1
|
Hsiao C, Lin HH, Kang SR, Hung CY, Sun PY, Yu CC, Toh KL, Yu PJ, Ju YT. Development of 16 novel EST-SSR markers for species identification and cross-genus amplification in sambar, sika, and red deer. PLoS One 2022; 17:e0265311. [PMID: 35363791 PMCID: PMC8975116 DOI: 10.1371/journal.pone.0265311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Deer genera around the globe are threatened by anthropogenic interference. The translocation of alien species and their subsequent genetic introgression into indigenous deer populations is particularly harmful to the species of greatest conservation concern. Products derived from deer, including venison and antler velvet, are also at risk of fraudulent labeling. The current molecular markers used to genetically identify deer species were developed from genome sequences and have limited applicability for cross-species amplification. The absence of efficacious diagnostic techniques for identifying deer species has hampered conservation and wildlife crime investigation efforts. Expressed sequence tag-simple sequence repeat (EST-SSR) markers are reliable tools for individual and species identification, especially in terms of cross-species genotyping. We conducted transcriptome sequencing of sambar (Rusa unicolor) antler velvet and acquired 11,190 EST-SSRs from 65,074 newly assembled unigenes. We identified a total of 55 unambiguous amplicons in sambar (n = 45), which were selected as markers to evaluate cross-species genotyping in sika deer (Cervus nippon, n = 30) and red deer (Cervus elaphus, n = 46), resulting in cross-species amplification rates of 94.5% and 89.1%, respectively. Based on polymorphic information content (>0.25) and genotyping fidelity, we selected 16 of these EST-SSRs for species identification. This marker set revealed significant genetic differentiation based on the fixation index and genetic distance values. Principal coordinate analysis and STRUCTURE analysis revealed distinct clusters of species and clearly identified red-sika hybrids. These markers showed applicability across different genera and proved suitable for identification and phylogenetic analyses across deer species.
Collapse
Affiliation(s)
- Chen Hsiao
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hung Lin
- Kaohsiung Animal Propagation Station, Pingdong, Taiwan
| | | | - Chien-Yi Hung
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Sun
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chieh-Cheng Yu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kok-Lin Toh
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pei-Ju Yu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Ten Ju
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Ding H, Liu M, Zhou C, You X, Su T, Yang Y, Xu D. Integrated analysis of miRNA and mRNA expression profiles in testes of Duroc and Meishan boars. BMC Genomics 2020; 21:686. [PMID: 33008286 PMCID: PMC7531090 DOI: 10.1186/s12864-020-07096-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. RESULTS In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 (PLCβ1) gene was verified to be a target of ssc-mir-423-5p. CONCLUSIONS This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.
Collapse
Affiliation(s)
- Haisheng Ding
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Min Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changfan Zhou
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiangbin You
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tao Su
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science & Technology, Luoyang, 471023, People's Republic of China
| | - Dequan Xu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
3
|
Ee Uli J, Yong CSY, Yeap SK, Alitheen NB, Rovie-Ryan JJ, Mat Isa N, Tan SG. RNA sequencing of kidney and liver transcriptome obtained from wild cynomolgus macaque (Macaca fascicularis) originating from Peninsular Malaysia. BMC Res Notes 2018; 11:923. [PMID: 30577850 PMCID: PMC6303865 DOI: 10.1186/s13104-018-4014-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/12/2018] [Indexed: 01/22/2023] Open
Abstract
Objective Using high-throughput RNA sequencing technology, this study aimed to sequence the transcriptome of kidney and liver tissues harvested from Peninsular Malaysia cynomolgus macaque (Macaca fascicularis). M. fascicularis are significant nonhuman primate models in the biomedical field, owing to the macaque’s biological similarities with humans. The additional transcriptomic dataset will supplement the previously described Peninsular Malaysia M. fascicularis transcriptomes obtained in a past endeavour. Results A total of 75,350,240 sequence reads were obtained via Hi-seq 2500 sequencing technology. A total of 5473 significant differentially expressed genes were called. Gene ontology functional categorisation showed that cellular process, catalytic activity, and cell part categories had the highest number of expressed genes, while the metabolic pathways category possessed the highest number of expressed genes in the KEGG pathway analysis. The additional sequence dataset will further enrich existing M. fascicularis transcriptome assemblies, and provide a dataset for further downstream studies. Electronic supplementary material The online version of this article (10.1186/s13104-018-4014-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joey Ee Uli
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Christina Seok-Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University, Sepang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Jeffrine J Rovie-Ryan
- National Wildlife Forensic Laboratory, Ex-Situ Conservation Division, Department of Wildlife and National Parks, Kuala Lumpur, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Soon Guan Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Seasonal differences in the testicular transcriptome profile of free-living European beavers (Castor fiber L.) determined by the RNA-Seq method. PLoS One 2017; 12:e0180323. [PMID: 28678806 PMCID: PMC5498055 DOI: 10.1371/journal.pone.0180323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/14/2017] [Indexed: 11/20/2022] Open
Abstract
The European beaver (Castor fiber L.) is an important free-living rodent that inhabits Eurasian temperate forests. Beavers are often referred to as ecosystem engineers because they create or change existing habitats, enhance biodiversity and prepare the environment for diverse plant and animal species. Beavers are protected in most European Union countries, but their genomic background remains unknown. In this study, gene expression patterns in beaver testes and the variations in genetic expression in breeding and non-breeding seasons were determined by high-throughput transcriptome sequencing. Paired-end sequencing in the Illumina HiSeq 2000 sequencer produced a total of 373.06 million of high-quality reads. De novo assembly of contigs yielded 130,741 unigenes with an average length of 1,369.3 nt, N50 value of 1,734, and average GC content of 46.51%. A comprehensive analysis of the testicular transcriptome revealed more than 26,000 highly expressed unigenes which exhibited the highest homology with Rattus norvegicus and Ictidomys tridecemlineatus genomes. More than 8,000 highly expressed genes were found to be involved in fundamental biological processes, cellular components or molecular pathways. The study also revealed 42 genes whose regulation differed between breeding and non-breeding seasons. During the non-breeding period, the expression of 37 genes was up-regulated, and the expression of 5 genes was down-regulated relative to the breeding season. The identified genes encode molecules which are involved in signaling transduction, DNA repair, stress responses, inflammatory processes, metabolism and steroidogenesis. Our results pave the way for further research into season-dependent variations in beaver testes.
Collapse
|
5
|
Longissimus lumborum muscle transcriptome analysis of Laiwu and Yorkshire pigs differing in intramuscular fat content. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0540-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Whole Blood Transcriptome Sequencing Reveals Gene Expression Differences between Dapulian and Landrace Piglets. BIOMED RESEARCH INTERNATIONAL 2017; 2016:7907980. [PMID: 28105431 PMCID: PMC5220446 DOI: 10.1155/2016/7907980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/04/2016] [Accepted: 11/27/2016] [Indexed: 11/18/2022]
Abstract
There is little genomic information regarding gene expression differences at the whole blood transcriptome level of different pig breeds at the neonatal stage. To solve this, we characterized differentially expressed genes (DEGs) in the whole blood of Dapulian (DPL) and Landrace piglets using RNA-seq (RNA-sequencing) technology. In this study, 83 DEGs were identified between the two breeds. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified immune response and metabolism as the most commonly enriched terms and pathways in the DEGs. Genes related to immunity and lipid metabolism were more highly expressed in the DPL piglets, while genes related to body growth were more highly expressed in the Landrace piglets. Additionally, the DPL piglets had twofold more single nucleotide polymorphisms (SNPs) and alternative splicing (AS) than the Landrace piglets. These results expand our knowledge of the genes transcribed in the piglet whole blood of two breeds and provide a basis for future research of the molecular mechanisms underlying the piglet differences.
Collapse
|
7
|
Elucidating a molecular mechanism that the deterioration of porcine meat quality responds to increased cortisol based on transcriptome sequencing. Sci Rep 2016; 6:36589. [PMID: 27833113 PMCID: PMC5105143 DOI: 10.1038/srep36589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
Stress response is tightly linked to meat quality. The current understanding of the intrinsic mechanism of meat deterioration under stress is limited. Here, male piglets were randomly assigned to cortisol and control groups. Our results showed that when serum cortisol level was significantly increased, the meat color at 1 h postmortem, muscle bundle ratio, apoptosis rate, and gene expression levels of calcium channel and cell apoptosis including SERCA1, IP3R1, BAX, Bcl-2, and Caspase-3, were notably increased. However, the value of drip loss at 24 h postmortem and serum CK were significantly decreased. Additionally, a large number of differentially expressed genes (DEGs) in GC regulation mechanism were screened out using transcriptome sequencing technology. A total of 223 DEGs were found, including 80 up-regulated genes and 143 down-regulated genes. A total of 204 genes were enriched in GO terms, and 140 genes annotated into in KEGG database. Numerous genes were primarily involved in defense, inflammatory and wound responses. This study not only identifies important genes and signalling pathways that may affect the meat quality but also offers a reference for breeding and feeding management to provide consumers with better quality pork products.
Collapse
|
8
|
Histological and transcriptome analyses of testes from Duroc and Meishan boars. Sci Rep 2016; 6:20758. [PMID: 26865000 PMCID: PMC4749976 DOI: 10.1038/srep20758] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Meishan boars are known for their early sexual maturity. However, they exhibit a significantly smaller testicular size and a reduced proportion of Sertoli cells and daily sperm production compared with Duroc boars. The testes of Duroc and Meishan boars at 20, 75 and 270 days of age were used for histological and transcriptome analyses. Haematoxylin-eosin staining was conducted to observe histological structure of the testes in Duroc and Meishan boars at different ages. Although spermatogenesis occurred prior to 75 days in Meishan boars, the number of spermatogonia and Sertoli cells in Meishan boars were less than in Duroc boars at adulthood. The diameters of the seminiferous tubules of the testes differed significantly during the initiation of development of the seminiferous tubules between the two breeds. We obtained differentially expressed functional genes and analysed seven pathways involved in male sexual maturity and spermatogenesis using RNA-seq. We also detected four main alternative splicing events and many single nucleotide polymorphisms from testes. Eight functionally important genes were validated by qPCR, and Neurotrophin 3 was subjected to quantification and cellular localization analysis. Our study provides the first transcriptome evidence for the differences in sexual function development between Meishan and Duroc boars.
Collapse
|
9
|
Deng T, Pang C, Lu X, Zhu P, Duan A, Tan Z, Huang J, Li H, Chen M, Liang X. De Novo Transcriptome Assembly of the Chinese Swamp Buffalo by RNA Sequencing and SSR Marker Discovery. PLoS One 2016; 11:e0147132. [PMID: 26766209 PMCID: PMC4713091 DOI: 10.1371/journal.pone.0147132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/29/2015] [Indexed: 01/11/2023] Open
Abstract
The Chinese swamp buffalo (Bubalis bubalis) is vital to the lives of small farmers and has tremendous economic importance. However, a lack of genomic information has hampered research on augmenting marker assisted breeding programs in this species. Thus, a high-throughput transcriptomic sequencing of B. bubalis was conducted to generate transcriptomic sequence dataset for gene discovery and molecular marker development. Illumina paired-end sequencing generated a total of 54,109,173 raw reads. After trimming, de novo assembly was performed, which yielded 86,017 unigenes, with an average length of 972.41 bp, an N50 of 1,505 bp, and an average GC content of 49.92%. A total of 62,337 unigenes were successfully annotated. Among the annotated unigenes, 27,025 (43.35%) and 23,232 (37.27%) unigenes showed significant similarity to known proteins in NCBI non-redundant protein and Swiss-Prot databases (E-value < 1.0E-5), respectively. Of these annotated unigenes, 14,439 and 15,813 unigenes were assigned to the Gene Ontology (GO) categories and EuKaryotic Ortholog Group (KOG) cluster, respectively. In addition, a total of 14,167 unigenes were assigned to 331 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Furthermore, 17,401 simple sequence repeats (SSRs) were identified as potential molecular markers. One hundred and fifteen primer pairs were randomly selected for amplification to detect polymorphisms. The results revealed that 110 primer pairs (95.65%) yielded PCR amplicons and 69 primer pairs (60.00%) presented polymorphisms in 35 individual buffaloes. A phylogenetic analysis showed that the five swamp buffalo populations were clustered together, whereas two river buffalo breeds clustered separately. In the present study, the Illumina RNA-seq technology was utilized to perform transcriptome analysis and SSR marker discovery in the swamp buffalo without using a reference genome. Our findings will enrich the current SSR markers resources and help spearhead molecular genetic research studies on the swamp buffalo.
Collapse
Affiliation(s)
- Tingxian Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Chunying Pang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Xingrong Lu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Peng Zhu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Anqin Duan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Zhengzhun Tan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Jian Huang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Hui Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Mingtan Chen
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Xianwei Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
- * E-mail:
| |
Collapse
|
10
|
Leng X, Jia H, Sun X, Shangguan L, Mu Q, Wang B, Fang J. Comparative transcriptome analysis of grapevine in response to copper stress. Sci Rep 2015; 5:17749. [PMID: 26673527 PMCID: PMC4682189 DOI: 10.1038/srep17749] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/05/2015] [Indexed: 01/03/2023] Open
Abstract
Grapevine is one of the most economically important and widely cultivated fruit crop worldwide. With the industrialization and the popular application of cupric fungicides in grape industry, copper stress and copper pollution are also the factors affecting grape production and berry and wine quality. Here, 3,843 transcripts were significantly differently expressed genes in response to Cu stress by RNA-seq, which included 1,892 up-regulated and 1,951 down-regulated transcripts. During this study we found many known and novel Cu-induced and -repressed genes. Biological analysis of grape samples were indicated that exogenous Cu can influence chlorophylls metabolism and photosynthetic activities of grapevine. Most ROS detoxification systems, including antioxidant enzyme, stress-related proteins and secondary metabolites were strongly induced. Concomitantly, abscisic acid functioned as a negative regulator in Cu stress, in opposite action to ethylene, auxin, jasmonic acid, and brassinolide. This study also identified a set of Cu stress specifically activated genes coding copper transporter, P1B-type ATPase, multidrug transporters. Overall, this work was carried out to gain insights into the copper-regulated and stress-responsive mechanisms in grapevine at transcriptome level. This research can also provide some genetic information that can help us in better vinery management and breeding Cu-resistant grape cultivars.
Collapse
Affiliation(s)
- Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Xin Sun
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Qian Mu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Baoju Wang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| |
Collapse
|
11
|
De novo assembly and characterization of the skeletal muscle transcriptome of sheep using Illumina paired-end sequencing. Biotechnol Lett 2015; 37:1747-56. [DOI: 10.1007/s10529-015-1854-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 05/14/2015] [Indexed: 10/23/2022]
|
12
|
Ran M, Chen B, Wu M, Liu X, He C, Yang A, Li Z, Xiang Y, Li Z, Zhang S. Integrated analysis of miRNA and mRNA expression profiles in development of porcine testes. RSC Adv 2015. [DOI: 10.1039/c5ra07488f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression profile in the development of porcine testes investigates the intricate physiological process in pig testis development and spermatogenesis.
Collapse
Affiliation(s)
- Maoliang Ran
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Bin Chen
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Maisheng Wu
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product
- Xiangtan
- China
| | - Xiaochun Liu
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Changqing He
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Anqi Yang
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Zhi Li
- College of Animal Science and Technology
- Hunan Agriculture University
- Changsha
- China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal
| | - Yongjun Xiang
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product
- Xiangtan
- China
| | - Zhaohui Li
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product
- Xiangtan
- China
| | - Shanwen Zhang
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product
- Xiangtan
- China
| |
Collapse
|
13
|
Liao W, Ji L, Wang J, Chen Z, Ye M, Ma H, An X. Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa. Funct Integr Genomics 2014; 14:517-29. [PMID: 24870810 DOI: 10.1007/s10142-014-0379-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/25/2014] [Accepted: 05/12/2014] [Indexed: 01/31/2023]
Abstract
Stem blister canker, caused by Botryosphaeria dothidea, is becoming the most serious disease of poplar in China. The molecular basis of the poplar in response to stem blister canker is not well understood. To reveal the global transcriptional changes of poplar to infection by B. dothidea, Solexa paired-end sequencing of complementary DNAs (cDNAs) from control (NB) and pathogen-treated samples (WB) was performed, resulting in a total of 339,283 transcripts and 183,881 unigenes. A total of 206,586 transcripts were differentially expressed in response to pathogen stress (false discovery rate ≤0.05 and an absolute value of log2Ratio (NB/WB) ≥1). In enrichment analysis, energy metabolism and redox reaction-related macromolecules were accumulated significantly in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses, indicating components of dynamic defense against the fungus. A total of 852 transcripts (575 upregulated and 277 downregulated transcripts) potentially involved in plant-pathogen interaction were also differentially regulated, including genes encoding proteins linked to signal transduction (putative leucine-rich repeat (LRR) protein kinases and calcium-binding proteins), defense (pathogenesis-related protein 1), and cofactors (jasmonate-ZIM-domain-containing proteins and heat shock proteins). Moreover, transcripts encoding glutathione S-transferase (GST) were accumulated to high levels, revealing key genes and proteins potentially related to pathogen resistance. Poplar RNA sequence data were validated by quantitative real-time PCR (RT-qPCR), which revealed a highly reliability of the transcriptomic profiling data.
Collapse
Affiliation(s)
- Weihua Liao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory, College of Biological Sciences and Biotechnology, Beijing Forestry University, P.O. Box 118, Beijing, 100083, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Comparative transcriptome analysis of tomato (Solanum lycopersicum) in response to exogenous abscisic acid. BMC Genomics 2013; 14:841. [PMID: 24289302 PMCID: PMC4046761 DOI: 10.1186/1471-2164-14-841] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/27/2013] [Indexed: 12/05/2022] Open
Abstract
Background Abscisic acid (ABA) can regulate the expressions of many stress-responsive genes in plants. However, in defense responses to pathogens, mounting evidence suggests that ABA plays variable roles. Little information exists about genome-wide gene expression in ABA responses in tomato (Solanum lycopersicum L.), a model fruit crop plant. Results Global transcriptome profiles of tomato leaf responses to exogenous ABA were generated using Illumina RNA-sequencing. More than 173 million base pair reads were mapped onto the tomato reference genome and the expression pattern differences between treated and control leaves were assessed. In total, 50,616 transcripts were generated. Among them, 42,583 were functionally annotated in the NCBI non-redundant database and 47,877 in the tomato genome reference. Additionally, 31,107 transcripts were categorized into 57 functional groups based on Gene Ontology terms, and 14,371 were assigned to 310 Kyoto Encyclopedia of Genes and Genomes pathways. In both the ABA treatment and control samples, 39,671 transcripts were available to analyze their expressions, of which 21,712 (54.73%) responded to exogenous ABA. Of these transcripts, 2,787 were significantly differently expressed genes (DEGs). Many known and novel ABA-induced and -repressed genes were found. Exogenous ABA can influence the ABA signaling pathway with PYR/PYL/RCARs-PP2Cs-SnRK2s as the center. Eighteen PYL genes were detected. A large number of genes related to various transcription factors, heat shock proteins, pathogen resistance, and the salicylic acid, jasmonic acid, and ethylene signaling pathways were up-regulated by exogenous ABA. Conclusions The results indicated that ABA has the potential to improve pathogen-resistance and abiotic stress tolerance in tomato. This study presents the global expression analysis of ABA-regulated transcripts in tomato and provides a robust database for investigating the functions of genes induced by ABA. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-841) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Shan L, Wu Q, Li Y, Shang H, Guo K, Wu J, Wei H, Zhao J, Yu J, Li MH. Transcriptome profiling identifies differentially expressed genes in postnatal developing pituitary gland of miniature pig. DNA Res 2013; 21:207-16. [PMID: 24282060 PMCID: PMC3989491 DOI: 10.1093/dnares/dst051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In recent years, Tibetan pig and Bama pig are popularly used as animal models for medical researches. However, little genomic information is available for the two breeds, particularly regarding gene expression pattern at the whole-transcriptome level. In this study, we characterized the pituitary transcriptome profile along their postnatal developmental stages within and between the two breeds in order to illustrate the differential dynamics and functions of differentially expressed genes. We obtained a total of ∼300 million 80-bp paired-end reads, detected 15 715 previously annotated genes. Most of the genes (90.33%) were shared between the two breeds with the main functions in metabolic process. Four hormone genes (GH, PRL, LHB, and FSHB) were detected in all samples with extremely high levels of expression. Functional differences between the three developmental stages (infancy, puberty and adulthood) in each breed were dominantly presented by the gene expressions at the first stage. That is, Bama pig was over-represented in the genes involved in the cellular process, while Tibetan pig was over-represented in the genes represented by the reproductive process. The identified SNPs indicated that the divergence between the miniature pig breeds and the large pig (Duroc) were greater than that between the two miniature pig breeds. This study substantially expands our knowledge concerning the genes transcribed in the pig pituitary gland and provides an overview of pituitary transcriptome dynamics throughout the period of postnatal development.
Collapse
Affiliation(s)
- Lei Shan
- 1Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang C, Wang G, Wang J, Ji Z, Liu Z, Pi X, Chen C. Characterization and comparative analyses of muscle transcriptomes in Dorper and small-tailed Han sheep using RNA-Seq technique. PLoS One 2013; 8:e72686. [PMID: 24023632 PMCID: PMC3758325 DOI: 10.1371/journal.pone.0072686] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 07/17/2013] [Indexed: 02/02/2023] Open
Abstract
The sheep is an important domestic animal and model for many types of medically relevant research. An investigation of gene expression in ovine muscle would significantly advance our understanding of muscle growth. RNA-seq is a recently developed analytical approach for transcriptome profiling via high-throughput sequencing. Although RNA-seq has been recently applied to a wide variety of organisms, few RNA-seq studies have been conducted in livestock, particularly in sheep. In this study, two cDNA libraries were constructed from the biceps brachii of one Small-tailed Han sheep (SH) and one Dorper sheep (DP). The Illumina high-throughput sequencing technique and bioinformatics were used to determine transcript abundances and characteristics. For the SH and DP libraries, we obtained a total of 50,264,608 and 52,794,216 high quality reads, respectively. Approximately two-thirds of the reads could be mapped to the sheep genome. In addition, 40,481 and 38,851 potential coding single nucleotide polymorphisms (cSNPs) were observed, respectively, of which a total of 59,139 cSNP coordinates were different between the two samples. Up to 5,116 and 5,265 respective reference genes had undergone 13,827 and 15,684 alternative splicing events. A total of 6,989 reference genes were extended at the 5’, 3’ or both ends, and 123,678 novel transcript units were found. A total of 1,300 significantly differentially expressed genes were identified between the two libraries. These results suggest that there are many differences in the muscle transcriptomes between these two animals. This study addresses a preliminary analysis and offers a foundation for future genomic research in the sheep.
Collapse
Affiliation(s)
- Chunlan Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, China
- * E-mail:
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, China
| | - Zhaohuan Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, China
| | - Xiushuang Pi
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, China
| | - Cunxian Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
17
|
Zhao F, Yan C, Wang X, Yang Y, Wang G, Lee W, Xiang Y, Zhang Y. Comprehensive transcriptome profiling and functional analysis of the frog (Bombina maxima) immune system. DNA Res 2013; 21:1-13. [PMID: 23942912 PMCID: PMC3925390 DOI: 10.1093/dnares/dst035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amphibians occupy a key phylogenetic position in vertebrates and evolution of the immune system. But, the resources of its transcriptome or genome are still little now. Bombina maxima possess strong ability to survival in very harsh environment with a more mature immune system. We obtained a comprehensive transcriptome by RNA-sequencing technology. 14.3% of transcripts were identified to be skin-specific genes, most of which were not isolated from skin secretion in previous works or novel non-coding RNAs. 27.9% of transcripts were mapped into 242 predicted KEGG pathways and 6.16% of transcripts related to human disease and cancer. Of 39 448 transcripts with the coding sequence, at least 1501 transcripts (570 genes) related to the immune system process. The molecules of immune signalling pathway were almost presented, several transcripts with high expression in skin and stomach. Experiments showed that lipopolysaccharide or bacteria challenge stimulated pro-inflammatory cytokine production and activation of pro-inflammatory caspase-1. These frog's data can remarkably expand the existing genome or transcriptome resources of amphibians, especially immunity data. The entity of the data provides a valuable platform for further investigation on more detailed immune response in B. maxima and a comparative study with other amphibians.
Collapse
Affiliation(s)
- Feng Zhao
- 1Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fu B, He S. Transcriptome analysis of silver carp (Hypophthalmichthys molitrix) by paired-end RNA sequencing. DNA Res 2012; 19:131-42. [PMID: 22279088 PMCID: PMC3325077 DOI: 10.1093/dnares/dsr046] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The silver carp (Hypophthalmichthys molitrix) is among the most intensively pond-cultured fish species and is used in the wild to counteract water bloom in China. However, little genomic information is available for this species, especially regarding its ability to grow rapidly in water, even water contaminated with high concentrations of poisonous microcystin. In this study, we performed de novo transcriptome assembly and analysis of the 17.10 million short-read sequences produced by the Illumina paired-end sequencing technology. Using an improved multiple k-mer contig assembly method coupled with further scaffolding, 85,759 sequences were obtained. There were 23,044 sequences annotated with 3423 gene ontology terms for 104 196 term occurrences and the three corresponding organizing principles. A total of 38,200 assembled sequences were involved in 218 predicted Kyoto Encyclopedia of Genes and Genomes metabolic pathways. We also recovered 41 of 44 genes involved in the biosynthesis of glutathione. Of these, five genes were identified as experienced positive selection between silver carp and zebrafish, as determined by the likelihood ratio test. This report is the first annotated review of the silver carp transcriptome. These data will be of interest to researchers investigating the evolution and biological processes of the silver carp. This work also provides an archive for future studies of recent speciation and evolution of Cyprinidae fishes and can be used in comparative studies of other fishes.
Collapse
Affiliation(s)
- Beide Fu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China
| | | |
Collapse
|