1
|
Wang Q, Cao S, Zhang T, Lv F, Zhai M, Bai D, Zhao M, Cheng H, Wang X. Reactive oxide species and ultrasound dual-responsive bilayer microneedle array for in-situ sequential therapy of acute myocardial infarction. BIOMATERIALS ADVANCES 2024; 162:213917. [PMID: 38861802 DOI: 10.1016/j.bioadv.2024.213917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Acute myocardial infarction (AMI) resulting from coronary artery occlusion stands as the predominant cause of cardiovascular disability and mortality worldwide. An all-encompassing treatment strategy targeting pathological processes of oxidative stress, inflammation, proliferation and fibrotic remodeling post-AMI is anticipated to enhance therapeutic outcomes. Herein, an up-down-structured bilayer microneedle (Ce-CLMs-BMN) with reactive oxygen species (ROS) and ultrasound (US) dual-responsiveness is proposed for AMI in-situ sequential therapy. The upper-layer microneedle is formulated by crosslinking ROS-sensitive linker with polyvinyl alcohol loaded with cerium dioxide nanoparticles (CeNPs) featuring versatile enzyme-mimetic activities. During AMI acute phase, prompted by ischemia-induced microenvironmental redox imbalance, this layer swiftly releases CeNPs, which aid in eliminating excessive ROS and catalyzing oxygen gas (O2) production through multiple enzymatic pathways, thereby alleviating oxidative stress-induced damage and modulating inflammation. In AMI chronic repair phase, micro-nano reactors (CLMs) situated in the lower-layer microneedle undergo cascade reactions with the assistance of US irradiation to generate nitric oxide (NO). As a bioactive molecule with pro-angiogenic and anti-fibrotic effects, NO expedites cardiac repair while attenuating adverse remodeling. Additionally, its antiplatelet-aggregating properties contribute to thromboprophylaxis. In-vitro and in-vivo results substantiate the efficacy of this integrated healing approach in AMI management, showcasing promising prospects for advancing infarcted heart repair.
Collapse
Affiliation(s)
- Qingqing Wang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Shuangyuan Cao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330088, PR China
| | - Teng Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Fanzhen Lv
- Department of Vascular Surgery, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Mingfei Zhai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, PR China
| | - Danmeng Bai
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330088, PR China
| | - Mengzhen Zhao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, PR China
| | - Haoxin Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, PR China
| | - Xiaolei Wang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China; The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330088, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, PR China.
| |
Collapse
|
2
|
Adelus ML, Ding J, Tran BT, Conklin AC, Golebiewski AK, Stolze LK, Whalen MB, Cusanovich DA, Romanoski CE. Single-cell 'omic profiles of human aortic endothelial cells in vitro and human atherosclerotic lesions ex vivo reveal heterogeneity of endothelial subtype and response to activating perturbations. eLife 2024; 12:RP91729. [PMID: 38578680 PMCID: PMC10997331 DOI: 10.7554/elife.91729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.
Collapse
Affiliation(s)
- Maria L Adelus
- The Department of Cellular and Molecular Medicine, The University of ArizonaTucsonUnited States
- The Clinical Translational Sciences Graduate Program, The University of ArizonaTucsonUnited States
| | - Jiacheng Ding
- The Department of Cellular and Molecular Medicine, The University of ArizonaTucsonUnited States
| | - Binh T Tran
- The Department of Cellular and Molecular Medicine, The University of ArizonaTucsonUnited States
| | - Austin C Conklin
- The Department of Cellular and Molecular Medicine, The University of ArizonaTucsonUnited States
| | - Anna K Golebiewski
- The Department of Cellular and Molecular Medicine, The University of ArizonaTucsonUnited States
| | - Lindsey K Stolze
- The Department of Cellular and Molecular Medicine, The University of ArizonaTucsonUnited States
| | - Michael B Whalen
- The Department of Cellular and Molecular Medicine, The University of ArizonaTucsonUnited States
| | - Darren A Cusanovich
- The Department of Cellular and Molecular Medicine, The University of ArizonaTucsonUnited States
- Asthma and Airway Disease Research Center, The University of ArizonaTucsonUnited States
| | - Casey E Romanoski
- The Department of Cellular and Molecular Medicine, The University of ArizonaTucsonUnited States
- The Clinical Translational Sciences Graduate Program, The University of ArizonaTucsonUnited States
- Asthma and Airway Disease Research Center, The University of ArizonaTucsonUnited States
| |
Collapse
|
3
|
Islam S, Boström KI, Di Carlo D, Simmons CA, Tintut Y, Yao Y, Hsu JJ. The Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Front Physiol 2021; 12:734215. [PMID: 34566697 PMCID: PMC8458763 DOI: 10.3389/fphys.2021.734215] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Endothelial cells (ECs) lining the cardiovascular system are subjected to a highly dynamic microenvironment resulting from pulsatile pressure and circulating blood flow. Endothelial cells are remarkably sensitive to these forces, which are transduced to activate signaling pathways to maintain endothelial homeostasis and respond to changes in the environment. Aberrations in these biomechanical stresses, however, can trigger changes in endothelial cell phenotype and function. One process involved in this cellular plasticity is endothelial-to-mesenchymal transition (EndMT). As a result of EndMT, ECs lose cell-cell adhesion, alter their cytoskeletal organization, and gain increased migratory and invasive capabilities. EndMT has long been known to occur during cardiovascular development, but there is now a growing body of evidence also implicating it in many cardiovascular diseases (CVD), often associated with alterations in the cellular mechanical environment. In this review, we highlight the emerging role of shear stress, cyclic strain, matrix stiffness, and composition associated with EndMT in CVD. We first provide an overview of EndMT and context for how ECs sense, transduce, and respond to certain mechanical stimuli. We then describe the biomechanical features of EndMT and the role of mechanically driven EndMT in CVD. Finally, we indicate areas of open investigation to further elucidate the complexity of EndMT in the cardiovascular system. Understanding the mechanistic underpinnings of the mechanobiology of EndMT in CVD can provide insight into new opportunities for identification of novel diagnostic markers and therapeutic interventions.
Collapse
Affiliation(s)
- Shahrin Islam
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Kristina I Boström
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,UCLA Molecular Biology Institute, Los Angeles, CA, United States.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Yin Tintut
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Orthopedic Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yucheng Yao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jeffrey J Hsu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
4
|
King O, Sunyovszki I, Terracciano CM. Vascularisation of pluripotent stem cell-derived myocardium: biomechanical insights for physiological relevance in cardiac tissue engineering. Pflugers Arch 2021; 473:1117-1136. [PMID: 33855631 PMCID: PMC8245389 DOI: 10.1007/s00424-021-02557-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/22/2022]
Abstract
The myocardium is a diverse environment, requiring coordination between a variety of specialised cell types. Biochemical crosstalk between cardiomyocytes (CM) and microvascular endothelial cells (MVEC) is essential to maintain contractility and healthy tissue homeostasis. Yet, as myocytes beat, heterocellular communication occurs also through constantly fluctuating biomechanical stimuli, namely (1) compressive and tensile forces generated directly by the beating myocardium, and (2) pulsatile shear stress caused by intra-microvascular flow. Despite endothelial cells (EC) being highly mechanosensitive, the role of biomechanical stimuli from beating CM as a regulatory mode of myocardial-microvascular crosstalk is relatively unexplored. Given that cardiac biomechanics are dramatically altered during disease, and disruption of myocardial-microvascular communication is a known driver of pathological remodelling, understanding the biomechanical context necessary for healthy myocardial-microvascular interaction is of high importance. The current gap in understanding can largely be attributed to technical limitations associated with reproducing dynamic physiological biomechanics in multicellular in vitro platforms, coupled with limited in vitro viability of primary cardiac tissue. However, differentiation of CM from human pluripotent stem cells (hPSC) has provided an unlimited source of human myocytes suitable for designing in vitro models. This technology is now converging with the diverse field of tissue engineering, which utilises in vitro techniques designed to enhance physiological relevance, such as biomimetic extracellular matrix (ECM) as 3D scaffolds, microfluidic perfusion of vascularised networks, and complex multicellular architectures generated via 3D bioprinting. These strategies are now allowing researchers to design in vitro platforms which emulate the cell composition, architectures, and biomechanics specific to the myocardial-microvascular microenvironment. Inclusion of physiological multicellularity and biomechanics may also induce a more mature phenotype in stem cell-derived CM, further enhancing their value. This review aims to highlight the importance of biomechanical stimuli as determinants of CM-EC crosstalk in cardiac health and disease, and to explore emerging tissue engineering and hPSC technologies which can recapitulate physiological dynamics to enhance the value of in vitro cardiac experimentation.
Collapse
Affiliation(s)
- Oisín King
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK.
| | - Ilona Sunyovszki
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK
| | - Cesare M Terracciano
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|