base periodicity, implying that the native order of codons also played an important role in this periodicity. Synonymous codon shuffling revealed that synonymous codon usage bias was one of the factors responsible for the observed three-base periodicity. Conclusions Our results offer an efficient way to illustrate unusual periodic patterns in the context of substitutions and provide further insight into the origin of three-base periodicity. This periodicity is a result of the native codon order in the reading frame. The length of the period equal to 3 is caused by the usage bias of nucleotides in synonymous codons. The periodic features in nucleotides surrounding substitutions aid in further understanding genetic variation and nucleotide mutagenesis.
Collapse
Affiliation(s)
- Lei Ma
- Bioinformatics Centre, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | |
Collapse
|