1
|
Heusch G. Coronary blood flow in heart failure: cause, consequence and bystander. Basic Res Cardiol 2022; 117:1. [PMID: 35024969 PMCID: PMC8758654 DOI: 10.1007/s00395-022-00909-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/31/2023]
Abstract
Heart failure is a clinical syndrome where cardiac output is not sufficient to sustain adequate perfusion and normal bodily functions, initially during exercise and in more severe forms also at rest. The two most frequent forms are heart failure of ischemic origin and of non-ischemic origin. In heart failure of ischemic origin, reduced coronary blood flow is causal to cardiac contractile dysfunction, and this is true for stunned and hibernating myocardium, coronary microembolization, myocardial infarction and post-infarct remodeling, possibly also for the takotsubo syndrome. The most frequent form of non-ischemic heart failure is dilated cardiomyopathy, caused by genetic mutations, myocarditis, toxic agents or sustained tachyarrhythmias, where alterations in coronary blood flow result from and contribute to cardiac contractile dysfunction. Hypertrophic cardiomyopathy is caused by genetic mutations but can also result from increased pressure and volume overload (hypertension, valve disease). Heart failure with preserved ejection fraction is characterized by pronounced coronary microvascular dysfunction, the causal contribution of which is however not clear. The present review characterizes the alterations of coronary blood flow which are causes or consequences of heart failure in its different manifestations. Apart from any potentially accompanying coronary atherosclerosis, all heart failure entities share common features of impaired coronary blood flow, but to a different extent: enhanced extravascular compression, impaired nitric oxide-mediated, endothelium-dependent vasodilation and enhanced vasoconstriction to mediators of neurohumoral activation. Impaired coronary blood flow contributes to the progression of heart failure and is thus a valid target for established and novel treatment regimens.
Collapse
Affiliation(s)
- Gerd Heusch
- grid.5718.b0000 0001 2187 5445Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
2
|
Bulluck H, Dharmakumar R, Arai AE, Berry C, Hausenloy DJ. Cardiovascular Magnetic Resonance in Acute ST-Segment-Elevation Myocardial Infarction: Recent Advances, Controversies, and Future Directions. Circulation 2019; 137:1949-1964. [PMID: 29712696 DOI: 10.1161/circulationaha.117.030693] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although mortality after ST-segment elevation myocardial infarction (MI) is on the decline, the number of patients developing heart failure as a result of MI is on the rise. Apart from timely reperfusion by primary percutaneous coronary intervention, there is currently no established therapy for reducing MI size. Thus, new cardioprotective therapies are required to improve clinical outcomes after ST-segment-elevation MI. Cardiovascular magnetic resonance has emerged as an important imaging modality for assessing the efficacy of novel therapies for reducing MI size and preventing subsequent adverse left ventricular remodeling. The recent availability of multiparametric mapping cardiovascular magnetic resonance imaging has provided new insights into the pathophysiology underlying myocardial edema, microvascular obstruction, intramyocardial hemorrhage, and changes in the remote myocardial interstitial space after ST-segment-elevation MI. In this article, we provide an overview of the recent advances in cardiovascular magnetic resonance imaging in reperfused patients with ST-segment-elevation MI, discuss the controversies surrounding its use, and explore future applications of cardiovascular magnetic resonance in this setting.
Collapse
Affiliation(s)
- Heerajnarain Bulluck
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, United Kingdom (H.B., D.J.H.).,Royal Papworth Hospital, Cambridge, United Kingdom (H.B.)
| | - Rohan Dharmakumar
- Biomedical Imaging Research Institute and Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (R.D.).,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (R.D.)
| | - Andrew E Arai
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD (A.E.A.)
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Center, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (C.B.)
| | - Derek J Hausenloy
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, United Kingdom (H.B., D.J.H.). .,National Institute of Health Research University College London Hospitals Biomedical Research Centre, United Kingdom (D.J.H.).,Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom (D.J.H.).,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (D.J.H.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore (D.J.H.).,Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.)
| |
Collapse
|
3
|
Abstract
Rapid admission and acute interventional treatment combined with modern antithrombotic pharmacologic therapy have improved outcomes in patients with ST elevation myocardial infarction. The next major target to further advance outcomes needs to address ischemia-reperfusion injury, which may contribute significantly to the final infarct size and hence mortality and postinfarction heart failure. Mechanical conditioning strategies including local and remote ischemic pre-, per-, and postconditioning have demonstrated consistent cardioprotective capacities in experimental models of acute ischemia-reperfusion injury. Their translation to the clinical scenario has been challenging. At present, the most promising mechanical protection strategy of the heart seems to be remote ischemic conditioning, which increases myocardial salvage beyond acute reperfusion therapy. An additional aspect that has gained recent focus is the potential of extended conditioning strategies to improve physical rehabilitation not only after an acute ischemia-reperfusion event such as acute myocardial infarction and cardiac surgery but also in patients with heart failure. Experimental and preliminary clinical evidence suggests that remote ischemic conditioning may modify cardiac remodeling and additionally enhance skeletal muscle strength therapy to prevent muscle waste, known as an inherent component of a postoperative period and in heart failure. Blood flow restriction exercise and enhanced external counterpulsation may represent cardioprotective corollaries. Combined with exercise, remote ischemic conditioning or, alternatively, blood flow restriction exercise may be of aid in optimizing physical rehabilitation in populations that are not able to perform exercise practice at intensity levels required to promote optimal outcomes.
Collapse
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital , Aarhus , Denmark
| | | | | |
Collapse
|
4
|
Myocardium at risk assessed by electrocardiographic scores and cardiovascular magnetic resonance - a MITOCARE substudy. J Electrocardiol 2017; 50:725-731. [DOI: 10.1016/j.jelectrocard.2017.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 11/19/2022]
|
5
|
Swenne CA, Pahlm O, Atwater BD, Bacharova L. Galen Wagner, M.D., Ph.D. (1939–2016) as international mentor of young investigators in electrocardiology. J Electrocardiol 2017; 50:21-46. [DOI: 10.1016/j.jelectrocard.2016.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Jablonowski R, Engblom H, Kanski M, Nordlund D, Koul S, van der Pals J, Englund E, Heiberg E, Erlinge D, Carlsson M, Arheden H. Contrast-Enhanced CMR Overestimates Early Myocardial Infarct Size: Mechanistic Insights Using ECV Measurements on Day 1 and Day 7. JACC Cardiovasc Imaging 2016; 8:1379-1389. [PMID: 26699107 DOI: 10.1016/j.jcmg.2015.08.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study aimed to investigate whether an overestimation of infarct size on cardiac magnetic resonance (CMR) versus triphenyltetrazolium chloride (TTC) exists acutely and whether it remains after 7 days in an experimental pig model and to elucidate possible mechanisms. BACKGROUND Overestimation of infarct size (IS) on late gadolinium enhancement CMR early after acute myocardial infarction has been debated. METHODS Pigs were subjected to 40 min of left anterior descending artery occlusion and 6 h (n = 9) or 7 days (n = 9) reperfusion. IS by in vivo and ex vivo CMR was compared with TTC staining. Extracellular volume (ECV) was obtained from biopsies using technetium 99m diethylenetriamine pentaacetic acid (99mTc-DTPA) and light microscopy. TTC slices were rescanned on CMR enabling slice-by-slice comparison. RESULTS IS did not differ between in vivo and ex vivo CMR (p = 0.77). IS was overestimated by 27.3% with ex vivo CMR compared with TTC (p = 0.008) acutely with no significant difference at 7 days (p = 0.39). Slice-by-slice comparison showed similar results. A significant decrease in ECV was seen in biopsies of myocardium at risk (MaR) close to the infarct (sometimes referred to as the peri-infarction zone) over 7 days (48.3 ± 4.4% vs. 29.2 ± 2.4%; p = 0.0025). The ECV differed between biopsies of MaR close to the infarct and the rest of the salvaged MaR acutely (48.3 ± 4.4% vs. 32.4 ± 3.2%; p = 0.013) but not at 7 days (29.2 ± 2.4% vs 25.7 ± 1.4%; p = 0.23). CONCLUSIONS CMR overestimates IS compared with TTC acutely but not at 7 days. This difference may be explained by higher ECV in MaR closest to the infarct acutely that decreases during 7 days to the same level as the rest of the salvaged MaR. The increased ECV in the MaR closest to the infarct day 1 could be due to severe edema or an admixture of infarcted and salvaged myocardium (partial volume) or both. Nonetheless, this could not be reproduced at 7 days. These results have implications for timing of magnetic resonance infarct imaging early after acute myocardial infarction.
Collapse
Affiliation(s)
- Robert Jablonowski
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden
| | - Henrik Engblom
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden
| | - Mikael Kanski
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden
| | - David Nordlund
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden
| | - Sasha Koul
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | | | - Elisabet Englund
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Einar Heiberg
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden; Centre for Mathematical Sciences, Lund University, Lund, Sweden; Department of Biomedical Engineering, Faculty of Engineering, Lund University, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Marcus Carlsson
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Jablonowski R, Engblom H, Kanski M, Nordlund D, Koul S, van der Pals J, Englund E, Heiberg E, Erlinge D, Carlsson M, Arheden H. The Authors Reply:. JACC Cardiovasc Imaging 2016; 9:1016-7. [DOI: 10.1016/j.jcmg.2016.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022]
|
8
|
Slettom G, Jonassen AK, Dahle GO, Seifert R, Larsen TH, Berge RK, Nordrehaug JE. Insulin Postconditioning Reduces Infarct Size in the Porcine Heart in a Dose-Dependent Manner. J Cardiovasc Pharmacol Ther 2016; 22:179-188. [PMID: 27390144 DOI: 10.1177/1074248416657611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIM Insulin and glucose may have opposite effects when used to reduce ischemia-reperfusion injury. When insulin is administered alone, feeding state determines tolerance and further induces metabolic and hormonal changes. Higher insulin doses are needed for similar activation of cardioprotective Akt signaling in the fed compared to the fasted pig heart. Thus, the aim of the study was to investigate the effects of 2 prespecified insulin doses on infarct size, apoptosis, metabolism, and cardiac function in a clinically relevant, randomized large animal model using conventional percutaneous catheter intervention techniques and including different fasting states. METHODS AND RESULTS Twenty-seven female pigs were subjected to 40-minute ischemia and 120-minute reperfusion. Pharmacological postconditioning with intracoronary infusions administered over 3 × 30 seconds was performed at immediate reperfusion. Animals were randomly assigned to 3 groups-preexperimental fasting and intracoronary saline ( controls), preexperimental fasting and 0.1U of insulin ( fasted Ins0.1U), and preexperimental feeding and 1.0U of insulin ( fed Ins1.0U). A significant reduction in infarct size was demonstrated in the fed Ins1.0U group ( P = .047) but not in the fasted Ins0.1U group ( P = .531) compared to controls (infarct size normalized to area at risk ± standard deviation: controls 70.2% ± 12.9%, fasted Ins0.1U 65.0% ± 9.4%, and fed Ins1.0U 54.4% ± 7.3%). Infarct limitation was associated with more uncleaved caspase-3 in the area of risk and the infarcted area, lower circulating free fatty acids, and less increase in heart rate during reperfusion. Fed animals had higher levels of glucose, carnitine, potassium, and normetanephrine and higher heart rate at baseline compared to controls. CONCLUSION Insulin postconditioning reduced infarct size in the in vivo pig heart, but the beneficial effects were restricted to the highest dose, which is limited by side effects and can only be given to nonfasted animals. The finding challenges successful general use of insulin in the treatment of reperfusion injury in clinical acute myocardial infarction.
Collapse
Affiliation(s)
- Grete Slettom
- 1 Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.,2 Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anne K Jonassen
- 3 Department of Biomedicine, University of Bergen, Bergen, Norway.,4 Faculty of Health Care and Nursing, NTNU, Bergen, Norway
| | - Geir O Dahle
- 2 Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Reinhard Seifert
- 1 Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Terje H Larsen
- 1 Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.,3 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rolf K Berge
- 2 Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan E Nordrehaug
- 2 Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Yochai B, Nikus K, Birnbaum Y. About QRS prolongation, distortion and the acuteness score. J Electrocardiol 2016; 49:265-71. [PMID: 26972846 DOI: 10.1016/j.jelectrocard.2016.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Birnbaum Yochai
- The Section of Cardiology, the Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kjell Nikus
- Cardiology Department, Heart Center, Tampere University Hospital and School of Medicine, University of Tampere, Finland
| | - Yochai Birnbaum
- The Section of Cardiology, the Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Heusch G, Bøtker HE, Przyklenk K, Redington A, Yellon D. Remote ischemic conditioning. J Am Coll Cardiol 2015; 65:177-95. [PMID: 25593060 PMCID: PMC4297315 DOI: 10.1016/j.jacc.2014.10.031] [Citation(s) in RCA: 497] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022]
Abstract
In remote ischemic conditioning (RIC), brief, reversible episodes of ischemia with reperfusion in one vascular bed, tissue, or organ confer a global protective phenotype and render remote tissues and organs resistant to ischemia/reperfusion injury. The peripheral stimulus can be chemical, mechanical, or electrical and involves activation of peripheral sensory nerves. The signal transfer to the heart or other organs is through neuronal and humoral communications. Protection can be transferred, even across species, with plasma-derived dialysate and involves nitric oxide, stromal derived factor-1α, microribonucleic acid-144, but also other, not yet identified factors. Intracardiac signal transduction involves: adenosine, bradykinin, cytokines, and chemokines, which activate specific receptors; intracellular kinases; and mitochondrial function. RIC by repeated brief inflation/deflation of a blood pressure cuff protects against endothelial dysfunction and myocardial injury in percutaneous coronary interventions, coronary artery bypass grafting, and reperfused acute myocardial infarction. RIC is safe and effective, noninvasive, easily feasible, and inexpensive.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen Medical School, Essen, Germany.
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Andrew Redington
- Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Derek Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| |
Collapse
|
11
|
Effects of intracoronary melatonin on ischemia–reperfusion injury in ST-elevation myocardial infarction. Heart Vessels 2014; 31:88-95. [DOI: 10.1007/s00380-014-0589-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/03/2014] [Indexed: 12/31/2022]
|
12
|
Ekeløf S, Rosenberg J, Jensen JS, Gögenur I. Pharmacological attenuation of myocardial reperfusion injury in a closed-chest porcine model: a systematic review. J Cardiovasc Transl Res 2014; 7:570-80. [PMID: 25004991 DOI: 10.1007/s12265-014-9574-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/23/2014] [Indexed: 11/28/2022]
Abstract
Myocardial ischemia-reperfusion injury is a clinical challenge in interventional cardiology, and at the moment, no pharmacological agent is universally accepted in the prevention. In order to prevent inappropriate clinical trials, a potential pharmacological agent should be proved reproducibly effective in clinically relevant experimental studies before initiation of human studies. The closed-chest porcine model is a promising experimental model of ischemia-reperfusion injury. The purpose of this systematic review was to describe the pharmacological treatments evaluated in the closed-chest porcine model and discuss different aspects of the model for future use. The systematic review was performed according to the PRISMA guidelines.
Collapse
Affiliation(s)
- Sarah Ekeløf
- Department of Surgery, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark,
| | | | | | | |
Collapse
|
13
|
Engblom H, Aletras AH, Heiberg E, Arheden H, Carlsson M. Quantification of myocardial salvage by myocardial perfusion SPECT and cardiac magnetic resonance — reference standards for ECG development. J Electrocardiol 2014; 47:525-34. [DOI: 10.1016/j.jelectrocard.2014.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Indexed: 01/08/2023]
|
14
|
Edvardsen T, Plein S, Saraste A, Pierard LA, Knuuti J, Maurer G, Lancellotti P. The year 2013 in the European Heart Journal - Cardiovascular Imaging. Part I. Eur Heart J Cardiovasc Imaging 2014; 15:730-5. [DOI: 10.1093/ehjci/jeu094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Edvardsen T, Plein S, Saraste A, Knuuti J, Maurer G, Lancellotti P. The year 2012 in the European Heart Journal-Cardiovascular Imaging: Part I. Eur Heart J Cardiovasc Imaging 2013; 14:509-14. [PMID: 23671232 DOI: 10.1093/ehjci/jet069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The new multi-modality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was started in 2012. During its first year, the new Journal has published an impressive collection of cardiovascular studies utilizing all cardiovascular imaging modalities. We will summarize the most important studies from its first year in two articles. The present 'Part I' of the review will focus on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging.
Collapse
Affiliation(s)
- Thor Edvardsen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|