1
|
Nebapure S, Kumar S. Electrophysiological and behavioral responses of blister beetle Mylabris pustulata to plant volatiles. ANIM BIOL 2022. [DOI: 10.1163/15707563-bja10071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Plant volatiles, constitutive or induced, are perceived by insect pests to locate the host plant and also by natural enemies to locate the host insect. These plant volatiles can be utilized to develop attractive or repellant lures for pest management. Studies were carried out to identify the plant volatiles which are induced in pigeonpea, Cajanus cajan (L.) Huth due to the herbivory of blister beetle, Mylabris pustulata. The volatiles from healthy uninfested pigeonpea plants and blister beetle-infested plants were collected using the dynamic headspace collection method with Porapaq Q (80-100 mesh) as adsorbent. Using gas chromatography-mass spectrometry, 28 compounds were identified from uninfested pigeonpea plants whereas 16 compounds were identified from infested plants. A qualitative analysis showed that α-pinene and 3-hexen-2-one were exclusively detected in infested plants and (Z)-3-hexen-1-yl acetate and acetophenone were released in higher quantities from infested plants than from uninfested one. Electrophysiological evaluation of these volatiles along with other plant volatiles showed that blister beetle antennae eliciting higher responses to eucalyptol at a 1-μg dose, to nerol at a 10-μg dose and to benzyl acetate at 100- and 1000-μg doses. Beetle traps with lures of eucalyptol, benzaldehyde, benzyl acetate, and nerol attracted a very small number of blister beetle adults, suggesting the need for further efforts to standardize lure load and trap design.
Collapse
Affiliation(s)
- Suresh Nebapure
- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sanitya Kumar
- Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Hoffmann A, Bourgeois T, Munoz A, Anton S, Gevar J, Dacher M, Renou M. A plant volatile alters the perception of sex pheromone blend ratios in a moth. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:553-570. [PMID: 32335729 DOI: 10.1007/s00359-020-01420-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 11/29/2022]
Abstract
Mate finding in most moths is based on male perception of a female-emitted pheromone whose species specificity resides in component chemistry and proportions. Components are individually detected by specialized olfactory receptor neurons (ORNs) projecting into the macroglomerular complex (MGC) of the male brain. We asked how robust ratio recognition is when challenged by a plant volatile background. To test this, we investigated the perception of the pheromone blend in Agrotis ipsilon, a moth species whose females produce a blend of Z7-dodecenyl acetate (Z7-12:Ac), Z9-tetradecenyl acetate (Z9-14:Ac), and Z11-hexadecenyl acetate in a 4:1:4 ratio optimally attractive for males. First, we recorded the responses of specialist ORNs for Z7 and Z9 and showed that heptanal, a flower volatile, activated Z7 but not Z9 neurons. Then, we recorded intracellularly the responses of MGC neurons to various ratios and showed that heptanal altered ratio responses of pheromone-sensitive neurons. Finally, we analyzed the behavior of males in a wind tunnel and showed that their innate preference for the 4:1:4 blend was shifted in the presence of heptanal. Pheromone ratio recognition may thus be altered by background odorants. Therefore, the olfactory environment might be a selective force for the evolution of pheromone communication systems.
Collapse
Affiliation(s)
- Antoine Hoffmann
- Institut National de La Recherche Agronomique (INRA), Sorbonne Université, Université Paris Est Créteil, CNRS, UMR IEES, IRD-Institute for Ecology and Environmental Sciences of Paris (iEES Paris), Route de Saint Cyr, 78026, Versailles, France.,Department of Neurobiology, Max Planck Institute of Animal Behavior, University of Konstanz, Univeristätsstraße 10, 78464, Konstanz, Germany
| | - Thomas Bourgeois
- Institut National de La Recherche Agronomique (INRA), Sorbonne Université, Université Paris Est Créteil, CNRS, UMR IEES, IRD-Institute for Ecology and Environmental Sciences of Paris (iEES Paris), Route de Saint Cyr, 78026, Versailles, France
| | - Alicia Munoz
- Institut National de La Recherche Agronomique (INRA), Sorbonne Université, Université Paris Est Créteil, CNRS, UMR IEES, IRD-Institute for Ecology and Environmental Sciences of Paris (iEES Paris), Route de Saint Cyr, 78026, Versailles, France.,Centre d'élevage conservatoire de l'outarde canepetière-Zoodyssée, 79360, Villiers-en-Bois, France
| | - Sylvia Anton
- Institute for Genetics, Environment and Plant Protection-EGI, INRA-Agrocampus Ouest, Université de Rennes 1, 49045, Angers, France
| | - Jeremy Gevar
- Institut National de La Recherche Agronomique (INRA), Sorbonne Université, Université Paris Est Créteil, CNRS, UMR IEES, IRD-Institute for Ecology and Environmental Sciences of Paris (iEES Paris), Route de Saint Cyr, 78026, Versailles, France
| | - Matthieu Dacher
- Institut National de La Recherche Agronomique (INRA), Sorbonne Université, Université Paris Est Créteil, CNRS, UMR IEES, IRD-Institute for Ecology and Environmental Sciences of Paris (iEES Paris), Route de Saint Cyr, 78026, Versailles, France
| | - Michel Renou
- Institut National de La Recherche Agronomique (INRA), Sorbonne Université, Université Paris Est Créteil, CNRS, UMR IEES, IRD-Institute for Ecology and Environmental Sciences of Paris (iEES Paris), Route de Saint Cyr, 78026, Versailles, France.
| |
Collapse
|
3
|
Lin X, Wang B, Du Y. Key genes of the sex pheromone biosynthesis pathway in female moths are required for pheromone quality and possibly mediate olfactory plasticity in conspecific male moths in Spodoptera litura. INSECT MOLECULAR BIOLOGY 2018; 27:8-21. [PMID: 28741319 DOI: 10.1111/imb.12335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ninety sex pheromone biosynthesis genes in Spodoptera litura were identified in transcriptome data and were investigated and classified into the following five groups: fatty acid synthase, beta oxidase, fatty acyl-coenzyme A (CoA) reductase, desaturase and acetyl-CoA acetyltransferase. Fourteen female-specific genes were identified through semi-quantitative PCR, and 15 additional genes had expression levels that were 3- to 10-fold higher in females than in males. The majority of the genes had higher expression levels in the sex pheromone glands. Injection of double-stranded RNA (dsRNA) against nine selected genes showed that down-regulation of Desaturase 3 (Des3), Des5 or fatty acyl coenzyme A reductase 17 (FAR17) significantly changed the ratio of the four sex pheromone components (Z,E) -9,11-tetradecadienyl acetate (Z9E11-14:Ac), (Z,E)-9,12-Tetradecadienyl acetate(Z9E12-14:Ac), (Z)-9-tetradecenyl acetate (Z9-14:Ac), (E)-11-Tetradecenyl acetate(E11-14:Ac). These key genes were differentially expressed in female moths collected from different geographical regions. Furthermore, field bioassays demonstrated geographical variation in the olfactory profile of male moths in response to the different sex pheromone mixtures, which therefore indicates that a significant variation in the sex pheromone components exists in the natural population. Our results suggest that a change in the expression of these key genes, Des3, Des5 and FAR17, in the sex pheromone biosynthesis pathway could change the ratio of the sex pheromone components. We surmise that the differential expression levels of the key genes of the sex pheromone biosynthesis pathway may lead to differential ratios of the sex pheromones in the field. Our field trapping experiment suggested that the change of the ratio of the sex pheromone components may have been adapted by the olfactory system and possibly mediate olfactory plasticity in conspecific male moths.
Collapse
Affiliation(s)
- X Lin
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - B Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Y Du
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Schläger S, Beran F, Groot AT, Ulrichs C, Veit D, Paetz C, Karumuru BRM, Srinivasan R, Schreiner M, Mewis I. Pheromone Blend Analysis and Cross-Attraction among Populations of Maruca vitrata from Asia and West Africa. J Chem Ecol 2015; 41:1155-62. [PMID: 26625875 DOI: 10.1007/s10886-015-0653-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/01/2015] [Accepted: 11/11/2015] [Indexed: 12/01/2022]
Abstract
The legume pod borer, Maruca vitrata, is a pantropical pest on leguminous crops. (E,E)-10,12-Hexadecadienal, (E,E)-10,12-hexadecadienol, and (E)-10-hexadecenal were described previously as sex pheromone components for this nocturnal moth. A blend of these components in a ratio of 100:5:5 attracted males in field trapping experiments in Benin, but not in Taiwan, Thailand, or Vietnam. This finding suggests geographic variation in the pheromone blend between Asian and West African populations of M. vitrata. We, therefore, determined the pheromone compositions of single pheromone glands of females from the three Asian regions and from Benin by gas chromatography-mass spectrometry. Additionally, we compared the responses of males from Taiwan and Benin to calling females and to gland extracts of females from both regions in laboratory no-choice and two-choice assays. Chemical analysis revealed the presence of (E,E)-10,12-hexadecadienal and (E,E)-10,12-hexadecadienol, as well as the absence of (E)-10-hexadecenal in all four populations. The relative amounts of the detected compounds did not vary significantly among the insect populations. The behavioral bioassays showed that Taiwanese and Beninese males were similarly attracted to females from both regions, as well as to their gland extracts. As a result, we did not find geographic variation in the sexual communication system of M. vitrata between West African and Asian insect populations.
Collapse
Affiliation(s)
- Stefanie Schläger
- Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Lentzeallee 55/57, 14195, Berlin, Germany. .,Leibniz Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.
| | - Franziska Beran
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Astrid T Groot
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Christian Ulrichs
- Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Lentzeallee 55/57, 14195, Berlin, Germany
| | - Daniel Veit
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Christian Paetz
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Bhanu R M Karumuru
- Bio-Control Research Laboratories, Pest Control (India) Pvt. Ltd., 36/2, Sriramanahalli. Nr. Rajankunte, Dodballapur Road, Bangalore, 561 203, Karnataka, India
| | - Ramasamy Srinivasan
- AVRDC-The World Vegetable Center, Entomology Unit, 60 Yi-min Liao, Shanhua, 74151, Tainan, Taiwan
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Inga Mewis
- Julius Kühn-Institut, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, 14195, Berlin, Germany
| |
Collapse
|