1
|
Guzman J, Raval D, Hauck D, Titz A, Poehlein A, Degenkolb T, Daniel R, Vilcinskas A. The resuscitation-promoting factor (Rpf) from Micrococcus luteus and its putative reaction product 1,6-anhydro-MurNAc increase culturability of environmental bacteria. Access Microbiol 2023; 5:000647.v4. [PMID: 37841103 PMCID: PMC10569661 DOI: 10.1099/acmi.0.000647.v4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 10/17/2023] Open
Abstract
Dormant bacterial cells do not divide and are not immediately culturable, but they persist in a state of low metabolic activity, a physiological state having clinical relevance, for instance in latent tuberculosis. Resuscitation-promoting factors (Rpfs) are proteins that act as signalling molecules mediating growth and replication. In this study we aimed to test the effect of Rpfs from Micrococcus luteus on the number and diversity of cultured bacteria using insect and soil samples, and to examine if the increase in culturability could be reproduced with the putative reaction product of Rpf, 1,6-anhydro-N-acetylmuramic acid (1,6-anhydro-MurNAc). The rpf gene from Micrococcus luteus was amplified and cloned into a pET21b expression vector and the protein was expressed in Escherichia coli BL21(DE3) cells and purified by affinity chromatography using a hexa-histidine tag. 1,6-Anhydro-MurNAc was prepared using reported chemical synthesis methods. Recombinant Rpf protein or 1,6-anhydro-MurNAc were added to R2A cultivation media, and their effect on the culturability of bacteria from eight environmental samples including four cockroach guts and four soils was examined. Colony-forming units, 16S rRNA gene copies and Illumina amplicon sequencing of the 16S rRNA gene were measured for all eight samples subjected to three different treatments: Rpf, 1,6-anhydro-MurNAc or blank control. Both Rpf and 1,6-anhydro-MurNAc increased the number of colony-forming units and of 16S rRNA gene copies across the samples although the protein was more effective. The Rpf and 1,6-anhydro-MurNAc promoted the cultivation of a diverse set of bacteria and in particular certain clades of the phyla Actinomycetota and Bacillota . This study opens the path for improved cultivation strategies aiming to isolate and study yet undescribed living bacterial organisms.
Collapse
Affiliation(s)
- Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Dipansi Raval
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Dirk Hauck
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- German Center for Infection Research, site Hannover-Braunschweig, Saarbrücken, Germany
- Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- German Center for Infection Research, site Hannover-Braunschweig, Saarbrücken, Germany
- Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Thomas Degenkolb
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
2
|
González Plaza JJ, Hradecký J. The tropical cookbook: Termite diet and phylogenetics—Over geographical origin—Drive the microbiome and functional genetic structure of nests. Front Microbiol 2023; 14:1089525. [PMID: 36998409 PMCID: PMC10043212 DOI: 10.3389/fmicb.2023.1089525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/13/2023] [Indexed: 03/15/2023] Open
Abstract
Termites are key decomposers of dead plant material involved in the organic matter recycling process in warm terrestrial ecosystems. Due to their prominent role as urban pests of timber, research efforts have been directed toward biocontrol strategies aimed to use pathogens in their nest. However, one of the most fascinating aspects of termites is their defense strategies that prevent the growth of detrimental microbiological strains in their nests. One of the controlling factors is the nest allied microbiome. Understanding how allied microbial strains protect termites from pathogen load could provide us with an enhanced repertoire for fighting antimicrobial-resistant strains or mining for genes for bioremediation purposes. However, a necessary first step is to characterize these microbial communities. To gain a deeper understanding of the termite nest microbiome, we used a multi-omics approach for dissecting the nest microbiome in a wide range of termite species. These cover several feeding habits and three geographical locations on two tropical sides of the Atlantic Ocean known to host hyper-diverse communities. Our experimental approach included untargeted volatile metabolomics, targeted evaluation of volatile naphthalene, a taxonomical profile for bacteria and fungi through amplicon sequencing, and further diving into the genetic repertoire through a metagenomic sequencing approach. Naphthalene was present in species belonging to the genera Nasutitermes and Cubitermes. We investigated the apparent differences in terms of bacterial community structure and discovered that feeding habits and phylogenetic relatedness had a greater influence than geographical location. The phylogenetic relatedness among nests' hosts influences primarily bacterial communities, while diet influences fungi. Finally, our metagenomic analysis revealed that the gene content provided both soil-feeding genera with similar functional profiles, while the wood-feeding genus showed a different one. Our results indicate that the nest functional profile is largely influenced by diet and phylogenetic relatedness, irrespective of geographical location.
Collapse
|
3
|
Choudhary M, Kumar V, Naik B, Verma A, Saris PEJ, Kumar V, Gupta S. Antifungal metabolites, their novel sources, and targets to combat drug resistance. Front Microbiol 2022; 13:1061603. [PMID: 36532457 PMCID: PMC9755354 DOI: 10.3389/fmicb.2022.1061603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
Excessive antibiotic prescriptions as well as their misuse in agriculture are the main causes of antimicrobial resistance which poses a growing threat to public health. It necessitates the search for novel chemicals to combat drug resistance. Since ancient times, naturally occurring medicines have been employed and the enormous variety of bioactive chemicals found in nature has long served as an inspiration for researchers looking for possible therapeutics. Secondary metabolites from microorganisms, particularly those from actinomycetes, have made it incredibly easy to find new molecules. Different actinomycetes species account for more than 70% of naturally generated antibiotics currently used in medicine, and they also produce a variety of secondary metabolites, including pigments, enzymes, and anti-inflammatory compounds. They continue to be a crucial source of fresh chemical diversity and a crucial component of drug discovery. This review summarizes some uncommon sources of antifungal metabolites and highlights the importance of further research on these unusual habitats as a source of novel antimicrobial molecules.
Collapse
Affiliation(s)
- Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Bindu Naik
- Department of Life Sciences (Food Technology & Nutrition), Graphic Era (Deemed to be University), Dehradun, India
| | - Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| |
Collapse
|
4
|
Zhou L, Wang J, Wu F, Yin C, Kim KH, Zhang Y. Termite Nest Associated Bacillus siamensis YC-9 Mediated Biocontrol of Fusarium oxysporum f. sp. cucumerinum. Front Microbiol 2022; 13:893393. [PMID: 35722323 PMCID: PMC9198579 DOI: 10.3389/fmicb.2022.893393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
The antagonistic potential of bacteria obtained from the nest of Odontotermes formosanus was assessed against Fusarium oxysporum f. sp. cucumerinum (FOC). Of 30, seven termite nest-associated bacteria strains had biocontrol potential. Among them, the strain YC-9 showed the strongest antifungal activity toward FOC. Phylogenetic analysis of the 16S rRNA amplified product of YC-9 revealed its identification as Bacillus siamensis. The in vivo antifungal activity experiment showed that the application of YC-9 at 108 cfu/ml significantly reduced the cucumber wilt incidence with a control efficacy of 73.2%. Furthermore, plant growth parameters such as fresh weight, dry weight, plant height, and root height were significantly improved by 42.6, 53.0, 20.8, and 19.3%, respectively. We found that inoculation with B. siamensis YC-9 significantly increased the activity of defensive enzymes such as peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) in diseased cucumber roots, thereby raising the resistance. PCR using gene-specific primers revealed that B. siamensis YC-9 contains biosynthetic genes for known antibiotics, including bacillomycin, iturin, and surfactin. Chemical analysis of the cultivation of B. siamensis YC-9 resulted in the isolation of five metabolites, including hexadecanoic acid (1), cyclo-(L-phenylalanylglycine) (2), cyclo-(L-trans-Hyp-L-Leu) (3), C15-surfactin (4), and macrolactin A (5), the structures of which were identified by the analysis of NMR spectroscopic data and MS. Among them, the compound 4 showed significant antifungal activity against conidial germination of FOC with an IC50 value of 5.1 μg/ml, which was comparable to that of the positive control, cycloheximide (IC50 value of 2.6 μg/ml). Based on these findings, this study suggests that termite-nest associated B. siamensis YC-9 could be a potential biological control agent for integrated control of soil-borne diseases like cucumber Fusarium wilt.
Collapse
Affiliation(s)
- Lingfeng Zhou
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Junyong Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Fei Wu
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Caiping Yin
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Yinglao Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Moran MN, Aguero CM, Eyer PA, Vargo EL. Rescue Strategy in a Termite: Workers Exposed to a Fungal Pathogen Are Reintegrated Into the Colony. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.840223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Social insect colonies are characterized by an efficient division of labor, allowing high-value individuals (i.e., reproductives and brood) to be sheltered from tasks associated with increased risk of pathogen exposure, such as foraging or corpse disposal. This social organization helps limit the transmission of disease throughout the colony. Further, individuals can actively respond to imminent disease threats by altering their behaviors as a means of social immunity. In subterranean termites, although workers typically avoid detected pathogens, they can be attracted to pathogen cues when a nestmate is infected. Infected termites are usually groomed, but they may instead be cannibalized if the infection has already become lethal. The mechanisms governing these changes in behavior are unclear. We set out to examine immediate changes in individual behaviors, investigating the role that the infected individual plays in communicating its infection status to nestmates. We also assessed gradual changes in social organization after the re-introduction of an infected termite to the colony. Our results reveal that infected termites likely do not signal their infection status to nestmates through shaking behaviors and reduced movements, suggesting the occurrence of other mechanisms used in communicating infection. We also found that infected termites do not self-isolate and may travel to the densest part of the colony, where they can potentially benefit from grooming by large groups of nestmates. These results provide new insights into how individual changes in immune behaviors contribute to overall colony health, highlighting that, at early stages of infection, termites favor a rescuing strategy rather than isolation and/or cannibalization.
Collapse
|
6
|
Intersection between parental investment, transgenerational immunity, and termite sociality in the face of disease: a theoretical approach. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03128-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Moreira EA, Persinoti GF, Menezes LR, Paixão DAA, Alvarez TM, Cairo JPLF, Squina FM, Costa-Leonardo AM, Rodrigues A, Sillam-Dussès D, Arab A. Complementary Contribution of Fungi and Bacteria to Lignocellulose Digestion in the Food Stored by a Neotropical Higher Termite. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.632590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lignocellulose digestion in termites is achieved through the functional synergy between gut symbionts and host enzymes. However, some species have evolved additional associations with nest microorganisms that collaborate in the decomposition of plant biomass. In a previous study, we determined that plant material packed with feces inside the nests of Cornitermes cumulans (Syntermitinae) harbors a distinct microbial assemblage. These food nodules also showed a high hemicellulolytic activity, possibly acting as an external place for complementary lignocellulose digestion. In this study, we used a combination of ITS sequence analysis, metagenomics, and metatranscriptomics to investigate the presence and differential expression of genes coding for carbohydrate-active enzymes (CAZy) in the food nodules and the gut of workers and soldiers. Our results confirm that food nodules express a distinct set of CAZy genes suggesting that stored plant material is initially decomposed by enzymes that target the lignin and complex polysaccharides from fungi and bacteria before the passage through the gut, where it is further targeted by a complementary set of cellulases, xylanases, and esterases produced by the gut microbiota and the termite host. We also showed that the expression of CAZy transcripts associated to endoglucanases and xylanases was higher in the gut of termites than in the food nodules. An additional finding in this study was the presence of fungi in the termite gut that expressed CAZy genes. This study highlights the importance of externalization of digestion by nest microbes and provides new evidence of complementary digestion in the context of higher termite evolution.
Collapse
|
8
|
Chouvenc T, Šobotník J, Engel MS, Bourguignon T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell Mol Life Sci 2021; 78:2749-2769. [PMID: 33388854 PMCID: PMC11071720 DOI: 10.1007/s00018-020-03728-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Termites are a clade of eusocial wood-feeding roaches with > 3000 described species. Eusociality emerged ~ 150 million years ago in the ancestor of modern termites, which, since then, have acquired and sometimes lost a series of adaptive traits defining of their evolution. Termites primarily feed on wood, and digest cellulose in association with their obligatory nutritional mutualistic gut microbes. Recent advances in our understanding of termite phylogenetic relationships have served to provide a tentative timeline for the emergence of innovative traits and their consequences on the ecological success of termites. While all "lower" termites rely on cellulolytic protists to digest wood, "higher" termites (Termitidae), which comprise ~ 70% of termite species, do not rely on protists for digestion. The loss of protists in Termitidae was a critical evolutionary step that fostered the emergence of novel traits, resulting in a diversification of morphology, diets, and niches to an extent unattained by "lower" termites. However, the mechanisms that led to the initial loss of protists and the succession of events that took place in the termite gut remain speculative. In this review, we provide an overview of the key innovative traits acquired by termites during their evolution, which ultimately set the stage for the emergence of "higher" termites. We then discuss two hypotheses concerning the loss of protists in Termitidae, either through an externalization of the digestion or a dietary transition. Finally, we argue that many aspects of termite evolution remain speculative, as most termite biological diversity and evolutionary trajectories have yet to be explored.
Collapse
Affiliation(s)
- Thomas Chouvenc
- Entomology and Nematology Department, Institute of Food and Agricultural Science, Ft Lauderdale Research and Education Center, University of Florida, Davie, FL, USA.
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Michael S Engel
- Division of Entomology, Natural History Museum, and Department of Ecology and Evolutionary Biology, University of Kansas, 1501 Crestline Drive, Suite 140, Lawrence, KS, 66045, USA
| | - Thomas Bourguignon
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic.
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
| |
Collapse
|
9
|
Shults P, Richardson S, Eyer PA, Chura M, Barreda H, Davis RW, Vargo EL. Area-Wide Elimination of Subterranean Termite Colonies Using a Novaluron Bait. INSECTS 2021; 12:192. [PMID: 33668368 PMCID: PMC7996135 DOI: 10.3390/insects12030192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
We investigated the use of termite baiting, a proven system of targeted colony elimination, in an overall area-wide control strategy against subterranean termites. At two field sites, we used microsatellite markers to estimate the total number of Reticulitermes colonies, their spatial partitioning, and breeding structure. Termite pressure was recorded for two years before and after the introduction of Trelona® (active ingredient novaluron) to a large area of one of the sites. Roughly 70% of the colonies in the treatment site that were present at the time of baiting were not found in the site within two months after the introduction of novaluron. Feeding activity of the remaining colonies subsequently ceased over time and new invading colonies were unable to establish within this site. Our study provides novel field data on the efficacy of novaluron in colony elimination of Reticulitermes flavipes, as well as evidence that an area-wide baiting program is feasible to maintain a termite-free area within its native range.
Collapse
Affiliation(s)
- Phillip Shults
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX 77843, USA; (S.R.); (P.-A.E.); (M.C.); (H.B.); (E.L.V.)
| | - Steven Richardson
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX 77843, USA; (S.R.); (P.-A.E.); (M.C.); (H.B.); (E.L.V.)
| | - Pierre-Andre Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX 77843, USA; (S.R.); (P.-A.E.); (M.C.); (H.B.); (E.L.V.)
| | - Madeleine Chura
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX 77843, USA; (S.R.); (P.-A.E.); (M.C.); (H.B.); (E.L.V.)
| | - Heather Barreda
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX 77843, USA; (S.R.); (P.-A.E.); (M.C.); (H.B.); (E.L.V.)
| | - Robert W. Davis
- BASF Professional & Specialty Solutions, 26 Davis Drive, Research Triangle Park, NC 27709, USA;
| | - Edward L. Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX 77843, USA; (S.R.); (P.-A.E.); (M.C.); (H.B.); (E.L.V.)
| |
Collapse
|
10
|
An antimicrobial Staphylococcus sciuri with broad temperature and salt spectrum isolated from the surface of the African social spider, Stegodyphus dumicola. Antonie Van Leeuwenhoek 2021; 114:325-335. [PMID: 33543432 DOI: 10.1007/s10482-021-01526-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
Some social arthropods engage in mutualistic symbiosis with antimicrobial compound-producing microorganisms that provide protection against pathogens. Social spiders live in communal nests and contain specific endosymbionts with unknown function. Bacteria are also found on the spiders' surface, including prevalent staphylococci, which may have protective potential. Here we present the genomic and phenotypic characterization of strain i1, isolated from the surface of the social spider Stegodyphus dumicola. Phylogenomic analysis identified i1 as novel strain of Staphylococcus sciuri within subgroup 2 of three newly defined genomic subgroups. Further phenotypic investigations showed that S. sciuri i1 is an extremophile that can grow at a broad range of temperatures (4 °C-45 °C), high salt concentrations (up to 27%), and has antimicrobial activity against closely related species. We identified a lactococcin 972-like bacteriocin gene cluster, likely responsible for the antimicrobial activity, and found it conserved in two of the three subgroups of S. sciuri. These features indicate that S. sciuri i1, though not a specific symbiont, is well-adapted to survive on the surface of social spiders and may gain a competitive advantage by inhibiting closely related species.
Collapse
|
11
|
Termites Are Associated with External Species-Specific Bacterial Communities. Appl Environ Microbiol 2021; 87:AEM.02042-20. [PMID: 33097518 DOI: 10.1128/aem.02042-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/16/2020] [Indexed: 12/28/2022] Open
Abstract
All termites have established a wide range of associations with symbiotic microbes in their guts. Some termite species are also associated with microbes that grow in their nests, but the prevalence of these associations remains largely unknown. Here, we studied the bacterial communities associated with the termites and galleries of three wood-feeding termite species by using 16S rRNA gene amplicon sequencing. We found that the compositions of bacterial communities among termite bodies, termite galleries, and control wood fragments devoid of termite activities differ in a species-specific manner. Termite galleries were enriched in bacterial operational taxonomic units (OTUs) belonging to Rhizobiales and Actinobacteria, which were often shared by several termite species. The abundance of several bacterial OTUs, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus, was reduced in termite galleries. Our results demonstrate that both termite guts and termite galleries harbor unique bacterial communities.IMPORTANCE As is the case for all ecosystem engineers, termites impact their habitat by their activities, potentially affecting bacterial communities. Here, we studied three wood-feeding termite species and found that they influence the composition of the bacterial communities in their surrounding environment. Termite activities have positive effects on Rhizobiales and Actinobacteria abundance and negative effects on the abundance of several ubiquitous genera, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus Our results demonstrate that termite galleries harbor unique bacterial communities.
Collapse
|
12
|
Oberpaul M, Zumkeller CM, Culver T, Spohn M, Mihajlovic S, Leis B, Glaeser SP, Plarre R, McMahon DP, Hammann P, Schäberle TF, Glaeser J, Vilcinskas A. High-Throughput Cultivation for the Selective Isolation of Acidobacteria From Termite Nests. Front Microbiol 2020; 11:597628. [PMID: 33240253 PMCID: PMC7677567 DOI: 10.3389/fmicb.2020.597628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Microbial communities in the immediate environment of socialized invertebrates can help to suppress pathogens, in part by synthesizing bioactive natural products. Here we characterized the core microbiomes of three termite species (genus Coptotermes) and their nest material to gain more insight into the diversity of termite-associated bacteria. Sampling a healthy termite colony over time implicated a consolidated and highly stable microbiome, pointing toward the fact that beneficial bacterial phyla play a major role in termite fitness. In contrast, there was a significant shift in the composition of the core microbiome in one nest during a fungal infection, affecting the abundance of well-characterized Streptomyces species (phylum Actinobacteria) as well as less-studied bacterial phyla such as Acidobacteria. High-throughput cultivation in microplates was implemented to isolate and identify these less-studied bacterial phylogenetic group. Amplicon sequencing confirmed that our method maintained the bacterial diversity of the environmental samples, enabling the isolation of novel Acidobacteriaceae and expanding the list of cultivated species to include two strains that may define new species within the genera Terracidiphilus and Acidobacterium.
Collapse
Affiliation(s)
- Markus Oberpaul
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Celine M. Zumkeller
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Tanja Culver
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Marius Spohn
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Sanja Mihajlovic
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Benedikt Leis
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Stefanie P. Glaeser
- Institute of Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Rudy Plarre
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| | - Dino P. McMahon
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
- Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Peter Hammann
- Sanofi-Aventis Deutschland GmbH, R&D Integrated Drug Discovery, Hoechst Industrial Park, Frankfurt am Main, Germany
| | - Till F. Schäberle
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Jens Glaeser
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
13
|
Mitousis L, Thoma Y, Musiol-Kroll EM. An Update on Molecular Tools for Genetic Engineering of Actinomycetes-The Source of Important Antibiotics and Other Valuable Compounds. Antibiotics (Basel) 2020; 9:E494. [PMID: 32784409 PMCID: PMC7460540 DOI: 10.3390/antibiotics9080494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The first antibiotic-producing actinomycete (Streptomyces antibioticus) was described by Waksman and Woodruff in 1940. This discovery initiated the "actinomycetes era", in which several species were identified and demonstrated to be a great source of bioactive compounds. However, the remarkable group of microorganisms and their potential for the production of bioactive agents were only partially exploited. This is caused by the fact that the growth of many actinomycetes cannot be reproduced on artificial media at laboratory conditions. In addition, sequencing, genome mining and bioactivity screening disclosed that numerous biosynthetic gene clusters (BGCs), encoded in actinomycetes genomes are not expressed and thus, the respective potential products remain uncharacterized. Therefore, a lot of effort was put into the development of technologies that facilitate the access to actinomycetes genomes and activation of their biosynthetic pathways. In this review, we mainly focus on molecular tools and methods for genetic engineering of actinomycetes that have emerged in the field in the past five years (2015-2020). In addition, we highlight examples of successful application of the recently developed technologies in genetic engineering of actinomycetes for activation and/or improvement of the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
| | | | - Ewa M. Musiol-Kroll
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (L.M.); (Y.T.)
| |
Collapse
|
14
|
The Effects of Trichoderma Fungi on the Tunneling, Aggregation, and Colony-Initiation Preferences of Black-Winged Subterranean Termites, Odontotermes formosanus (Blattodea: Termitidae). FORESTS 2019. [DOI: 10.3390/f10111020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The black-winged subterranean termite, Odontotermes formosanus Shiraki, is a severe pest of plantations and forests in China. This termite cultures symbiotic Termitomyces in the fungal combs, which are challenged by antagonistic microbes such as Trichoderma fungi. In a previous study we showed that O. formosanus workers made significantly fewer tunnels in sand containing commercially formulated conidia of Trichoderma viride Pers. ex Fries compared with untreated sand. Herein, we hypothesize that fungi in the genus Trichoderma exert repellent effects on O. formosanus. Different choice tests were conducted to evaluate the tunneling and aggregation behaviors of O. formosanus workers reacting to sand/soil containing the unformulated conidia of seven Trichoderma fungi (Trichoderma longibrachiatum Rifai, Trichoderma koningii Oud., Trichoderma harzianum Rifai, Trichoderma hamatum (Bon.) Bain, Trichoderma atroviride Karsten, Trichoderma spirale Indira and Kamala, and T. viride). We also investigated the colony-initiation preference of paired O. formosanus adults to soil treated with Trichoderma conidia (T. koningii or T. longibrachiatum) versus untreated soil. Tunneling-choice tests showed that sand containing conidia of nearly all Trichoderma fungi tested (except T. harzianum) significantly decreased tunneling activity in O. formosanus workers compared with untreated sand. Aggregation-choice test showed that T. koningii, T. atroviride and T. spirale repelled O. formosanus workers, whereas T. longibrachiatum and T. hamatum attracted termites. There was no significant difference in proportions of paired adults that stayed and laid eggs in the soil blocks treated with conidia of Trichoderma fungi and untreated ones. Our study showed that Trichoderma fungi generally repelled tunneling in O. formosanus, but may exert varied effects on aggregation preference by workers.
Collapse
|