1
|
Lang FM, Lee BC, Lotan D, Sabuncu MR, Topkara VK. Role of Artificial Intelligence and Machine Learning to Create Predictors, Enhance Molecular Understanding, and Implement Purposeful Programs for Myocardial Recovery. Methodist Debakey Cardiovasc J 2024; 20:76-87. [PMID: 39184156 PMCID: PMC11342843 DOI: 10.14797/mdcvj.1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/23/2024] [Indexed: 08/27/2024] Open
Abstract
Heart failure (HF) affects millions of individuals and causes hundreds of thousands of deaths each year in the United States. Despite the public health burden, medical and device therapies for HF significantly improve clinical outcomes and, in a subset of patients, can cause reversal of abnormalities in cardiac structure and function, termed "myocardial recovery." By identifying novel patterns in high-dimensional data, artificial intelligence (AI) and machine learning (ML) algorithms can enhance the identification of key predictors and molecular drivers of myocardial recovery. Emerging research in the area has begun to demonstrate exciting results that could advance the standard of care. Although major obstacles remain to translate this technology to clinical practice, AI and ML hold the potential to usher in a new era of purposeful myocardial recovery programs based on precision medicine. In this review, we discuss applications of ML to the prediction of myocardial recovery, potential roles of ML in elucidating the mechanistic basis underlying recovery, barriers to the implementation of ML in clinical practice, and areas for future research.
Collapse
Affiliation(s)
- Frederick M. Lang
- NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, US
| | | | - Dor Lotan
- NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, US
| | - Mert R. Sabuncu
- Weill Cornell Medicine, New York, NY, USA
- Cornell University, Ithaca, New York, US
| | - Veli K. Topkara
- NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, US
| |
Collapse
|
2
|
Allach Y, Barry-Loncq de Jong M, Clephas PRD, van Gent MWF, Brunner-La Rocca HP, Szymanski MK, van Halm VP, Handoko ML, Kok WEM, Asselbergs FW, van Kimmenade RRJ, Manintveld OC, van Mieghem NMDA, Beeres SLMA, Rienstra M, Post MC, van Heerebeek L, Borleffs CJW, Tukkie R, Mosterd A, Linssen GCM, Spee RF, Emans ME, Smilde TDJ, van Ramshorst J, Kirchhof CJHJ, Feenema-Aardema MW, da Fonseca CA, van den Heuvel M, Hazeleger R, van Eck JWM, Boersma E, Kardys I, de Boer RA, Brugts JJ. Serial cardiac biomarkers, pulmonary artery pressures and traditional parameters of fluid status in relation to prognosis in patients with chronic heart failure: Design and rationale of the BioMEMS study. Eur J Heart Fail 2024; 26:1736-1744. [PMID: 38825743 DOI: 10.1002/ejhf.3303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
AIMS Heart failure (HF), a global pandemic affecting millions of individuals, calls for adequate predictive guidance for improved therapy. Congestion, a key factor in HF-related hospitalizations, further underscores the need for timely interventions. Proactive monitoring of intracardiac pressures, guided by pulmonary artery (PA) pressure, offers opportunities for efficient early-stage intervention, since haemodynamic congestion precedes clinical symptoms. METHODS The BioMEMS study, a substudy of the MONITOR-HF trial, proposes a multifaceted approach integrating blood biobank data with traditional and novel HF parameters. Two additional blood samples from 340 active participants in the MONITOR-HF trial were collected at baseline, 3-, 6-, and 12-month visits and stored for the BioMEMS biobank. The main aims are to identify the relationship between temporal biomarker patterns and PA pressures derived from the CardioMEMS-HF system, and to identify the biomarker profile(s) associated with the risk of HF events and cardiovascular death. CONCLUSION Since the prognostic value of single baseline measurements of biomarkers like N-terminal pro-B-type natriuretic peptide is limited, with the BioMEMS study we advocate a dynamic, serial approach to better capture HF progression. We will substantiate this by relating repeated biomarker measurements to PA pressures. This design rationale presents a comprehensive review on cardiac biomarkers in HF, and aims to contribute valuable insights into personalized HF therapy and patient risk assessment, advancing our ability to address the evolving nature of HF effectively.
Collapse
Affiliation(s)
- Youssra Allach
- Department of Cardiology, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mylene Barry-Loncq de Jong
- Department of Cardiology, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pascal R D Clephas
- Department of Cardiology, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marco W F van Gent
- Department of Cardiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | | | - Mariusz K Szymanski
- Department of Cardiology, Utrecht University Medical Centre, Utrecht, The Netherlands
| | - Vokko P van Halm
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - M Louis Handoko
- Department of Cardiology, Utrecht University Medical Centre, Utrecht, The Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter E M Kok
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Olivier C Manintveld
- Department of Cardiology, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicolas M D A van Mieghem
- Department of Cardiology, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Saskia L M A Beeres
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michiel Rienstra
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Marco C Post
- Department of Cardiology, Utrecht University Medical Centre, Utrecht, The Netherlands
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | | | - Raymond Tukkie
- Department of Cardiology, Spaarne Hospital, Haarlem, The Netherlands
| | - Arend Mosterd
- Department of Cardiology, Meander Medical Centre, Amersfoort, The Netherlands
| | - Gerard C M Linssen
- Department of Cardiology, Hospital Group Twente, Almelo, The Netherlands
| | - Ruud F Spee
- Department of Cardiology, Maxima Medical Centre, Eindhoven, The Netherlands
| | - Mireille E Emans
- Department of Cardiology, Ikazia hospital, Rotterdam, The Netherlands
| | - Tom D J Smilde
- Department of Cardiology, Scheeper Hospital Treant, Emmen, The Netherlands
| | - Jan van Ramshorst
- Department of Cardiology, Noordwest Hospital Group, Alkmaar, The Netherlands
| | | | | | - Carlos A da Fonseca
- Department of Cardiology, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | | | - Ronald Hazeleger
- Department of Cardiology, Vie Curi Hospital, Venlo, The Netherlands
| | - J W Martijn van Eck
- Department of Cardiology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - Eric Boersma
- Department of Cardiology, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Isabella Kardys
- Department of Cardiology, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jasper J Brugts
- Department of Cardiology, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Arbeev KG, Bagley O, Ukraintseva SV, Kulminski A, Stallard E, Schwaiger-Haber M, Patti GJ, Gu Y, Yashin AI, Province MA. Methods for joint modelling of longitudinal omics data and time-to-event outcomes: Applications to lysophosphatidylcholines in connection to aging and mortality in the Long Life Family Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.29.24311176. [PMID: 39132492 PMCID: PMC11312646 DOI: 10.1101/2024.07.29.24311176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Studying relationships between longitudinal changes in omics variables and risks of events requires specific methodologies for joint analyses of longitudinal and time-to-event outcomes. We applied two such approaches (joint models [JM], stochastic process models [SPM]) to longitudinal metabolomics data from the Long Life Family Study focusing on understudied associations of longitudinal changes in lysophosphatidylcholines (LPC) with mortality and aging-related outcomes (23 LPC species, 5,790 measurements of each in 4,011 participants, 1,431 of whom died during follow-up). JM analyses found that higher levels of the majority of LPC species were associated with lower mortality risks, with the largest effect size observed for LPC 15:0/0:0 (hazard ratio: 0.715, 95% CI (0.649, 0.788)). SPM applications to LPC 15:0/0:0 revealed how the association found in JM reflects underlying aging-related processes: decline in robustness to deviations from optimal LPC levels, better ability of males' organisms to return to equilibrium LPC levels (which are higher in females), and increasing gaps between the optimum and equilibrium levels leading to increased mortality risks with age. Our results support LPC as a biomarker of aging and related decline in robustness/resilience, and call for further exploration of factors underlying age-dynamics of LPC in relation to mortality and diseases.
Collapse
Affiliation(s)
- Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Svetlana V. Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Alexander Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Michaela Schwaiger-Haber
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Center for Metabolomics and Isotope Tracing at Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Gary J. Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Center for Metabolomics and Isotope Tracing at Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yian Gu
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, New York 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Michael A. Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
4
|
Andrzejczyk K, Abou Kamar S, van Ommen AM, Canto ED, Petersen TB, Valstar G, Akkerhuis KM, Cramer MJ, Umans V, Rutten FH, Teske A, Boersma E, Menken R, van Dalen BM, Hofstra L, Verhaar M, Brugts J, Asselbergs F, den Ruijter H, Kardys I. Identifying plasma proteomic signatures from health to heart failure, across the ejection fraction spectrum. Sci Rep 2024; 14:14871. [PMID: 38937570 PMCID: PMC11211454 DOI: 10.1038/s41598-024-65667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024] Open
Abstract
Circulating proteins may provide insights into the varying biological mechanisms involved in heart failure (HF) with preserved ejection fraction (HFpEF) and reduced ejection fraction (HFrEF). We aimed to identify specific proteomic patterns for HF, by comparing proteomic profiles across the ejection fraction spectrum. We investigated 4210 circulating proteins in 739 patients with normal (Stage A/Healthy) or elevated (Stage B) filling pressures, HFpEF, or ischemic HFrEF (iHFrEF). We found 2122 differentially expressed proteins between iHFrEF-Stage A/Healthy, 1462 between iHFrEF-HFpEF and 52 between HFpEF-Stage A/Healthy. Of these 52 proteins, 50 were also found in iHFrEF vs. Stage A/Healthy, leaving SLITRK6 and NELL2 expressed in lower levels only in HFpEF. Moreover, 108 proteins, linked to regulation of cell fate commitment, differed only between iHFrEF-HFpEF. Proteomics across the HF spectrum reveals overlap in differentially expressed proteins compared to stage A/Healthy. Multiple proteins are unique for distinguishing iHFrEF from HFpEF, supporting the capacity of proteomics to discern between these conditions.
Collapse
Affiliation(s)
- Karolina Andrzejczyk
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sabrina Abou Kamar
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Cardiology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Anne-Mar van Ommen
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elisa Dal Canto
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Teun B Petersen
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gideon Valstar
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maarten Jan Cramer
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Victor Umans
- Department of Cardiology, Northwest Clinics, Alkmaar, the Netherlands
| | - Frans H Rutten
- Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Arco Teske
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Roxana Menken
- Cardiology Centers of the Netherlands, Utrecht, The Netherlands
| | - Bas M van Dalen
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Cardiology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Leonard Hofstra
- Cardiology Centers of the Netherlands, Utrecht, The Netherlands
| | - Marianne Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasper Brugts
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Folkert Asselbergs
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hester den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Isabella Kardys
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Rypdal KB, Apte SS, Lunde IG. Emerging roles for the ADAMTS-like family of matricellular proteins in cardiovascular disease through regulation of the extracellular microenvironment. Mol Biol Rep 2024; 51:280. [PMID: 38324186 PMCID: PMC10850197 DOI: 10.1007/s11033-024-09255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Dysregulation of the extracellular matrix (ECM) occurs widely across cardiovascular pathologies. Recent work has revealed important roles for the «a disintegrin-like and metalloprotease domain with thrombospondin-type 1 motifs like" (ADAMTSL) family of secreted glycoproteins in cardiovascular tissues during development and disease. Key insights in this regard have come from naturally occurring gene mutations in humans and animals that result in severe diseases with cardiovascular manifestations or aortopathies. Expression of ADAMTSL genes is greatly increased in the myocardium during heart failure. Genetically modified mice recapitulate phenotypes of patients with ADAMTSL mutations and demonstrate important functions in the ECM. The novel functions thus disclosed are intriguing because, while these proteins are neither structural, nor proteases like the related ADAMTS proteases, they appear to act as regulatory, i.e., matricellular proteins. Evidence from genetic variants, genetically engineered mouse mutants, and in vitro investigations have revealed regulatory functions of ADAMTSLs related to fibrillin microfibrils and growth factor signaling. Interestingly, the ability to regulate transforming growth factor (TGF)β signaling may be a shared characteristic of some ADAMTSLs. TGFβ signaling is important in cardiovascular development, health and disease and a central driver of ECM remodeling and cardiac fibrosis. New strategies to target dysregulated TGFβ signaling are warranted in aortopathies and cardiac fibrosis. With their emerging roles in cardiovascular tissues, the ADAMTSL proteins may provide causative genes, diagnostic biomarkers and novel treatment targets in cardiovascular disease. Here, we discuss the relevance of ADAMTSLs to cardiovascular medicine.
Collapse
Affiliation(s)
- Karoline Bjarnesdatter Rypdal
- KG Jebsen Center for Cardiac Biomarkers, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway.
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Ida G Lunde
- KG Jebsen Center for Cardiac Biomarkers, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway
| |
Collapse
|