1
|
McCann AJ, Lou J, Moustaqil M, Graus MS, Blum A, Fontaine F, Liu H, Luu W, Rudolffi-Soto P, Koopman P, Sierecki E, Gambin Y, Meunier FA, Liu Z, Hinde E, Francois M. A dominant-negative SOX18 mutant disrupts multiple regulatory layers essential to transcription factor activity. Nucleic Acids Res 2021; 49:10931-10955. [PMID: 34570228 PMCID: PMC8565327 DOI: 10.1093/nar/gkab820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Few genetically dominant mutations involved in human disease have been fully explained at the molecular level. In cases where the mutant gene encodes a transcription factor, the dominant-negative mode of action of the mutant protein is particularly poorly understood. Here, we studied the genome-wide mechanism underlying a dominant-negative form of the SOX18 transcription factor (SOX18RaOp) responsible for both the classical mouse mutant Ragged Opossum and the human genetic disorder Hypotrichosis-lymphedema-telangiectasia-renal defect syndrome. Combining three single-molecule imaging assays in living cells together with genomics and proteomics analysis, we found that SOX18RaOp disrupts the system through an accumulation of molecular interferences which impair several functional properties of the wild-type SOX18 protein, including its target gene selection process. The dominant-negative effect is further amplified by poisoning the interactome of its wild-type counterpart, which perturbs regulatory nodes such as SOX7 and MEF2C. Our findings explain in unprecedented detail the multi-layered process that underpins the molecular aetiology of dominant-negative transcription factor function.
Collapse
Affiliation(s)
- Alex J McCann
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jieqiong Lou
- School of Physics, Department of Biochemistry and Molecular Biology, Bio21, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mehdi Moustaqil
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 1466, Australia
| | - Matthew S Graus
- The David Richmond Laboratory for Cardio-Vascular Development: gene regulation and editing, The Centenary Institute, Newtown, Sydney, NSW 2006, Australia
| | - Ailisa Blum
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Frank Fontaine
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hui Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Winnie Luu
- The David Richmond Laboratory for Cardio-Vascular Development: gene regulation and editing, The Centenary Institute, Newtown, Sydney, NSW 2006, Australia
| | - Paulina Rudolffi-Soto
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 1466, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 1466, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 1466, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Elizabeth Hinde
- School of Physics, Department of Biochemistry and Molecular Biology, Bio21, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.,The David Richmond Laboratory for Cardio-Vascular Development: gene regulation and editing, The Centenary Institute, Newtown, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Dutoit R, Dubois E, Jacobs E. Selection systems based on dominant-negative transcription factors for precise genetic engineering. Nucleic Acids Res 2010; 38:e183. [PMID: 20702421 PMCID: PMC2965260 DOI: 10.1093/nar/gkq708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diverse tools are available for performing genetic modifications of microorganisms. However, new methods still need to be developed for performing precise genomic engineering without introducing any undesirable side-alteration. Indeed for functional analyses of genomic elements, as well as for some industrial applications, only the desired mutation should be introduced at the locus considered. This article describes a new approach fulfilling these requirements, based on the use of selection systems consisting in truncated genes encoding dominant-negative transcription factors. We have demonstrated dominant-negative effects mediated by truncated Gal4p and Arg81p proteins in Saccharomyces cerevisiae, interfering with galactose and arginine metabolic pathways, respectively. These genes can be used as positive and negative markers, since they provoke both growth inhibition on substrates and resistance to specific drugs. These selection markers have been successfully used for precisely deleting HO and URA3 in wild yeasts. This genetic engineering approach could be extended to other microorganisms.
Collapse
Affiliation(s)
- Raphaël Dutoit
- Institut de Recherches Microbiologiques JM Wiame and Laboratoire de Microbiologie de l'Université Libre de Bruxelles, 1 avenue Emile Gryson, BE1070 Belgium.
| | | | | |
Collapse
|
3
|
Ishdorj G, Graham BA, Hu X, Chen J, Johnston JB, Fang X, Gibson SB. Lysophosphatidic acid protects cancer cells from histone deacetylase (HDAC) inhibitor-induced apoptosis through activation of HDAC. J Biol Chem 2008; 283:16818-29. [PMID: 18408217 DOI: 10.1074/jbc.m710177200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylases (HDACs) catalyze the removal of acetyl groups from histones and contribute to transcriptional repression. In addition, the HDAC inhibitors induce apoptosis in cancer cells through alterations in histone acetylation and activation of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) apoptotic pathway. Lysophosphatidic acid (LPA) is a growth factor that promotes survival of cancer cells through activation of G protein-coupled receptors. Here we show that HDAC inhibitors can induce apoptosis through activation of the TRAIL apoptotic pathway, and LPA prevented HDAC inhibitor-induced apoptosis and increased TRAIL receptor DR4 (death receptor 4) protein expression. This was associated with increased HDAC1 recruitment to the DR4 promoter following LPA treatment and a reduction in HDAC inhibitor-induced histone acetylation in the DR4 promoter. In addition, LPA induces HDAC enzyme activity in a dose- and time-dependent manner, and this is associated with HDAC1 activation and increased binding of HDAC1 to HDAC2. Reducing the expression of HDAC1 significantly lowered LPA-induced HDAC activity and increased histone acetylation. LPA induction of HDAC activity was blocked by the LPA receptor antagonist, Ki16425, or by inhibiting receptor activation with pertussis toxin. Reducing the expression of the LPA receptor LPA(1) also blocked LPA-induced HDAC activation. In addition, LPA reduced histone acetyltransferase enzymatic activity. Finally, LPA attenuated the ability of the HDAC inhibitor to reduce HDAC activity. Thus, LPA enhances survival of cancer cells by increasing HDAC activity and reducing histone acetylation.
Collapse
Affiliation(s)
- Ganchimeg Ishdorj
- Manitoba Institute of Cell Biology, Winnipeg, Manitoba R3E 0V9, Canada
| | | | | | | | | | | | | |
Collapse
|
4
|
Manwani D, Galdass M, Bieker JJ. Altered regulation of beta-like globin genes by a redesigned erythroid transcription factor. Exp Hematol 2007; 35:39-47. [PMID: 17198872 PMCID: PMC1892846 DOI: 10.1016/j.exphem.2006.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/01/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Targeted regulation of beta-like globin genes was studied using designer zinc finger transcription factors containing the DNA binding domain of the red cell specific transcription factor erythroid Kruppel-like factor (EKLF) fused to repression domains. METHODS Globin gene expression was analyzed after introduction of the modified transcription factors into cell lines, embryonic stem cells and transgenic mice. RESULTS As would be predicted, when introduced transiently into cells these transcription factors were effective in repressing the adult beta-globin promoter CACCC element, which is the natural target for EKLF. In murine erythroleukemia cells repression of the adult beta-globin gene was accompanied by a reactivation of the endogenous embryonic betaH1-globin gene. Studies in differentiated embryonic stem cells and transgenic mice confirmed the reactivation of embryonic gene expression during development. CONCLUSION Our studies support a competition model for beta-globin gene expression and underscore the importance of EKLF in the embryonic/fetal-to-adult globin switch. They also demonstrate the feasibility of designer zinc finger transcription factors in the study of transcriptional control mechanisms at the beta-globin locus and as potential gene therapy agents for sickle cell disease and related hemoglobinopathies.
Collapse
Affiliation(s)
- Deepa Manwani
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
5
|
Papworth M, Kolasinska P, Minczuk M. Designer zinc-finger proteins and their applications. Gene 2006; 366:27-38. [PMID: 16298089 DOI: 10.1016/j.gene.2005.09.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/18/2005] [Indexed: 10/25/2022]
Abstract
The Cys(2)His(2) zinc finger is one of the most common DNA-binding motifs in Eukaryota. A simple mode of DNA recognition by the Cys(2)His(2) zinc finger domain provides an ideal scaffold for designing proteins with novel sequence specificities. The ability to bind specifically to virtually any DNA sequence combined with the potential of fusing them with effector domains has led to the technology of engineering of chimeric DNA-modifying enzymes and transcription factors. This in turn has opened the possibility of using the engineered zinc finger-based factors as novel human therapeutics. One such synthetic factor-designer zinc finger transcription activator of the vascular endothelial growth factor A gene-has recently entered clinical trials to evaluate the ability of stimulating the growth of blood vessels in treating the peripheral arterial obstructive disease. This review concentrates on the aspects of natural Cys(2)His(2) zinc fingers evolution and fundamental steps in design of engineered zinc finger proteins. The applications of engineered zinc finger proteins are discussed in a context of the mechanism mediating their effect on the targeted DNA. Furthermore, the regulation of the expression of zinc finger proteins and their targeting to various cellular compartments and to chromatin and non-chromatin target templates are described. Also possible future applications of designer zinc finger proteins are discussed.
Collapse
Affiliation(s)
- Monika Papworth
- MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, UK.
| | | | | |
Collapse
|
6
|
Ranganath RM. Asymmetric cell divisions in flowering plants - one mother, "two-many" daughters. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:425-48. [PMID: 16163608 DOI: 10.1055/s-2005-865899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant development shows a fascinating range of asymmetric cell divisions. Over the years, however, cellular differentiation has been interpreted mostly in terms of a mother cell dividing mitotically to produce two daughter cells of different fates. This popular view has masked the significance of an entirely different cell fate specification pathway, where the mother cell first becomes a coenocyte and then cellularizes to simultaneously produce more than two specialized daughter cells. The "one mother - two different daughters" pathways rely on spindle-assisted mechanisms, such as translocation of the nucleus/spindle to a specific cellular site and orientation of the spindle, which are coordinated with cell-specific allocation of cell fate determinants and cytokinesis. By contrast, during "coenocyte-cellularization" pathways, the spindle-assisted mechanisms are irrelevant since cell fate specification emerges only after the nuclear divisions are complete, and the number of specialized daughter cells produced depends on the developmental context. The key events, such as the formation of a coenocyte and migration of the nuclei to specific cellular locations, are coordinated with cellularization by unique types of cell wall formation. Both one mother - two different daughters and the coenocyte-cellularization pathways are used by higher plants in precise spatial and time windows during development. In both the pathways, epigenetic regulation of gene expression is crucial not only for cell fate specification but also for its maintenance through cell lineage. In this review, the focus is on the coenocyte-cellularization pathways in the context of our current understanding of the asymmetric cell divisions. Instances where cell differentiation does not involve an asymmetric division are also discussed to provide a comprehensive account of cell differentiation.
Collapse
Affiliation(s)
- R M Ranganath
- Cytogenetics and Developmental Biology Laboratory, Department of Botany, Bangalore University, India.
| |
Collapse
|
7
|
Shetty S, Graham BA, Brown JG, Hu X, Vegh-Yarema N, Harding G, Paul JT, Gibson SB. Transcription factor NF-kappaB differentially regulates death receptor 5 expression involving histone deacetylase 1. Mol Cell Biol 2005; 25:5404-16. [PMID: 15964798 PMCID: PMC1156987 DOI: 10.1128/mcb.25.13.5404-5416.2005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transcription factor nuclear factor kappaB (NF-kappaB) regulates the expression of both anti-apoptotic and proapoptotic genes. Death receptor 5 (DR5, TRAIL-R2) is a proapoptotic protein considered to be a potential target for cancer therapy, and its expression is mediated by NF-kappaB. The mechanism of NF-kappaB-induced DR5 expression is, however, unknown. Herein, we determined that etoposide-induced DR5 expression requires the first intronic region of the DR5 gene. Mutation of a putative NF-kappaB binding site in this intron eliminates DR5 promoter activity, as do mutations in the p53 binding site in this region. Reduction in p53 expression also blocks p65 binding to the intronic region of the DR5 gene, indicating cooperation between p53 and p65 in DR5 expression. In contrast, the anti-apoptotic stimulus, epidermal growth factor (EGF), fails to increase DR5 expression but effectively activates NF-kappaB and induces p65 binding to the DR5 gene. EGF, however, induces the association of histone deacetylase 1 (HDAC1) with the DR5 gene, whereas etoposide treatment fails to induce this association. Indeed, HDAC inhibitors activate NF-kappaB and p53 and upregulate DR5 expression. Blockage of DR5 activation decreased HDAC inhibitor-induced apoptosis, and a combination of HDAC inhibitors and TRAIL increased apoptosis. This provides a mechanism for regulating NF-kappaB-mediated DR5 expression and could explain the differential roles NF-kappaB plays in regulating apoptosis.
Collapse
Affiliation(s)
- Shashirekha Shetty
- Manitoba Institute of Cell Biology, University of Manitoba. 675 McDermot Ave., Winnipeg, Manitoba R3E 0V9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hauschild KE, Metzler RE, Arndt HD, Moretti R, Raffaelle M, Dervan PB, Ansari AZ. Temperature-sensitive protein-DNA dimerizers. Proc Natl Acad Sci U S A 2005; 102:5008-13. [PMID: 15781856 PMCID: PMC555971 DOI: 10.1073/pnas.0501289102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Programmable DNA-binding polyamides coupled to short peptides have led to the creation of synthetic artificial transcription factors. A hairpin polyamide-YPWM tetrapeptide conjugate facilitates the binding of a natural transcription factor Exd to an adjacent DNA site. Such small molecules function as protein-DNA dimerizers that stabilize complexes at composite DNA binding sites. Here we investigate the role of the linker that connects the polyamide to the peptide. We find that a substantial degree of variability in the linker length is tolerated at lower temperatures. At physiological temperatures, the longest linker tested confers a "switch"-like property on the protein-DNA dimerizer, in that it abolishes the ability of the YPWM moiety to recruit the natural transcription factor to DNA. These observations provide design principles for future artificial transcription factors that can be externally regulated and can function in concert with the cellular regulatory circuitry.
Collapse
Affiliation(s)
- Karl E Hauschild
- Department of Biochemistry and the Genome Center, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Lund CV, Blancafort P, Popkov M, Barbas CF. Promoter-targeted phage display selections with preassembled synthetic zinc finger libraries for endogenous gene regulation. J Mol Biol 2004; 340:599-613. [PMID: 15210357 DOI: 10.1016/j.jmb.2004.04.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 04/21/2004] [Accepted: 04/22/2004] [Indexed: 11/30/2022]
Abstract
Regulation of endogenous gene expression has been achieved using synthetic zinc finger proteins fused to activation or repression domains, zinc finger transcription factors (TFZFs). Two key aspects of selective gene regulation using TFZFs are the accessibility of a zinc finger protein to its target DNA sequence and the interaction of the fused activation or repression domain with endogenous proteins. Previous work has shown that predicting a biologically active binding site at which a TF(ZF) can control gene expression is not always straightforward. Here, we used a library of preassembled three-finger zinc finger proteins (ZFPs) displayed on filamentous phage, and selected for ZFPs that bound along a 1.4 kb promoter fragment of the human ErbB-2 gene. Following affinity selection by phage display, 13 ZFPs were isolated and sequenced. Transcription factors were prepared by fusion of the zinc finger proteins with a VP64 activation domain or a KRAB repression domain and the transcriptional control imposed by these TFZFs was evaluated using luciferase reporter assays. Endogenous gene regulation activity was studied following retroviral delivery into A431 cells. Additional ZFP characterization included DNaseI footprinting to evaluate the integrity of each predicted protein:DNA interaction. The most promising TFZFs able to both up-regulate and down-regulate ErbB-2 expression were extended to six-finger proteins. The increased affinity and refined specificity demonstrated by the six-finger proteins provided reliable transcriptional control. As a result of studies with the six-finger proteins, the specific region of the promoter most accessible to transcriptional control by VP64-ZFP and KRAB-ZFP fusion proteins was elucidated and confirmed by DNaseI footprinting, flow cytometric analysis and immunofluorescence. The ZFP phage display library strategy disclosed here, coupled with the growing availability of genome sequencing information, provides a route to identifying gene-regulating TFZFs without the prerequisite of well-defined promoter elements.
Collapse
Affiliation(s)
- Caren V Lund
- The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
10
|
Corbi N, Libri V, Onori A, Passananti C. Synthetic zinc finger peptides: old and novel applications. Biochem Cell Biol 2004; 82:428-36. [PMID: 15284895 DOI: 10.1139/o04-047] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the last decade, the efforts in clarifying the interaction between zinc finger proteins and DNA targets strongly stimulated the creativity of scientists in the field of protein engineering. In particular, the versatility and the modularity of zinc finger (ZF) motives make these domains optimal building blocks for generating artificial zinc finger peptides (ZFPs). ZFPs can act as transcription modulators potentially able to control the expression of any desired gene, when fused to an appropriate effector domain. Artificial ZFPs open the possibility to re-program the expression of specific genes at will and can represent a powerful tool in basic science, biotechnology and gene therapy. In this review we will focus on old, novel and possible future applications of artificial ZFPs.Key words: synthetic zinc finger, recognition code, artificial transcription factor, chromatin modification, gene therapy.
Collapse
|
11
|
Libri V, Onori A, Fanciulli M, Passananti C, Corbi N. The artificial zinc finger protein 'Blues' binds the enhancer of the fibroblast growth factor 4 and represses transcription. FEBS Lett 2004; 560:75-80. [PMID: 14988001 DOI: 10.1016/s0014-5793(04)00075-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 12/30/2003] [Accepted: 01/07/2004] [Indexed: 11/17/2022]
Abstract
The design of novel genes encoding artificial transcription factors represents a powerful tool in biotechnology and medicine. We have engineered a new zinc finger-based transcription factor, named Blues, able to bind and possibly to modify the expression of fibroblast growth factor 4 (FGF-4, K-fgf), originally identified as an oncogene. Blues encodes a three zinc finger peptide and was constructed to target the 9 bp DNA sequence: 5'-GTT-TGG-ATG-3', internal to the murine FGF-4 enhancer, in proximity of Sox-2 and Oct-3 DNA binding sites. Our final aim is to generate a model system based on artificial zinc finger genes to study the biological role of FGF-4 during development and tumorigenesis.
Collapse
Affiliation(s)
- V Libri
- Istituto Biologia e Patologia Molecolari, CNR, Viale Marx 43, 00137 Rome, Italy
| | | | | | | | | |
Collapse
|
12
|
Abstract
Transcriptional transactivators are important proteins which in addition to controlling the cell regulatory circuitries, can be manipulated for various biotechnological processes. The latter is of great interest for non-conventional yeasts used for industrial purposes. To facilitate the identification of these transactivators, we have reanalyzed the "Génolevures" data (FEBS Lett. 487 (2000); http://cbi.labri.u-bordeaux.fr/Genolevures/) for the presence of zinc finger (Zf) proteins. After analysis of 239 RST ("random sequence tag") sequences, we describe in this paper 161 homologs of the Saccharomyces cerevisiae Zf proteins present in one or several of 13 different hemiascomyceteous yeasts. These partial sequences have been evaluated on different criteria such as percentage of identity of the proteins, synteny, detailed analysis of the Zf motif and flanking regions, and iterative BLASTs. They can be used to fetch the corresponding gene.
Collapse
Affiliation(s)
- Francoise Bussereau
- Institut de Génétique et Microbiologie (CNRS UMR 8621), Bâtiment 400, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
13
|
Rishi V, Vinson C. Dominant-Negative Mutants of Helix-Loop-Helix Proteins: Transcriptional Inhibition. Methods Enzymol 2003; 370:454-66. [PMID: 14712667 DOI: 10.1016/s0076-6879(03)70039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Vikas Rishi
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2D24, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
14
|
Urnov FD, Rebar EJ. Designed transcription factors as tools for therapeutics and functional genomics. Biochem Pharmacol 2002; 64:919-23. [PMID: 12213587 DOI: 10.1016/s0006-2952(02)01150-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The paucity of tools that control expression of specific genes in vivo represents a major limitation of functional genomics in mammals; most available small-molecule regulators of transcription-e.g. histone deacetylase inhibitors-exert pan-genomic effects. Recent developments in understanding the role of chromatin in regulating the genome, and of protein-DNA interactions have allowed the development of designed transcription factors that regulate specific genes in vivo (Reik et al., Curr Opin Genet Dev 2002;12:233). These proteins contain two modules: (i) a zinc finger protein (ZFP)-based DNA-binding domain (DBD) designed to recognize a specific sequence (for example, a motif in the promoter of a certain gene); (ii) a functional module (for example, a transcriptional activation or repression domain). Recent data describe the use of such designed transcription factors to regulate a variety of clinically relevant gene targets in human cells: these include MDR1, erythropoietin, erbB-2 and erbB-3, VEGF, and PPARgamma. In the case of VEGF (Liu et al., J Biol Chem 2001;276:11323), proportional upregulation by the designed transcription factor of all three distinct splice isoforms generated by this locus was observed, illuminating the utility of endogenous gene control in therapeutic settings (proper isoform ratio is essential for the proangiogenic function of VEGF). In the case of PPARgamma, use of a transcriptional repressor designed to downregulate the expression of two PPARgamma isoforms allowed "mutation-free reverse genetics" analysis that illuminated a unique role for the PPARgamma2 isoform in adipogenesis (Ren et al., Genes Dev 2002;16:27). The ability to selectively activate or repress specific mammalian genes in vivo using designed transcription factors thus has considerable promise in clinical and in basic science settings.
Collapse
Affiliation(s)
- Fyodor D Urnov
- Sangamo Biosciences, Inc., Pt. Richmond Tech. Center, 501 Canal Blvd., Suite A100, Richmond, CA 94804, USA.
| | | |
Collapse
|
15
|
Abstract
Methylation is a major regulator of mammalian genome function in vivo. The methylation of DNA on cytosine residues is a critical component of the host genome defense pathway against the expansion of repetitive DNA and is central to such epigenetic phenomena as monoallelic expression of genes regulated by imprinting and dosage compensation. Deregulation of the DNA methylation pathway leads to aberrant gene repression in cancer and contributes to cell cycle misregulation. Transcriptional repression of methylated DNA loci results from a poorly understood interplay between various chromatin-based regulatory machines, such as histone deacetylases, and auxiliary pathways. Intranuclear protein methylation also has considerable regulatory impact: this includes the function of histone methyltransferases in establishing regions of transcriptionally inert heterochromatin and of protein methyltransferases in mediating transcriptional activation by the nuclear hormone receptors. An important thermodynamic distinction between methylation and many other covalent modifications of intracellular components-e.g., phosphorylation or acetylation-is the relative chemical stability of the methylated form of an amino acid (typically, lysine or arginine) compared with its cognate acetylated form. Thus, a protein, once methylated, may persist in that state. Together with the well characterized role of DNA methylation in long-term ("epigenetic") modes of gene expression, this points to methylation in general as a chemical modification that is associated with enabling stable patterns of genome behavior. Considering the ubiquity of methylation in genome control pathways, it is possible that dietary imbalance affecting methyl-generating pathways may contribute to genome misregulation and disease etiology by affecting the ability of the nucleus to maintain methylation of its components at physiological levels.
Collapse
|