1
|
Kogkos G, Gkartziou F, Mourtas S, Barlos KK, Klepetsanis P, Barlos K, Antimisiaris SG. Liposomal Entrapment or Chemical Modification of Relaxin2 for Prolongation of Its Stability and Biological Activity. Biomolecules 2022; 12:biom12101362. [PMID: 36291571 PMCID: PMC9599704 DOI: 10.3390/biom12101362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Relaxin (RLX) is a protein that is structurally similar to insulin and has interesting biological activities. As with all proteins, preservation of RLX’s structural integrity/biological functionality is problematic. Herein, we investigated two methods for increasing the duration of relaxin-2’s (RLX2) biological activity: synthesis of a palmitoyl RLX2 conjugate (P-RLX2) with the use of a Palmitoyl-l-Glu-OtBu peptide modifier, and encapsulation into liposomes of P-RLX2, RLX2, and its oxidized form (O-RLX2). For liposomal encapsulation thin-film hydration and DRV methods were applied, and different lipid compositions were tested for optimized protein loading. RLX2 and O-RLX2 were quantified by HPLC. The capability of the peptides/conjugate to stimulate transfected cells to produce cyclic adenosine monophosphate (cAMP) was used as a measure of their biological activity. The stability and bioactivity of free and liposomal RLX2 types were monitored for a 30 d period, in buffer (in some cases) and bovine serum (80%) at 37 °C. The results showed that liposome encapsulation substantially increased the RLX2 integrity in buffer; PEGylated liposomes demonstrated a higher protection. Liposome encapsulation also increased the stability of RLX2 and O-RLX2 in serum. Considering the peptide’s biological activity, cAMP production of RLX2 was higher than that of the oxidized form and the P-RLX2 conjugate (which demonstrated a similar activity to O-RLX2 when measured in buffer, but lower when measured in the presence of serum proteins), while liposome encapsulation resulted in a slight decrease of bioactivity initially, but prolonged the peptide bioactivity during incubation in serum. It was concluded that liposome encapsulation of RLX2 and synthetic modification to P-RLX2 can both prolong RLX2 peptide in vitro stability; however, the applied chemical conjugation results in a significant loss of bioactivity (cAMP production), whereas the effect of liposome entrapment on RLX2 activity was significantly lower.
Collapse
Affiliation(s)
- George Kogkos
- Lab Pharm Technology, Department of Pharmacy, University of Patras, Rio, 26504 Patras, Greece
| | - Foteini Gkartziou
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering, FORTH/ICE-HT, Platani, 26504 Patras, Greece
| | - Spyridon Mourtas
- Lab Pharm Technology, Department of Pharmacy, University of Patras, Rio, 26504 Patras, Greece
- Department of Chemistry, University of Patras, Rio, 26504 Patras, Greece
| | - Kostas K. Barlos
- Chemical & Biopharmaceutical Laboratories CBL Patras, Ind. Area of Patras, Block 1, 25018 Patras, Greece
| | - Pavlos Klepetsanis
- Lab Pharm Technology, Department of Pharmacy, University of Patras, Rio, 26504 Patras, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering, FORTH/ICE-HT, Platani, 26504 Patras, Greece
| | - Kleomenis Barlos
- Chemical & Biopharmaceutical Laboratories CBL Patras, Ind. Area of Patras, Block 1, 25018 Patras, Greece
| | - Sophia G. Antimisiaris
- Lab Pharm Technology, Department of Pharmacy, University of Patras, Rio, 26504 Patras, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering, FORTH/ICE-HT, Platani, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610962332
| |
Collapse
|
2
|
Kamimoto H, Kobayashi Y, Moriyama K. Relaxin 2 carried by magnetically directed liposomes accelerates rat midpalatal suture expansion and subsequent new bone formation. Bone Rep 2019; 10:100202. [PMID: 30937342 PMCID: PMC6430079 DOI: 10.1016/j.bonr.2019.100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 11/27/2022] Open
Abstract
Relaxin (RLN) is an insulin-like peptide hormone that enables softening and lengthening of the pubic symphysis and uterine cervix. Here, we analyzed the effects of RLN2 on the expansion of rat midpalatal suture (MPS) using a magnetically directed liposome-based drug delivery system. Thirty-six male rats were divided into three groups: control (MPS was not expanded), lipo (expanded for 1 week with vehicle liposomes encapsulating ferric oxide and Cy5.5), and RLN-lipo (expanded for 1 week with the liposomes coated with RLN2). Rats were sacrificed after 1 week of expansion or after 2 weeks of retention. To accumulate RLN2-liposomes, a magnetic sheet was fixed to the palatal mucosa of the MPS. In vivo imaging showed magnetically controlled accumulation of liposomes in the MPS for 72 h. Immunohistochemistry revealed RLN2 expression in the MPS after expansion and relaxin receptor (RXFP) 2 expression at the osteogenic front (OF) in the RLN-lipo group; all groups expressed RXFP1 in the MPS. MPS expansion and bone formation were significantly accelerated at the OF in RLN-lipo group compared with the other groups. In the RLN-lipo group, significantly accelerated serrate bone deposition and elevated periostin (POSTN), iNOS, and MMP-1 levels were observed in the MPS. Sclerostin (SOST) expression was significantly reduced in newly formed bone in the RLN-lipo group. Our data revealed that RLN2 enhanced suture expansion via MMP-1 and iNOS secretion in the sutural fibroblasts and new bone formation via POSTN expression in osteoblasts at the OF. These properties may be useful for developing a new less-invasive orthopedic treatment aiming at sutural modification of cranio- and maxillofacial deformity patients. In vivo Magnetically localization of RLN2 carried by liposome at rat midpalatal suture (MPS) was originally performed. RLN2 promoted efficiency of the MPS expansion with secretion of Mmp1 and iNos in the mid-sutural fibroblasts. During expansion period, RLN2 increased the number and differentiation of osteoblast cells in the MPS. RLN2 enhanced newly bone formation at the MPS during expansion and retention period through Rxfp2. Sinus-like bone formation and Postn localization at the expanded MPS was observed by RLN2 administration.
Collapse
Affiliation(s)
- Hiroyuki Kamimoto
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yukiho Kobayashi
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
3
|
Li H, Zheng J, Zhang S, Yang C, Kwon YD, Kim YJ. Experiment of GBR for repair of peri-implant alveolar defects in beagle dogs. Sci Rep 2018; 8:16532. [PMID: 30410063 PMCID: PMC6224530 DOI: 10.1038/s41598-018-34805-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023] Open
Abstract
To guide barrier membrane choice in the treatment of peri-implant alveolar bone defects, we evaluated guided bone regeneration (GBR) using titanium (Ti) mesh or Bio-Gide membrane, independently or in combination, for repair of alveolar bone defects in Beagle dogs. Six months after extraction of the mandibular premolars and first molars from three beagle dogs, we inserted implants assigned into 3 groups and covered with the following membrane combinations: Group A: Implant + Bio-Oss + Ti-mesh, Group B: Implant + Bio-Oss + Bio-Gide, and Group C: Implant + Bio-Oss + Ti-mesh + Bio-Gide. At 6 months, micro-CT revealed that bone volume/total volume (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) was significantly greater in Group C than the other two groups, while trabecular separation (Tb.Sp) was significantly lower, suggesting improved bone regeneration. The distance between bands of three fluorescent tracking dyes was significantly greater in Group C, indicating faster deposition of new bone. The Bio-Oss particles were ideally integrated with newly deposited bone and bone thickness was significantly larger in Group C. These findings suggest that combination of Bio-Gide membrane and titanium mesh can effectively repair peri-implant alveolar bone defects, achieving enhanced bone regeneration compared to titanium mesh or Bio-Gide alone, and therefore providing a novel treatment concept for clinical implant surgery.
Collapse
Affiliation(s)
- HuiPing Li
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - JiSi Zheng
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - Shanyong Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China.
| | - Chi Yang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - Yong-Dae Kwon
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Kyung Hee University, Gwangneung, South Korea.
| | - Yong-Jin Kim
- Department of Oral and Maxillofacial Surgery, Insan Apsun Dental Clinic, Gwangneung, South Korea
| |
Collapse
|