1
|
Majou D. Effects of carbon dioxide on germination of Clostridium botulinum spores. Int J Food Microbiol 2025; 427:110958. [PMID: 39500211 DOI: 10.1016/j.ijfoodmicro.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
Clostridium botulinum is a Gram -positive, strict anaerobic, rod -shaped, spore -forming, SOD -positive and catalase -negative bacterium. Its antioxidant defenses are not suited to chronic oxidative stress. H₂O₂ and reactive oxygen species have deleterious effects on C. botulinum. Spore germination is one of the key steps in its development. However, the mechanisms that trigger this germination have yet to be described. To manage C. botulinum growth, it is essential to understand the mechanisms that underlie the germination process. In this article, a series of complementary cascade reactions with water -dissolved CO₂ as an initiating germinant, and bicarbonate is suggested. It seems clear that ATP production is achieved through the use of various anaplerotic reactions with dissolved CO₂ as the carbon source. In addition to the production of oxaloacetate, an intermediate metabolite pyruvate would also be synthesized. Pyruvate would initiate the second phase of germination by producing hydrogen, which is a powerful reducing agent, via two enzymes (pyruvate -ferredoxin oxidoreductase and ferredoxin hydrogenase). These conditions would activate proteolytic enzymes and would reduce and would break the disulfide bridges of the proteins that make up the spore coats, thereby opening them. Thus, the phosphoenolpyruvate -pyruvate -acetyl -CoA pathway, in the presence of CO₂, would play a major role in the germination of spores of C. botulinum.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, rue de Bercy, 75595 Paris Cedex 12, France.
| |
Collapse
|
2
|
Nascimento JF, Souza ROO, Alencar MB, Marsiccobetre S, Murillo AM, Damasceno FS, Girard RBMM, Marchese L, Luévano-Martinez LA, Achjian RW, Haanstra JR, Michels PAM, Silber AM. How much (ATP) does it cost to build a trypanosome? A theoretical study on the quantity of ATP needed to maintain and duplicate a bloodstream-form Trypanosoma brucei cell. PLoS Pathog 2023; 19:e1011522. [PMID: 37498954 PMCID: PMC10409291 DOI: 10.1371/journal.ppat.1011522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/08/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
ATP hydrolysis is required for the synthesis, transport and polymerization of monomers for macromolecules as well as for the assembly of the latter into cellular structures. Other cellular processes not directly related to synthesis of biomass, such as maintenance of membrane potential and cellular shape, also require ATP. The unicellular flagellated parasite Trypanosoma brucei has a complex digenetic life cycle. The primary energy source for this parasite in its bloodstream form (BSF) is glucose, which is abundant in the host's bloodstream. Here, we made a detailed estimation of the energy budget during the BSF cell cycle. As glycolysis is the source of most produced ATP, we calculated that a single parasite produces 6.0 x 1011 molecules of ATP/cell cycle. Total biomass production (which involves biomass maintenance and duplication) accounts for ~63% of the total energy budget, while the total biomass duplication accounts for the remaining ~37% of the ATP consumption, with in both cases translation being the most expensive process. These values allowed us to estimate a theoretical YATP of 10.1 (g biomass)/mole ATP and a theoretical [Formula: see text] of 28.6 (g biomass)/mole ATP. Flagellar motility, variant surface glycoprotein recycling, transport and maintenance of transmembrane potential account for less than 30% of the consumed ATP. Finally, there is still ~5.5% available in the budget that is being used for other cellular processes of as yet unknown cost. These data put a new perspective on the assumptions about the relative energetic weight of the processes a BSF trypanosome undergoes during its cell cycle.
Collapse
Affiliation(s)
- Janaina F. Nascimento
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Rodolpho O. O. Souza
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Mayke B. Alencar
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Sabrina Marsiccobetre
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Ana M. Murillo
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Flávia S. Damasceno
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Richard B. M. M. Girard
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Letícia Marchese
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Luis A. Luévano-Martinez
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Renan W. Achjian
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Jurgen R. Haanstra
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul A. M. Michels
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| |
Collapse
|
3
|
Competing constraints shape the nonequilibrium limits of cellular decision-making. Proc Natl Acad Sci U S A 2023; 120:e2211203120. [PMID: 36862689 PMCID: PMC10013869 DOI: 10.1073/pnas.2211203120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Gene regulation is central to cellular function. Yet, despite decades of work, we lack quantitative models that can predict how transcriptional control emerges from molecular interactions at the gene locus. Thermodynamic models of transcription, which assume that gene circuits operate at equilibrium, have previously been employed with considerable success in the context of bacterial systems. However, the presence of ATP-dependent processes within the eukaryotic transcriptional cycle suggests that equilibrium models may be insufficient to capture how eukaryotic gene circuits sense and respond to input transcription factor concentrations. Here, we employ simple kinetic models of transcription to investigate how energy dissipation within the transcriptional cycle impacts the rate at which genes transmit information and drive cellular decisions. We find that biologically plausible levels of energy input can lead to significant gains in how rapidly gene loci transmit information but discover that the regulatory mechanisms underlying these gains change depending on the level of interference from noncognate activator binding. When interference is low, information is maximized by harnessing energy to push the sensitivity of the transcriptional response to input transcription factors beyond its equilibrium limits. Conversely, when interference is high, conditions favor genes that harness energy to increase transcriptional specificity by proofreading activator identity. Our analysis further reveals that equilibrium gene regulatory mechanisms break down as transcriptional interference increases, suggesting that energy dissipation may be indispensable in systems where noncognate factor interference is sufficiently large.
Collapse
|
4
|
Gillen AE, Fu R, Riemondy KA, Jager J, Fang B, Lazar MA, Martin SL. Liver Transcriptome Dynamics During Hibernation Are Shaped by a Shifting Balance Between Transcription and RNA Stability. Front Physiol 2021; 12:662132. [PMID: 34093224 PMCID: PMC8176218 DOI: 10.3389/fphys.2021.662132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Hibernators dramatically lower metabolism to save energy while fasting for months. Prolonged fasting challenges metabolic homeostasis, yet small-bodied hibernators emerge each spring ready to resume all aspects of active life, including immediate reproduction. The liver is the body's metabolic hub, processing and detoxifying macromolecules to provide essential fuels to brain, muscle and other organs throughout the body. Here we quantify changes in liver gene expression across several distinct physiological states of hibernation in 13-lined ground squirrels, using RNA-seq to measure the steady-state transcriptome and GRO-seq to measure transcription for the first time in a hibernator. Our data capture key timepoints in both the seasonal and torpor-arousal cycles of hibernation. Strong positive correlation between transcription and the transcriptome indicates that transcriptional control dominates the known seasonal reprogramming of metabolic gene expression in liver for hibernation. During the torpor-arousal cycle, however, discordance develops between transcription and the steady-state transcriptome by at least two mechanisms: 1) although not transcribed during torpor, some transcripts are unusually stable across the torpor bout; and 2) unexpectedly, on some genes, our data suggest continuing, slow elongation with a failure to terminate transcription across the torpor bout. While the steady-state RNAs corresponding to these read through transcripts did not increase during torpor, they did increase shortly after rewarming despite their simultaneously low transcription. Both of these mechanisms would assure the immediate availability of functional transcripts upon rewarming. Integration of transcriptional, post-transcriptional and RNA stability control mechanisms, all demonstrated in these data, likely initiate a serial gene expression program across the short euthermic period that restores the tissue and prepares the animal for the next bout of torpor.
Collapse
Affiliation(s)
- Austin E. Gillen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kent A. Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jennifer Jager
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Genetics, and The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bin Fang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Genetics, and The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mitchell A. Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Genetics, and The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sandra L. Martin
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
5
|
Tomko EJ, Galburt EA. Single-molecule approach for studying RNAP II transcription initiation using magnetic tweezers. Methods 2019; 159-160:35-44. [PMID: 30898685 DOI: 10.1016/j.ymeth.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 11/19/2022] Open
Abstract
The initiation of transcription underlies the ability of cells to modulate genome expression as a function of both internal and external signals and the core process of initiation has features that are shared across all domains of life. Specifically, initiation can be sub-divided into promoter recognition, promoter opening, and promoter escape. However, the molecular players and mechanisms used are significantly different in Eukaryotes and Bacteria. In particular, bacterial initiation requires only the formation of RNA polymerase (RNAP) holoenzyme and proceeds as a series of spontaneous conformational changes while eukaryotic initiation requires the formation of the 31-subunit pre-initiation complex (PIC) and often requires ATP hydrolysis by the Ssl2/XPB subunit of the general transcription factor TFIIH. Our mechanistic view of this process in Eukaryotes has recently been improved through a combination of structural and single-molecule approaches which are providing a detailed picture of the structural dynamics that lead to the production of an elongation competent RNAP II and thus, an RNA transcript. Here we provide the methodological details of our single-molecule magnetic tweezers studies of transcription initiation using purified factors from Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Eric J Tomko
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Eric A Galburt
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, United States.
| |
Collapse
|
6
|
Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: Focus on mitochondria. Front Neuroendocrinol 2018; 49:72-85. [PMID: 29339091 PMCID: PMC5964020 DOI: 10.1016/j.yfrne.2018.01.001] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
Energy is required to sustain life and enable stress adaptation. At the cellular level, energy is largely derived from mitochondria - unique multifunctional organelles with their own genome. Four main elements connect mitochondria to stress: (1) Energy is required at the molecular, (epi)genetic, cellular, organellar, and systemic levels to sustain components of stress responses; (2) Glucocorticoids and other steroid hormones are produced and metabolized by mitochondria; (3) Reciprocally, mitochondria respond to neuroendocrine and metabolic stress mediators; and (4) Experimentally manipulating mitochondrial functions alters physiological and behavioral responses to psychological stress. Thus, mitochondria are endocrine organelles that provide both the energy and signals that enable and direct stress adaptation. Neural circuits regulating social behavior - as well as psychopathological processes - are also influenced by mitochondrial energetics. An integrative view of stress as an energy-driven process opens new opportunities to study mechanisms of adaptation and regulation across the lifespan.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University, Medical Center, New York, NY 10032, USA; Department of Neurology, The H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032, USA; Columbia Aging Center, Columbia University, New York, NY 10032, USA.
| | - Bruce S McEwen
- Laboratory for Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - Elissa S Epel
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Fishburn J, Galburt E, Hahn S. Transcription Start Site Scanning and the Requirement for ATP during Transcription Initiation by RNA Polymerase II. J Biol Chem 2016; 291:13040-7. [PMID: 27129284 DOI: 10.1074/jbc.m116.724583] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Indexed: 01/13/2023] Open
Abstract
Saccharomyces cerevisiae RNA polymerase (Pol) II locates transcription start sites (TSS) at TATA-containing promoters by scanning sequences downstream from the site of preinitiation complex formation, a process that involves the translocation of downstream promoter DNA toward Pol II. To investigate a potential role of yeast Pol II transcription in TSS scanning, HIS4 promoter derivatives were generated that limited transcripts in the 30-bp scanned region to two nucleotides in length. Although we found that TSS scanning does not require RNA synthesis, our results revealed that transcription in the purified yeast basal system is largely ATP-independent despite a requirement for the TFIIH DNA translocase subunit Ssl2. This result is rationalized by our finding that, although they are poorer substrates, UTP and GTP can also be utilized by Ssl2. ATPγS is a strong inhibitor of rNTP-fueled translocation, and high concentrations of ATPγS make transcription completely dependent on added dATP. Limiting Pol II function with low ATP concentrations shifted the TSS position downstream. Combined with prior work, our results show that Pol II transcription plays an important role in TSS selection but is not required for the scanning reaction.
Collapse
Affiliation(s)
- James Fishburn
- From the Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 and
| | - Eric Galburt
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Steven Hahn
- From the Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 and
| |
Collapse
|
8
|
Sidaway-Lee K, Costa MJ, Rand DA, Finkenstadt B, Penfield S. Direct measurement of transcription rates reveals multiple mechanisms for configuration of the Arabidopsis ambient temperature response. Genome Biol 2014; 15:R45. [PMID: 24580780 PMCID: PMC4053849 DOI: 10.1186/gb-2014-15-3-r45] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sensing and responding to ambient temperature is important for controlling growth and development of many organisms, in part by regulating mRNA levels. mRNA abundance can change with temperature, but it is unclear whether this results from changes in transcription or decay rates, and whether passive or active temperature regulation is involved. RESULTS Using a base analog labelling method, we directly measured the temperature coefficient, Q10, of mRNA synthesis and degradation rates of the Arabidopsis transcriptome. We show that for most genes, transcript levels are buffered against passive increases in transcription rates by balancing passive increases in the rate of decay. Strikingly, for temperature-responsive transcripts, increasing temperature raises transcript abundance primarily by promoting faster transcription relative to decay and not vice versa, suggesting a global transcriptional process exists that controls mRNA abundance by temperature. This is partly accounted for by gene body H2A.Z which is associated with low transcription rate Q10, but is also influenced by other marks and transcription factor activities. CONCLUSIONS Our data show that less frequent chromatin states can produce temperature responses simply by virtue of their rarity and the difference between their thermal properties and those of the most common states, and underline the advantages of directly measuring transcription rate changes in dynamic systems, rather than inferring rates from changes in mRNA abundance.
Collapse
|
9
|
Čabart P, Luse DS. Inactivated RNA polymerase II open complexes can be reactivated with TFIIE. J Biol Chem 2011; 287:961-7. [PMID: 22119917 DOI: 10.1074/jbc.m111.297572] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcript initiation by RNA polymerase II (pol II) requires a helicase within TFIIH to generate the unpaired template strand. However, pol II preinitiation complexes (PICs) lose the ability to synthesize RNA very rapidly upon exposure to ATP alone in the absence of other NTPs. This inactivation is not caused by the TFIIH kinase activity, the loss of transcription factors or pol II from the PIC, or the collapse of the initially formed transcription bubble. TFIIE is necessary for PIC formation, but TFIIE is not retained as a stable component in PICs prepared by our protocol. Nevertheless, activity can be at least partially restored to ATP-treated PICs by the readdition of TFIIE. PICs formed on premelted (bubble) templates require TFIIH for effective transcript elongation to +20. Incubation of bubble template PICs with ATP caused reduced yields of 20-mers, but this effect was partially reversed by the addition of TFIIE. Our results suggest that once the open complex is formed, TFIIH decays into an inactive configuration in the absence of nucleotides for transcription. Although TFIIE does not play a role in transcript initiation itself, inactivation resulting from ATP preincubation can be reversed by a remodeling process mediated by TFIIE. Finally, we have also uncovered a major role for TFIIF in the earliest stages of transcript elongation that is unique to bubble templates.
Collapse
Affiliation(s)
- Pavel Čabart
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
10
|
Architecture of the yeast RNA polymerase II open complex and regulation of activity by TFIIF. Mol Cell Biol 2011; 32:12-25. [PMID: 22025674 DOI: 10.1128/mcb.06242-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the function and architecture of the open complex state of RNA polymerase II (Pol II), Saccharomyces cerevisiae minimal open complexes were assembled by using a series of heteroduplex HIS4 promoters, TATA binding protein (TBP), TFIIB, and Pol II. The yeast system demonstrates great flexibility in the position of active open complexes, spanning 30 to 80 bp downstream from TATA, consistent with the transcription start site scanning behavior of yeast Pol II. TFIIF unexpectedly modulates the activity of the open complexes, either repressing or stimulating initiation. The response to TFIIF was dependent on the sequence of the template strand within the single-stranded bubble. Mutations in the TFIIB reader and linker region, which were inactive on duplex DNA, were suppressed by the heteroduplex templates, showing that a major function of the TFIIB reader and linker is in the initiation or stabilization of single-stranded DNA. Probing of the architecture of the minimal open complexes with TFIIB-FeBABE [TFIIB-p-bromoacetamidobenzyl-EDTA-iron(III)] derivatives showed that the TFIIB core domain is surprisingly positioned away from Pol II, and the addition of TFIIF repositions the TFIIB core domain to the Pol II wall domain. Together, our results show an unexpected architecture of minimal open complexes and the regulation of activity by TFIIF and the TFIIB core domain.
Collapse
|
11
|
Liu X, Bushnell DA, Silva DA, Huang X, Kornberg RD. Initiation complex structure and promoter proofreading. Science 2011; 333:633-7. [PMID: 21798951 DOI: 10.1126/science.1206629] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The initiation of transcription by RNA polymerase II is a multistage process. X-ray crystal structures of transcription complexes containing short RNAs reveal three structural states: one with 2- and 3-nucleotide RNAs, in which only the 3'-end of the RNA is detectable; a second state with 4- and 5-nucleotide RNAs, with an RNA-DNA hybrid in a grossly distorted conformation; and a third state with RNAs of 6 nucleotides and longer, essentially the same as a stable elongating complex. The transition from the first to the second state correlates with a markedly reduced frequency of abortive initiation. The transition from the second to the third state correlates with partial "bubble collapse" and promoter escape. Polymerase structure is permissive for abortive initiation, thereby setting a lower limit on polymerase-promoter complex lifetime and allowing the dissociation of nonspecific complexes. Abortive initiation may be viewed as promoter proofreading, and the structural transitions as checkpoints for promoter control.
Collapse
Affiliation(s)
- Xin Liu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
12
|
Pal M, Ponticelli AS, Luse DS. The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. Mol Cell 2005; 19:101-10. [PMID: 15989968 DOI: 10.1016/j.molcel.2005.05.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Revised: 04/20/2005] [Accepted: 05/19/2005] [Indexed: 11/27/2022]
Abstract
We have studied promoter clearance at a series of RNA polymerase II promoters with varying spacing of the TATA box and start site. We find that regardless of promoter spacing, the upstream edge of the transcription bubble forms 20 bp from TATA. The bubble expands downstream until 18 bases are unwound and the RNA is at least 7 nt long, at which point the upstream approximately 8 bases of the bubble abruptly reanneal (bubble collapse). If either bubble size or transcript length is insufficient, bubble collapse cannot occur. Bubble collapse coincides with the end of the requirement for the TFIIH helicase for efficient transcript elongation. We also provide evidence that bubble collapse suppresses pausing at +7 to +9 caused by the presence of the B finger segment of TFIIB within the complex. Our results indicate that bubble collapse defines the RNA polymerase II promoter clearance transition.
Collapse
Affiliation(s)
- Mahadeb Pal
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
13
|
Lin YC, Gralla JD. Stimulation of the XPB ATP-dependent helicase by the beta subunit of TFIIE. Nucleic Acids Res 2005; 33:3072-81. [PMID: 15917439 PMCID: PMC1140373 DOI: 10.1093/nar/gki623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/11/2005] [Accepted: 05/11/2005] [Indexed: 11/13/2022] Open
Abstract
TFIIE and TFIIH are essential for the promoter opening and escape that occurs as RNA polymerase II transits into early elongation. XPB, a subunit of TFIIH, contains an ATP-dependent helicase activity that is used in both of these processes. Here, we show that the smaller beta subunit of TFIIE stimulates the XPB helicase and ATPase activities. The larger alpha subunit can use its known inhibitory activity to moderate the stimulation by the beta subunit. Regions of TFIIE beta required for the helicase stimulation were identified. Mutants were constructed that are defective in stimulating the XPB helicase but still allow intact TFIIE to bind and recruit XPB and TFIIH to form the pre-initiation complex. In a test for the functional significance of the stimulatory effect of TFIIE beta, these mutant forms of TFIIE were shown to be defective in a transcription assay on linear DNA. The data suggest that the beta subunit of TFIIE is an ATPase and helicase co-factor that can assist the XPB subunit of TFIIH during transcription initiation and the transition to early elongation, enhancing the potential diversity of regulatory targets.
Collapse
Affiliation(s)
- Yin C. Lin
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California Los AngelesLos Angeles, CA 90095-1569, USA
| | - Jay D. Gralla
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California Los AngelesLos Angeles, CA 90095-1569, USA
| |
Collapse
|
14
|
Guo Q, Sousa R. Multiple roles for the T7 promoter nontemplate strand during transcription initiation and polymerase release. J Biol Chem 2004; 280:3474-82. [PMID: 15561715 DOI: 10.1074/jbc.m412287200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription initiation begins with recruitment of an RNA polymerase to a promoter. Polymerase-promoter interactions are retained until the nascent RNA is extended to 8-12 nucleotides. It has been proposed that accumulation of "strain" in the transcription complex and RNA displacement of promoter-polymerase interactions contribute to releasing the polymerase from the promoter, and it has been further speculated that too strong a promoter interaction can inhibit the release step, whereas a weak interaction may facilitate release. We examined the effects of partial deletion of the nontemplate strand on release of T7 RNA polymerase from the T7 promoter. T7 polymerase will initiate from such partially single-stranded promoters but binds them with higher affinity than duplex promoters. We found that release on partially single-stranded promoters is strongly inhibited. The inhibition of release is not due to an indirect effect on transcription complex structure or loss of specific polymerase-nontemplate strand interactions, because release on partially single-stranded templates is recovered if the interaction with the promoter is weakened by a promoter base substitution. This same substitution also appears to allow the polymerase to escape more readily from a duplex promoter. Our results further suggest that template-nontemplate strand reannealing drives dissociation of abortive transcripts during initial transcription and that loss of interactions with either the nontemplate strand or duplex DNA downstream of the RNA lead to increased transcription complex slippage during initiation.
Collapse
Affiliation(s)
- Qing Guo
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
15
|
Choi WS, Lin YC, Gralla JD. The Schizosaccharomyces pombe open promoter bubble: mammalian-like arrangement and properties. J Mol Biol 2004; 340:981-9. [PMID: 15236961 DOI: 10.1016/j.jmb.2004.04.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 04/23/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is often used as a genetic system to model processes that apply to higher cells. Here S.pombe was used to study promoter DNA opening and transcription initiation by RNA polymerase II. The melted region within the adh promoter is about 20 bp in size and has the start site near its center. This arrangement is similar to that at the AdML promoter but different from that in Saccharomyces cerevisiae. Although expression of human TFIIB shifts the start site to the nearby human position, it does not change the location of the bubble. The start site shift is directed by the C terminus of human TFIIB, in contrast to expectations from S.cerevisiae. The creation of the bubble requires the ATPase motifs of XPB. Overall, the data show that promoter melting and initiation in fission yeast is much more similar to humans than to budding yeast.
Collapse
Affiliation(s)
- Wai S Choi
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, P.O. Box 951569, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
16
|
Forget D, Langelier MF, Thérien C, Trinh V, Coulombe B. Photo-cross-linking of a purified preinitiation complex reveals central roles for the RNA polymerase II mobile clamp and TFIIE in initiation mechanisms. Mol Cell Biol 2004; 24:1122-31. [PMID: 14729958 PMCID: PMC321454 DOI: 10.1128/mcb.24.3.1122-1131.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 11/03/2003] [Indexed: 11/20/2022] Open
Abstract
The topological organization of a TATA binding protein-TFIIB-TFIIF-RNA polymerase II (RNAP II)-TFIIE-promoter complex was analyzed using site-specific protein-DNA photo-cross-linking of gel-purified complexes. The cross-linking results for the subunits of RNAP II were used to determine the path of promoter DNA against the structure of the enzyme. The results indicate that promoter DNA wraps around the mobile clamp of RNAP II. Cross-linking of TFIIF and TFIIE both upstream of the TATA element and downstream of the transcription start site suggests that both factors associate with the RNAP II mobile clamp. TFIIE alpha closely approaches promoter DNA at nucleotide -10, a position immediately upstream of the transcription bubble in the open complex. Increased stimulation of transcription initiation by TFIIE alpha is obtained when the DNA template is artificially premelted in the -11/-1 region, suggesting that TFIIE alpha facilitates open complex formation, possibly through its interaction with the upstream end of the partially opened transcription bubble. These results support the central roles of the mobile clamp of RNAP II and TFIIE in transcription initiation.
Collapse
Affiliation(s)
- Diane Forget
- Laboratory of Gene Transcription, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada H2W 1R7
| | | | | | | | | |
Collapse
|
17
|
Spitalny P, Thomm M. Analysis of the open region and of DNA-protein contacts of archaeal RNA polymerase transcription complexes during transition from initiation to elongation. J Biol Chem 2003; 278:30497-505. [PMID: 12783891 DOI: 10.1074/jbc.m303633200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The archaeal transcriptional machinery is polymerase II (pol II)-like but does not require ATP or TFIIH for open complex formation. We have used enzymatic and chemical probes to follow the movement of Pyrococcus RNA polymerase (RNAP) along the glutamate dehydrogenase gene during transcription initiation and transition to elongation. RNAP was stalled between registers +5 and +20 using C-minus cassettes. The upstream edge of RNAP was in close contact with the archaeal transcription factors TATA box-binding protein/transcription factor B in complexes stalled at position +5. Movement of the downstream edge of the RNAP was not detected by exonuclease III footprinting until register +8. A first structural transition characterized by movement of the upstream edge of RNAP was observed at registers +6/+7. A major transition was observed at registers +10/+11. In complexes stalled at these positions also the downstream edge of RNA polymerase started translocation, and reclosure of the initially open complex occurred indicating promoter clearance. Between registers +11 and +20 both RNAP and transcription bubble moved synchronously with RNA synthesis. The distance of the catalytic center to the front edge of the exo III footprint was approximately 12 nucleotides in all registers. The size of the RNA-DNA hybrid in an early archaeal elongation complex was estimated between 9 and 12 nucleotides. For complexes stalled between positions +10 and +20 the size of the transcription bubble was around 17 nucleotides. This study shows characteristic mechanistic properties of the archaeal system and also similarities to prokaryotic RNAP and pol II.
Collapse
Affiliation(s)
- Patrizia Spitalny
- Universität Kiel, Institut für Allgemeine Mikrobiologie, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | | |
Collapse
|
18
|
Blume SW, Meng Z, Shrestha K, Snyder RC, Emanuel PD. The 5'-untranslated RNA of the human dhfr minor transcript alters transcription pre-initiation complex assembly at the major (core) promoter. J Cell Biochem 2003; 88:165-80. [PMID: 12461786 DOI: 10.1002/jcb.10326] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The human dhfr minor transcript is distinguished from the predominant dhfr mRNA by an approximately 400 nucleotide extension of the 5'-untranslated region, which corresponds to the major (core) promoter DNA (its template). Based on its unusual sequence composition, we hypothesized that the minor transcript 5'-UTR might be capable of altering transcription pre-initiation complex assembly at the core promoter, through direct interactions of the RNA with specific regulatory polypeptides or the promoter DNA itself. We found that the minor transcript 5'-UTR selectively sequesters transcription factor Sp3, and to a lesser extent Sp1, preventing their binding to the dhfr core promoter. This allows a third putative transcriptional regulatory protein, which is relatively resistant to sequestration by the minor transcript RNA, the opportunity to bind the dhfr core promoter. The selective sequestration of Sp3 > Sp1 by the minor transcript 5'-UTR involves an altered conformation of the RNA, and a structural domain of the protein distinct from that required for binding to DNA. As a consequence, the minor transcript 5'-UTR inhibits transcription from the core promoter in vitro (in trans) in a concentration-dependent manner. These results suggest that the dhfr minor transcript may function in vivo (in cis) to regulate the transcriptional activity of the major (core) promoter.
Collapse
Affiliation(s)
- Scott W Blume
- Department of Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
19
|
Hausner W, Thomm M. Events during initiation of archaeal transcription: open complex formation and DNA-protein interactions. J Bacteriol 2001; 183:3025-31. [PMID: 11325929 PMCID: PMC95201 DOI: 10.1128/jb.183.10.3025-3031.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription in Archaea is initiated by association of a TATA box binding protein (TBP) with a TATA box. This interaction is stabilized by the binding of the transcription factor IIB (TFIIB) orthologue TFB. We show here that the RNA polymerase of the archaeon Methanococcus, in contrast to polymerase II, does not require hydrolysis of the beta-gamma bond of ATP for initiation of transcription and open complex formation on linearized DNA. Permanganate probing revealed that the archaeal open complex spanned at least the DNA region from -11 to -1 at a tRNA(Val) promoter. The Methanococcus TBP-TFB promoter complex protected the DNA region from -40 to -14 on the noncoding DNA strand and the DNA segment from -36 to -17 on the coding DNA strand from DNase I digestion. This DNase I footprint was extended only to the downstream end by the addition of the RNA polymerase to position +17 on the noncoding strand and to position +13 on the coding DNA strand.
Collapse
Affiliation(s)
- W Hausner
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Federal Republic of Germany
| | | |
Collapse
|
20
|
Liu J, Akoulitchev S, Weber A, Ge H, Chuikov S, Libutti D, Wang XW, Conaway JW, Harris CC, Conaway RC, Reinberg D, Levens D. Defective interplay of activators and repressors with TFIH in xeroderma pigmentosum. Cell 2001; 104:353-63. [PMID: 11239393 DOI: 10.1016/s0092-8674(01)00223-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inherited mutations of the TFIIH helicase subunits xeroderma pigmentosum (XP) B or XPD yield overlapping DNA repair and transcription syndromes. The high risk of cancer in these patients is not fully explained by the repair defect. The transcription defect is subtle and has proven more difficult to evaluate. Here, XPB and XPD mutations are shown to block transcription activation by the FUSE Binding Protein (FBP), a regulator of c-myc expression, and repression by the FBP Interacting Repressor (FIR). Through TFIIH, FBP facilitates transcription until promoter escape, whereas after initiation, FIR uses TFIIH to delay promoter escape. Mutations in TFIIH that impair regulation by FBP and FIR affect proper regulation of c-myc expression and have implications in the development of malignancy.
Collapse
Affiliation(s)
- J Liu
- Gene Regulation Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Kugel JF, Goodrich JA. A kinetic model for the early steps of RNA synthesis by human RNA polymerase II. J Biol Chem 2000; 275:40483-91. [PMID: 10982810 DOI: 10.1074/jbc.m006401200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic mRNA synthesis is a highly regulated process involving numerous proteins acting in concert with RNA polymerase II to set levels of transcription from individual promoters. The transcription reaction consists of multiple steps beginning with preinitiation complex formation and ending in the production of a full-length primary transcript. We used pre-steady-state approaches to study the steps of human mRNA transcription at the adenovirus major late promoter in a minimal in vitro transcription system. These kinetic studies revealed an early transition in RNA polymerase II transcription, termed escape commitment, that occurs after initiation and prior to promoter escape. Escape commitment is rapid and is characterized by sensitivity to competitor DNA. Upon completion of escape commitment, ternary complexes are resistant to challenge by competitor DNA and slowly proceed forward through promoter escape. Escape commitment is stimulated by transcription factors TFIIE and TFIIH. We measured forward and reverse rate constants for discrete steps in transcription and present a kinetic model for the mechanism of RNA polymerase II transcription that describes five distinct steps (preinitiation complex formation, initiation, escape commitment, promoter escape, and transcript elongation) and clearly shows promoter escape is rate-limiting in this system.
Collapse
Affiliation(s)
- J F Kugel
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0215, USA
| | | |
Collapse
|
23
|
Douziech M, Coin F, Chipoulet JM, Arai Y, Ohkuma Y, Egly JM, Coulombe B. Mechanism of promoter melting by the xeroderma pigmentosum complementation group B helicase of transcription factor IIH revealed by protein-DNA photo-cross-linking. Mol Cell Biol 2000; 20:8168-77. [PMID: 11027286 PMCID: PMC86426 DOI: 10.1128/mcb.20.21.8168-8177.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p89/xeroderma pigmentosum complementation group B (XPB) ATPase-helicase of transcription factor IIH (TFIIH) is essential for promoter melting prior to transcription initiation by RNA polymerase II (RNAPII). By studying the topological organization of the initiation complex using site-specific protein-DNA photo-cross-linking, we have shown that p89/XPB makes promoter contacts both upstream and downstream of the initiation site. The upstream contact, which is in the region where promoter melting occurs (positions -9 to +2), requires tight DNA wrapping around RNAPII. The addition of hydrolyzable ATP tethers the template strand at positions -5 and +1 to RNAPII subunits. A mutation in p89/XPB found in a xeroderma pigmentosum patient impairs the ability of TFIIH to associate correctly with the complex and thereby melt promoter DNA. A model for open complex formation is proposed.
Collapse
Affiliation(s)
- M Douziech
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Ribosomal RNA transcription initiation requires the melting of DNA to form an open complex, formation of the first few phosphodiester bonds, commencement of RNA polymerase I movement along the DNA, clearance of the promoter, and the formation of a steady-state ternary elongation complex. We examined DNA melting and promoter clearance by using potassium permanganate, diethylpyrocarbonate and methidiumpropylEDTA.Fe(II) footprinting. In combination, these methods demonstrated: (1) TIF-IB and RNA polymerase I are the only proteins required for formation of an initial approximately 9 base-pair open promoter region. This finding contradicts earlier results using diethylpyrocarbonate alone, which suggested an RNA synthesis requirement for stable melting. (2) DNA melting is temperature-dependent, with a tm between 15 and 20 degrees C. (3) Temperature-dependency of melting, as well as stalling the polymerase at sites close to the transcription start site revealed that the melted DNA region initially opens upstream of the transcription initiation site, and enlarges in a downstream direction coordinate with initiation, eventually attaining a steady-state transcription bubble of approximately 19 base-pairs. (4) The RNA-DNA hybrid protects the template DNA from single-strand footprinting reagents. The hybrid is 9 bp in length, consistent with the longer hybrid estimated by some for the Escherichia coli polymerase and with the hybrids estimated for eukaryotic polymerases II and III.
Collapse
Affiliation(s)
- B F Kahl
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523-1870, USA
| | | | | |
Collapse
|
25
|
Yan M, Gralla JD. The use of ATP and initiating nucleotides during postrecruitment steps at the activated adenovirus E4 promoter. J Biol Chem 1999; 274:34819-24. [PMID: 10574953 DOI: 10.1074/jbc.274.49.34819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Permanganate probing has been used to follow the progress and ATP dependence of promoter opening during activated adenovirus E4 initiation and clearance. Using templates designed to restrict synthesis to defined positions, formation of a 3-nucleotide-long RNA was found to be sufficient to trigger expansion of the initial transcription bubble. This occurred by a discrete transition that expanded the downstream limit of melting from position 1 to 15. Subsequent clearance of the bubble from the promoter region also occurred without detectable intermediates. Thus, initial opening, extension, and the clearance of the promoter bubble appear to occur as discrete, unique transitions. The apparent K(m) values for these three steps were determined to be near 5, 9, and 50 microM, respectively. Comparison of these values with ATPase activities within known transcription factors raises the possibility that different activities could be responsible for each step.
Collapse
Affiliation(s)
- M Yan
- Department of Chemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
26
|
Moreland RJ, Tirode F, Yan Q, Conaway JW, Egly JM, Conaway RC. A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II. J Biol Chem 1999; 274:22127-30. [PMID: 10428772 DOI: 10.1074/jbc.274.32.22127] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIH is an RNA polymerase II transcription factor that performs ATP-dependent functions in both transcription initiation, where it catalyzes formation of the open complex, and in promoter escape, where it suppresses arrest of the early elongation complex at promoter-proximal sites. TFIIH possesses three known ATP-dependent activities: a 3' --> 5' DNA helicase catalyzed by its XPB subunit, a 5' --> 3' DNA helicase catalyzed by its XPD subunit, and a carboxyl-terminal domain (CTD) kinase activity catalyzed by its CDK7 subunit. In this report, we exploit TFIIH mutants to investigate the contributions of TFIIH DNA helicase and CTD kinase activities to efficient promoter escape by RNA polymerase II in a minimal transcription system reconstituted with purified polymerase and general initiation factors. Our findings argue that the TFIIH XPB DNA helicase is primarily responsible for preventing premature arrest of early elongation intermediates during exit of polymerase from the promoter.
Collapse
Affiliation(s)
- R J Moreland
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
27
|
Conaway JW, Dvir A, Moreland RJ, Yan Q, Elmendorf BJ, Tan S, Conaway RC. Mechanism of promoter escape by RNA polymerase II. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:357-64. [PMID: 10384300 DOI: 10.1101/sqb.1998.63.357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J W Conaway
- Howard Hughes Medical Institute, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Frit P, Bergmann E, Egly JM. Transcription factor IIH: a key player in the cellular response to DNA damage. Biochimie 1999; 81:27-38. [PMID: 10214907 DOI: 10.1016/s0300-9084(99)80035-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
TFIIH (transcription factor IIH) is a multiprotein complex consisting of nine subunits initially characterized as a basal transcription factor required for initiation of protein-coding RNA synthesis. TFIIH was the first transcription factor shown to harbor several enzymatic activities, likely indicative of functional complexity. This intricacy was further emphasized with the cloning of the genes encoding the different subunits which disclosed direct connections between transcription, DNA repair and cell cycle regulation. In this review, we emphasize those functions of TFIIH involved in DNA repair, as well as their relationship to TFIIH's roles in transcription, cell cycle control and apoptosis. These connections may prove to be essential for the cellular response to DNA damage.
Collapse
Affiliation(s)
- P Frit
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université Louis-Pasteur, Strasbourg, Illkirch, France
| | | | | |
Collapse
|
29
|
Abstract
The rate-limiting step in transcriptional initiation typically is opening the promoter DNA to expose the template strand. Opening is tightly regulated, but how it occurs is not known. These experiments identify an activity, recognition of specific DNA fork junctions, and suggest that it is critical to bacterial promoter opening. This activity is both sequence and structure specific; it recognizes the bases that constitute the upstream double-stranded/single-stranded boundary of the open complex. Promoter mutations known to reduce opening rates lead to comparable reductions in fork junction binding affinity. The activity acts to establish the upstream boundary of melted DNA and works in conjunction with two single-stranded DNA binding activities that recognize separately the two melted strands. The junction binding activity is contained within the sigma factor component of the holoenzyme. The activity occurs in both a typical prokaryotic transcription system and in a eukaryotic-like bacterial system that responds to enhancers and needs ATP. Thus DNA opening catalyzed by fork junction binding may occur in a variety of systems in which DNA must be opened to be copied.
Collapse
Affiliation(s)
- Y Guo
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|