1
|
Hussain MD, Farooq T, Kamran A, Basit A, Wang Y, Smagghe G, Chen X. Endosymbionts as hidden players in tripartite pathosystem of interactions and potential candidates for sustainable viral disease management. Crit Rev Biotechnol 2025:1-23. [PMID: 39848650 DOI: 10.1080/07388551.2024.2449403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/25/2025]
Abstract
The convoluted relationships between plants, viruses, and arthropod vectors housing bacterial endosymbionts are pivotal in the spread of harmful plant viral diseases. Endosymbionts play key roles in: manipulating host responses, influencing insect resistance to pesticides, shaping insect evolution, and bolstering virus acquisition, retention, and transmission. This interplay presents an innovative approach for developing sustainable strategies to manage plant diseases. Recent progress in targeting specific endosymbionts through genetic modifications, biotechnological advancements, and RNA interference shows potential for curbing viral spread and disease progression. Additionally, employing synthetic biology techniques like CRISPR/Cas9 to engineer endosymbionts and disrupt crucial interactions necessary for viral transmission in arthropod vectors holds promise for effective control measures. In this review, these obligate and facultative bacterial cruxes have been discussed to elaborate on their mechanistic involvement in the regulation and/or inhibition of tripartite pathways of interactions. Furthermore, we provide an in-depth understanding of endosymbionts' synergistic and antagonistic effects on: insect biology, plant immunity, and virus acquisition and transmission. Finally, we point out open questions for future research and provide research directions concerning the deployment of genetically engineered symbionts to affect plant-virus-vector interactions for sustainable disease management. By addressing existing knowledge gaps and charting future research paths, a deeper comprehension of the role of endosymbionts in plant-virus-vector interactions can pave the way for innovative and successful disease management strategies. The exploration of antiviral therapies, paratransgenesis, and pathogen-blocking tactics using engineered endosymbionts introduces pioneering solutions for lessening the impact of plant viral diseases and green pest management.
Collapse
Affiliation(s)
- Muhammad Dilshad Hussain
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, P.R. China
| | - Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
| | - Ali Kamran
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, P.R. China
| | - Abdul Basit
- Institute of Entomology, Guizhou University, Guiyang, P.R. China
| | - Yong Wang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, P.R. China
- Institute of Plant Health and Medicine, College of Agriculture, Guizhou University, Guiyang, P.R. China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang, P.R. China
- Cellular and Molecular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Xiangru Chen
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, P.R. China
| |
Collapse
|
2
|
Angelella GM, Foutz JJ, Galindo-Schuller J. Wolbachia infection modifies phloem feeding behavior but not plant virus transmission by a hemipteran host. JOURNAL OF INSECT PHYSIOLOGY 2025; 160:104746. [PMID: 39733938 DOI: 10.1016/j.jinsphys.2024.104746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Wolbachia-infected and uninfected subpopulations of beet leafhoppers, Circulifer tenellus (Baker) (Hemiptera: Cicadellidae), co-occur in the Columbia Basin region of Washington and Oregon. While facultative endosymbionts such as Hamiltonella defensa have demonstrably altered feeding/probing behavior in hemipteran hosts, the behavioral phenotypes conferred by Wolbachia to its insect hosts, including feeding/probing, are largely understudied. We studied the feeding/probing behavior of beet leafhoppers with and without Wolbachia using electropenetrography, along with corresponding inoculation rates of beet curly top virus, a phloem-limited plant pathogen vectored by beet leafhoppers. Insects carrying the virus with and without Wolbachia were individually recorded for four hours while interacting with a potato plant, and wavelengths annotated following established conventions. Virus inoculation rates and the duration of phloem salivation events did not vary. Wolbachia-infected insects more than tripled the duration of phloem ingestion, but despite this, Wolbachia infection was linked with marginally lower, not enhanced, acquisition. Regardless, results suggest potential for Wolbachia to increase the acquisition rate of other phloem-limited plant pathogens.
Collapse
Affiliation(s)
- Gina M Angelella
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA, 98951, USA.
| | - Jillian J Foutz
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA, 98951, USA
| | - Joanna Galindo-Schuller
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA, 98951, USA
| |
Collapse
|
3
|
Alkhatib BM, Belteton S, Creamer R. Immunolocalization of Beet Curly Top Virus (BCTV) and GroEL Chaperon Protein of Endosymbionts in Beet Leafhopper ( Circulifer tenellus) Vector Tissue. Viruses 2024; 16:1571. [PMID: 39459905 PMCID: PMC11512417 DOI: 10.3390/v16101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Beet curly top virus (BCTV, curtovirus, geminiviridae) causes one of the most economically significant viral diseases in crops in the Western United States and is transmitted only by the beet leafhopper (Circulifer tenellus) in a non-propagative circulative manner. A better understanding of how this virus overcomes insect vector cellular barriers is essential to understanding virus-vector interactions. The distribution of BCTV in its beet leafhopper vector was investigated using immunofluorescence confocal laser scanning microscope analysis (iCLSM) on the whole-mount-dissected organs of leafhoppers. BCTV was localized in several lobes of the principal salivary glands, filter chamber, anterior midgut, and mid midgut, suggesting the occurrence of midgut and salivary gland barriers to BCTV transmission in its vector C. tenellus. This study also investigated the distribution of the chaperon GroEL homolog protein produced by primary endosymbiotic bacteria within the beet leafhopper, which is believed to indirectly affect viral transmission by enhancing insect immunity and resistance to viruses. GroEL was identified in leafhopper salivary glands lobes, the stylet, salivary canal, the filter chamber, and the Malpighian tubule. This is the first work to visualize the localization of a curtovirus within its beet leafhopper vector. Together, these results can help understand ssDNA virus-vector relationships, including cellular transmission barriers and other vector protein components.
Collapse
Affiliation(s)
- Batool M. Alkhatib
- Molecular Biology and Interdisciplinary Life Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Samy Belteton
- Microscopic Imaging Facility, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Rebecca Creamer
- Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
4
|
Swisher Grimm KD, Gorman CJ, Crosslin JM. New Assays for Rapid Detection of Beet Leafhopper-Associated Plant Pathogens, ' Candidatus Phytoplasma trifolii', Beet Curly Top Virus, and Spiroplasma citri. PLANT DISEASE 2023; 107:3958-3966. [PMID: 37430481 DOI: 10.1094/pdis-04-23-0769-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The beet leafhopper Circulifer tenellus is an important pest of agricultural crops in the United States, where it transmits beet curly top virus, beet leafhopper-transmitted virescence agent phytoplasma, and Spiroplasma citri to numerous crops, affecting yield and quality. Each of these pathogens have been linked to serious disease outbreaks within Washington State in the past century. To mitigate the risk of disease, growers target the beet leafhopper in their insect pest management programs. Knowledge of pathogen prevalence in beet leafhopper populations could help growers make better management decisions, but timely diagnostics is required. Four new assays were developed for the rapid detection of the beet leafhopper-associated pathogens. These include two assays that detect Beet leafhopper transmitted virescence agent (a PCR and a real-time PCR SYBR green assay), a duplex PCR assay that simultaneously detects beet curly top virus and Spiroplasma citri, and a multiplex real-time PCR assay for the simultaneous detection of all three pathogens. The screening of dilution series generated from plant total nucleic acid extracts with these new assays typically led to detection at levels 10- to 100-fold more sensitive than the conventional PCR assays currently used. These new tools will allow the rapid detection of beet leafhopper-associated pathogens in both plant and insect specimens and will have the potential to be used in diagnostic laboratories seeking to disseminate fast and accurate results to growers for implementation in their insect pest monitoring programs.
Collapse
Affiliation(s)
| | | | - James M Crosslin
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Prosser, WA 99350
| |
Collapse
|