1
|
Svenningsson MM, Svingen GFT, Ueland PM, Sulo G, Bjørnestad EØ, Pedersen ER, Dhar I, Nilsen DW, Nygård O. Elevated plasma trimethyllysine is associated with incident atrial fibrillation. Am J Prev Cardiol 2025; 21:100932. [PMID: 39906357 PMCID: PMC11791329 DOI: 10.1016/j.ajpc.2025.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 02/06/2025] Open
Abstract
Background/Aim Trimethyllysine (TML) is a methylated amino acid, which is linked to epigenetic regulation and can serve as a precursor of trimethylamine-N-oxide (TMAO). TMAO is a microbiota-derived metabolite and a potential risk factor of cardiovascular disease. TML has recently been linked to atherosclerosis, acute myocardial infarction and prevalent atrial fibrillation (AF). However, any association between circulating TML and incident AF has not yet been reported and was the aim of the current study in a large community based cohort. Methods Information regarding AF was obtained by linking patient data to national health registries. Risk associations were explored by logistic regression. Potential improvements in risk reclassification were calculated by the continuous net reclassification index (NRI˃0) and the Receiver Operating Curve Area Under the Curve (ROC-AUC). Results At baseline 3117 patients were included. During a median (25th-75th percentile) follow-up of 10.8 (9.4 - 11.2) years, 492 patients (15.8 %) developed AF. Higher plasma TML was associated with incident AF per 1 SD log-transformed TML (OR (95 % CI) 1.30 (1.16-1.46) P < 0.01). Further analyses also showed an increase in NRI>0 (95 % CI) of 0.24 (0.14-0.33) P < 0.001 and ROC-AUC (95 % CI) of 0.013 (0.004-0.022) P = 0.006. Conclusion TML was associated with, and improved risk classification of, new-onset AF in this large cohort of community dwelling adults. Our results motivate further studies on the association between TML and cardiac arrhythmias.
Collapse
Affiliation(s)
- Mads M Svenningsson
- Haukeland University Hospital, Department of Heart Disease, Bergen, Norway
- University of Bergen, Department of Clinical Science, Bergen, Norway
| | - Gard FT Svingen
- Haukeland University Hospital, Department of Heart Disease, Bergen, Norway
| | | | - Gerhard Sulo
- University of Bergen, Department of Global Public Health and Primary Care, Bergen, Norway
| | - Espen Ø Bjørnestad
- University of Bergen, Department of Clinical Science, Bergen, Norway
- Stavanger University Hospital, Department of Heart Disease, Stavanger, Norway
| | - Eva R Pedersen
- Haukeland University Hospital, Department of Heart Disease, Bergen, Norway
- University of Bergen, Department of Clinical Science, Bergen, Norway
| | - Indu Dhar
- University of Bergen, Department of Clinical Science, Bergen, Norway
| | - Dennis W. Nilsen
- University of Bergen, Department of Clinical Science, Bergen, Norway
- Stavanger University Hospital, Department of Heart Disease, Stavanger, Norway
| | - Ottar Nygård
- Haukeland University Hospital, Department of Heart Disease, Bergen, Norway
- University of Bergen, Department of Clinical Science, Bergen, Norway
| |
Collapse
|
2
|
Posma RA, Bakker SJL, Nijsten MW, Touw DJ, Tsikas D. Comprehensive GC-MS Measurement of Amino Acids, Metabolites, and Malondialdehyde in Metformin-Associated Lactic Acidosis at Admission and during Renal Replacement Treatment. J Clin Med 2024; 13:3692. [PMID: 38999257 PMCID: PMC11242773 DOI: 10.3390/jcm13133692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Metformin is the most widely used drug in type 2 diabetes. Regular metformin use has been associated with changes in concentrations of amino acids. In the present study, we used valid stable-isotope labeled GC-MS methods to measure amino acids and metabolites, including creatinine as well as malondialdehyde (MDA), as an oxidative stress biomarker in plasma, urine, and dialysate samples in a patient at admission to the intensive care unit and during renal replacement treatment because of metformin-associated lactic acidosis (MALA, 21 mM lactate, 175 µM metformin). GC-MS revealed lower concentrations of amino acids in plasma, normal concentrations of the nitric oxide (NO) metabolites nitrite and nitrate, and normal concentrations of MDA. Renal tubular reabsorption rates were altered on admission. The patient received renal replacement therapy over 50 to 70 h of normalized plasma amino acid concentrations and their tubular reabsorption, as well as the tubular reabsorption of nitrite and nitrate. This study indicates that GC-MS is a versatile analytical tool to measure different classes of physiological inorganic and organic substances in complex biological samples in clinical settings such as MALA.
Collapse
Affiliation(s)
- Rene A Posma
- Department of Critical Care, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Maarten W Nijsten
- Department of Critical Care, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany
| |
Collapse
|
3
|
Yong YN, Dong J, Pakkiri LS, Henry CJ, Haldar S, Drum CL. Chronometabolism: The Timing of the Consumption of Meals Has a Greater Influence Than Glycemic Index (GI) on the Postprandial Metabolome. Metabolites 2023; 13:metabo13040490. [PMID: 37110149 PMCID: PMC10143625 DOI: 10.3390/metabo13040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Eating late in the day is associated with circadian desynchrony, resulting in dysregulated metabolism and increased cardiometabolic disease risk. However, the underlying mechanisms remain unclear. Using targeted metabolomics of postprandial plasma samples from a secondary analysis of a randomised 2 × 2 crossover study in 36 healthy older Chinese adults, we have compared postprandial metabolic responses between high (HI) glycemic index (GI) or low-GI (LO) meals, consumed either at breakfast (BR) or at dinner (DI). 29 out of 234 plasma metabolites exhibited significant differences (p < 0.05) in postprandial AUC between BR and DI sessions, whereas only five metabolites were significantly different between HI and LO sessions. There were no significant interactions between intake timing and meal GI. Lower glutamine: glutamate ratio, lower lysine and higher trimethyllysine (TML) levels were found during DI compared with BR, along with greater postprandial reductions (δAUC) in creatine and ornithine levels during DI, indicating a worse metabolic state during the evening DI period. Greater reductions (δAUC) in postprandial creatine and ornithine were also observed during HI compared with LO (both p < 0.05). These metabolomic changes may indicate potential molecular signatures and/or pathways linking metabolic responses with cardiometabolic disease risk between different meal intake timings and/or meals with variable GI.
Collapse
|
4
|
Bjørnestad EØ, Dhar I, Svingen GFT, Pedersen ER, Ørn S, Svenningsson MM, Tell GS, Ueland PM, Sulo G, Laaksonen R, Nygård O. Circulating trimethylamine N-oxide levels do not predict 10-year survival in patients with or without coronary heart disease. J Intern Med 2022; 292:915-924. [PMID: 35916742 PMCID: PMC9804190 DOI: 10.1111/joim.13550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is an amine oxide generated by gut microbial metabolism. TMAO may contribute to atherothrombosis and systemic inflammation. However, the prognostic value of circulating TMAO for risk stratification is uncertain. METHODS We assessed prospective relationships of plasma TMAO with long-term risk of all-cause, cardiovascular (CV), and non-CV mortality in the Western Norway Coronary Angiography Cohort (WECAC; 4132 patients with suspected coronary artery disease) and the Hordaland Health Study (HUSK; 6393 community-based subjects). Risk associations were examined using Cox regression analyses. RESULTS Mean follow-up was 9.8 and 10.5 years in WECAC and HUSK, respectively. Following adjustments for established CV risk factors and indices of renal function in WECAC, the hazard ratios (HRs) (95% confidence intervals [CIs]) per one standard deviation increase in log-transformed plasma TMAO were 1.04 (0.97-1.12), 1.06 (0.95-1.18), and 1.03 (0.93-1.13) for all-cause, CV, and non-CV mortality, respectively. Essentially similar results were obtained in patients with angiographically significant coronary artery disease and patients with reduced left ventricular ejection fraction. Corresponding HRs (95% CIs) in the HUSK cohort were 1.03 (0.96-1.10), 1.01 (0.89-1.13), and 1.03 (0.95-1.12) for all-cause-, CV, and non-CV mortality, respectively. CONCLUSIONS Circulating TMAO did not predict long-term all-cause, CV, or non-CV mortality in patients with coronary heart disease or in community-based adults. This large study does not support a role of TMAO for patient risk stratification in primary or secondary prevention.
Collapse
Affiliation(s)
- Espen Ø Bjørnestad
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Indu Dhar
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gard F T Svingen
- Department of Cardiology, Haukeland University Hospital, Bergen, Norway
| | - Eva R Pedersen
- Department of Cardiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stein Ørn
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | | | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gerhard Sulo
- Centre for Disease Burden, Norwegian Institute of Public Health, Bergen, Norway
| | - Reijo Laaksonen
- Finnish Cardiovascular Research Center, University of Tampere, Tampere, Finland
| | - Ottar Nygård
- Department of Cardiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Yang Y, Zeng Q, Gao J, Yang B, Zhou J, Li K, Li L, Wang A, Li X, Liu Z, Luo Q, Zhao Z, Liu B, Xue J, Jiang X, Konerman MC, Zheng L, Xiong C. High-circulating gut microbiota-dependent metabolite trimethylamine N-oxide is associated with poor prognosis in pulmonary arterial hypertension. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac021. [PMID: 36071697 PMCID: PMC9442843 DOI: 10.1093/ehjopen/oeac021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/17/2022] [Indexed: 12/30/2022]
Abstract
Aims We aimed to examine the hypothesis that circulating trimethylamine-N-oxide (TMAO) levels serve as a biomarker in pulmonary arterial hypertension (PAH), and to determine whether 3,3-dimethyl-1-butanol (DMB), a TMAO inhibitor, exerted a protective effect in monocrotaline (MCT)-induced PAH rats. Methods and results In-patients with PAH were prospectively recruited from the Fuwai Hospital. Fasting blood samples were obtained to assess the TMAO levels and other laboratory values during the initial and second hospitalization. In a MCT-induced PAH rat, a normal diet and water supplemented with or without 1% DMB were administered for 4 weeks. The TMAO levels, haemodynamic examinations, changes in organ-tissue, and molecular levels were evaluated. In total, 124 patients with PAH were enrolled in this study. High TMAO levels were correlated with increased disease severity and poor prognosis even after adjusting for confounders. The TMAO levels in the rats decreased in the MCT + DMB group, accompanied by improved haemodynamic parameters, decreased right ventricular hypertrophy, and amelioration of pulmonary vascular remodelling. The decrease in abnormal apoptosis, excessive cell proliferation, transforming growth factor-β expression, and restoration of endothelial nitric oxide synthase after DMB treatment further explained the amelioration of PAH. Conclusion Increased TMAO levels were associated with poor prognosis in patients with PAH, and DMB played a protective effect in MCT-induced PAH rat.
Collapse
Affiliation(s)
- Yicheng Yang
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qixian Zeng
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science Center, Peking University, Beijing, China
| | - Beilan Yang
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Zhou
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Li
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Li Li
- Department of Pathology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Xin Li
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihong Liu
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qin Luo
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhao
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingyang Liu
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xue
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Xue Jiang
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Matthew C Konerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute for Health Care Policy and Innovation, University of Michigan, Ann Arbor, MI, USA
- VA Center for Clinical Management Research, Ann Arbor, MI, USA
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science Center, Peking University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Changming Xiong
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|