1
|
Vermoortele D, Olianti C, Amoni M, Giardini F, De Buck S, Nagaraju CK, Willems R, Roderick HL, Sipido KR, Sacconi L, Claus P. Precision sampling of discrete sites identified during in-vivo functional testing in the mammalian heart. COMMUNICATIONS ENGINEERING 2024; 3:170. [PMID: 39543278 PMCID: PMC11564904 DOI: 10.1038/s44172-024-00307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Ventricular arrhythmias after myocardial infarction (MI) originate from discrete areas within the MI border zone (BZ), identified during functional electrophysiology tests. Accurate sampling of arrhythmogenic sites for ex-vivo study remains challenging, yet is critical to identify their tissue, cellular and molecular signature. In this study, we developed, validated, and applied a targeted sampling methodology based on individualized 3D prints of the human-sized pig heart. To this end, 3D anatomical models of the left ventricle were created from magnetic resonance imaging and fused with biplane fluoroscopy. Regions of interest for sampling were annotated on the anatomical models, from which we created a unique 3D printed cast with custom slits identifying the annotated regions for sampling. The methodology was validated by retrieving ablation lesions created at predefined locations on the anatomical model. We applied the methodology to sample arrhythmia-vulnerable regions after MI during adrenergic stimulation. A pipeline of imaging was developed to create a 3D high-resolution map of each sample, highlighting the complex interplay of cellular organization, and altered innervation in the BZ.
Collapse
Affiliation(s)
- Dylan Vermoortele
- KU Leuven, Department of Cardiovascular Sciences, Cardiovascular Imaging and Dynamics, Leuven, Belgium
| | - Camilla Olianti
- National Institute of Optics (INO-CNR), Sesto Fiorentino, Florence, Italy
| | - Matthew Amoni
- KU Leuven, Department of Cardiovascular Sciences, Experimental Cardiology, Leuven, Belgium
| | - Francesco Giardini
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Stijn De Buck
- KU Leuven, Department of Electrical Engineering, ESAT-PSI, Leuven, Belgium
- KU Leuven, Department of Imaging and Pathology, Radiology, Leuven, Belgium
- University Hospitals Leuven, Division of Radiology, Leuven, Belgium
- University Hospitals Leuven, Division of Cardiology, Leuven, Belgium
| | - Chandan K Nagaraju
- KU Leuven, Department of Cardiovascular Sciences, Experimental Cardiology, Leuven, Belgium
| | - Rik Willems
- KU Leuven, Department of Cardiovascular Sciences, Experimental Cardiology, Leuven, Belgium
- University Hospitals Leuven, Division of Cardiology, Leuven, Belgium
| | - H Llewellyn Roderick
- KU Leuven, Department of Cardiovascular Sciences, Experimental Cardiology, Leuven, Belgium
| | - Karin R Sipido
- KU Leuven, Department of Cardiovascular Sciences, Experimental Cardiology, Leuven, Belgium
| | - Leonardo Sacconi
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- Institute of Clinical Physiology (IFC-CNR), Florence, Italy
| | - Piet Claus
- KU Leuven, Department of Cardiovascular Sciences, Cardiovascular Imaging and Dynamics, Leuven, Belgium.
| |
Collapse
|
2
|
Amoni M, Dries E, Ingelaere S, Vermoortele D, Roderick HL, Claus P, Willems R, Sipido KR. Ventricular Arrhythmias in Ischemic Cardiomyopathy-New Avenues for Mechanism-Guided Treatment. Cells 2021; 10:2629. [PMID: 34685609 PMCID: PMC8534043 DOI: 10.3390/cells10102629] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic heart disease is the most common cause of lethal ventricular arrhythmias and sudden cardiac death (SCD). In patients who are at high risk after myocardial infarction, implantable cardioverter defibrillators are the most effective treatment to reduce incidence of SCD and ablation therapy can be effective for ventricular arrhythmias with identifiable culprit lesions. Yet, these approaches are not always successful and come with a considerable cost, while pharmacological management is often poor and ineffective, and occasionally proarrhythmic. Advances in mechanistic insights of arrhythmias and technological innovation have led to improved interventional approaches that are being evaluated clinically, yet pharmacological advancement has remained behind. We review the mechanistic basis for current management and provide a perspective for gaining new insights that centre on the complex tissue architecture of the arrhythmogenic infarct and border zone with surviving cardiac myocytes as the source of triggers and central players in re-entry circuits. Identification of the arrhythmia critical sites and characterisation of the molecular signature unique to these sites can open avenues for targeted therapy and reduce off-target effects that have hampered systemic pharmacotherapy. Such advances are in line with precision medicine and a patient-tailored therapy.
Collapse
Affiliation(s)
- Matthew Amoni
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
- Division of Cardiology, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Eef Dries
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
| | - Sebastian Ingelaere
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
- Division of Cardiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Dylan Vermoortele
- Imaging and Cardiovascular Dynamics, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (D.V.); (P.C.)
| | - H. Llewelyn Roderick
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
| | - Piet Claus
- Imaging and Cardiovascular Dynamics, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (D.V.); (P.C.)
| | - Rik Willems
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
- Division of Cardiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Karin R. Sipido
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.A.); (E.D.); (S.I.); (H.L.R.); (R.W.)
| |
Collapse
|
3
|
Validation of a novel stand-alone software tool for image guided cardiac catheter therapy. Int J Cardiovasc Imaging 2019; 35:225-235. [PMID: 30689193 PMCID: PMC6428788 DOI: 10.1007/s10554-019-01541-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 01/07/2023]
Abstract
Comparison of the targeting accuracy of a new software method for MRI-fluoroscopy guided endomyocardial interventions with a clinically available 3D endocardial electromechanical mapping system. The new CARTBox2 software enables therapy target selection based on infarction transmurality and local myocardial wall thickness deduced from preoperative MRI scans. The selected targets are stored in standard DICOM datasets. Fusion of these datasets with live fluoroscopy enables real-time visualization of MRI defined targets during fluoroscopy guided interventions without the need for external hardware. In ten pigs (60–75 kg), late gadolinium enhanced (LGE) MRI scans were performed 4 weeks after a 90-min LAD occlusion. Subsequently, 10–16 targeted fluorescent biomaterial injections were delivered in the infarct border zone (IBZ) using either the NOGA 3D-mapping system or CARTBox2. The primary endpoint was the distance of the injections to the IBZ on histology. Secondary endpoints were total procedure time, fluoroscopy time and dose, and the number of ventricular arrhythmias. The average distance of the injections to the IBZ was similar for CARTBox2 (0.5 ± 3.2 mm) and NOGA (− 0.7 ± 2.2 mm; p = 0.52). Injection procedures with CARTBox2 and NOGA required 69 ± 12 and 60 ± 17 min, respectively (p = 0.36). The required endocardial mapping procedure with NOGA prior to injections, leads to a significantly longer total procedure time (p < 0.001) with NOGA. Fluoroscopy time with NOGA (18.7 ± 11.0 min) was significantly lower than with CARTBox2 (43.4 ± 6.5 min; p = 0.0003). Procedures with CARTBox2 show a trend towards less ventricular arrhythmias compared to NOGA. CARTBox2 is an accurate and fast software-only system to facilitate cardiac catheter therapy based on gold standard MRI imaging and live fluoroscopy.
Collapse
|
4
|
Khalil A, Ng SC, Liew YM, Lai KW. An Overview on Image Registration Techniques for Cardiac Diagnosis and Treatment. Cardiol Res Pract 2018; 2018:1437125. [PMID: 30159169 PMCID: PMC6109558 DOI: 10.1155/2018/1437125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Image registration has been used for a wide variety of tasks within cardiovascular imaging. This study aims to provide an overview of the existing image registration methods to assist researchers and impart valuable resource for studying the existing methods or developing new methods and evaluation strategies for cardiac image registration. For the cardiac diagnosis and treatment strategy, image registration and fusion can provide complementary information to the physician by using the integrated image from these two modalities. This review also contains a description of various imaging techniques to provide an appreciation of the problems associated with implementing image registration, particularly for cardiac pathology intervention and treatments.
Collapse
Affiliation(s)
- Azira Khalil
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Faculty of Science and Technology, Islamic Science University of Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Siew-Cheok Ng
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yih Miin Liew
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Van den Broek HT, De Jong L, Doevendans PA, Chamuleau SAJ, Van Slochteren FJ, Van Es R. 3D Whole-heart Myocardial Tissue Analysis. J Vis Exp 2017:54974. [PMID: 28447974 PMCID: PMC5564696 DOI: 10.3791/54974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cardiac regenerative therapies aim to protect and repair the injured heart in patients with ischemic heart disease. By injecting stem cells or other biologicals that enhance angio- or vasculogenesis into the infarct border zone (IBZ), tissue perfusion is improved, and the myocardium can be protected from further damage. For maximum therapeutic effect, it is hypothesized that the regenerative substance is best delivered to the IBZ. This requires accurate injections and has led to the development of new injection techniques. To validate these new techniques, we have designed a validation protocol based on myocardial tissue analysis. This protocol includes whole-heart myocardial tissue processing that enables detailed two-dimensional (2D) and three-dimensional (3D) analysis of the cardiac anatomy and intramyocardial injections. In a pig, myocardial infarction was created by a 90-min occlusion of the left anterior descending coronary artery. Four weeks later, a mixture of a hydrogel with superparamagnetic iron oxide particles (SPIOs) and fluorescent beads was injected in the IBZ using a minimally-invasive endocardial approach. 1 h after the injection procedure, the pig was euthanized, and the heart was excised and embedded in agarose (agar). After the solidification of the agar, magnetic resonance imaging (MRI), slicing of the heart, and fluorescence imaging were performed. After image post-processing, 3D analysis was performed to assess the IBZ targeting accuracy. This protocol provides a structured and reproducible method for the assessment of the targeting accuracy of intramyocardial injections into the IBZ. The protocol can be easily used when the processing of scar tissue and/or validation of the injection accuracy of the whole heart is desired.
Collapse
Affiliation(s)
| | - Leon De Jong
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht; MIRA Institute, University Twente
| | - Pieter A Doevendans
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht
| | - Steven A J Chamuleau
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht;
| | | | - René Van Es
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht
| |
Collapse
|
6
|
Low Cytochrome Oxidase 1 Links Mitochondrial Dysfunction to Atherosclerosis in Mice and Pigs. PLoS One 2017; 12:e0170307. [PMID: 28122051 PMCID: PMC5266248 DOI: 10.1371/journal.pone.0170307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023] Open
Abstract
Background Cytochrome oxidase IV complex regulates energy production in mitochondria. Therefore, we determined the relation of COX genes with atherosclerosis in mice and pigs. Methods and results First, we compared atherosclerosis in the aortic arch of age-matched (24 weeks) C57BL/6J control (n = 10), LDL-receptor deficient (n = 8), leptin-deficient ob/ob (n = 10), and double knock-out (lacking LDL-receptor and leptin) mice (n = 12). Low aortic mitochondria-encoded cytochrome oxidase 1 in obese diabetic double knock-out mice was associated with a larger plaque area and higher propensity of M1 macrophages and oxidized LDL. Caloric restriction increased mitochondria-encoded cytochrome oxidase 1 and reduced plaque area and oxidized LDL. This was associated with a reduction of titer of anti-oxidized LDL antibodies, a proxy of systemic oxidative stress. Low of mitochondria-encoded cytochrome oxidase 1 was related to low expression of peroxisome proliferative activated receptors α, δ, and γ and of peroxisome proliferative activated receptor, gamma, co-activator 1 alpha reflecting mitochondrial dysfunction. Caloric restriction increased them. To investigate if there was a diabetic/obesity requirement for mitochondria-encoded cytochrome oxidase 1 to be down-regulated, we then studied atherosclerosis in LAD of hypercholesterolemic pigs (n = 37). Pigs at the end of the study were divided in three groups based on increasing LAD plaque complexity according to Stary (Stary I: n = 12; Stary II: n = 13; Stary III: n = 12). Low mitochondria-encoded cytochrome oxidase 1 in isolated plaque macrophages was associated with more complex coronary plaques and oxidized LDL. Nucleus-encoded cytochrome oxidase 4I1 and cytochrome oxidase 10 did not correlate with plaque complexity and oxidative stress. In mice and pigs, MT-COI was inversely related to insulin resistance. Conclusions Low MT-COI is related to mitochondrial dysfunction, oxidative stress and atherosclerosis and plaque complexity.
Collapse
|
7
|
Real-time correction of respiratory-induced cardiac motion during electroanatomical mapping procedures. Med Biol Eng Comput 2016; 54:1741-1749. [PMID: 27016363 PMCID: PMC5069333 DOI: 10.1007/s11517-016-1455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 01/29/2016] [Indexed: 11/18/2022]
Abstract
Treatment planning during catheter interventions in the heart is often based on electromechanical tissue characteristics obtained by endocardial surface mapping (ESM). Since studies have shown respiratory-induced cardiac motion of over 5 mm in different directions, respiratory motion may cause ESMs artifacts due to faulty interpolation. Hence, we designed and tested a real-time respiration-correction algorithm for ESM. An experimental phantom was used to design the correction algorithm which was subsequently evaluated in five pigs. A piezo-respiratory belt transducer was used to measure the respiration. The respiratory signal was inserted to the NOGA®XP electromechanical mapping system via the ECG leads. The results of the correction were assessed by measuring the displacement of a reference point and the registration error of the ESM on a CMR scan before and after correction. In the phantom experiment, the reference point displacement was 6.5 mm before and 1.1 mm after correction and the registration errors were 2.8 ± 2.2 and 1.9 ± 1.3 mm, respectively. In the animals, the average reference point displacement (apex) was reduced from 2.6 ± 1.0 mm before to 1.2 ± 0.3 mm after correction (P < 0.05). The in vivo registration error of the ESM and the CMR scan did not significantly improve. Even though the apical movement appreciated in pigs is small, the correction algorithm shows a decrease in displacement after correction. Application of this algorithm omits the use of the time-consuming respiratory gating during ESM and may lead to less respiratory artifacts in clinical endocardial mapping procedures.
Collapse
|
8
|
Kraitchman DL, Kramer CM. Interventions in Complex Congenital Heart Disease. JACC Cardiovasc Interv 2016; 9:971-2. [DOI: 10.1016/j.jcin.2016.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/11/2016] [Indexed: 11/27/2022]
|
9
|
Edvardsen T, Bucciarelli-Ducci C, Saraste A, Pierard LA, Knuuti J, Maurer G, Habib G, Lancellotti P. The year 2014 in the European Heart Journal - Cardiovascular Imaging. Part I. Eur Heart J Cardiovasc Imaging 2015; 16:712-8. [DOI: 10.1093/ehjci/jev150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|