1
|
Zhang Y, Cai H, Chen R, Feng J. DNA Damage Checkpoints Govern Global Gene Transcription and Exhibit Species-Specific Regulation on HOF1 in Candida albicans. J Fungi (Basel) 2024; 10:387. [PMID: 38921373 PMCID: PMC11204775 DOI: 10.3390/jof10060387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
DNA damage checkpoints are essential for coordinating cell cycle arrest and gene transcription during DNA damage response. Exploring the targets of checkpoint kinases in Saccharomyces cerevisiae and other fungi has expanded our comprehension of the downstream pathways involved in DNA damage response. While the function of checkpoint kinases, specifically Rad53, is well documented in the fungal pathogen Candida albicans, their targets remain poorly understood. In this study, we explored the impact of deleting RAD53 on the global transcription profiles and observed alterations in genes associated with ribosome biogenesis, DNA replication, and cell cycle. However, the deletion of RAD53 only affected a limited number of known DNA damage-responsive genes, including MRV6 and HMX1. Unlike S. cerevisiae, the downregulation of HOF1 transcription in C. albicans under the influence of Methyl Methanesulfonate (MMS) did not depend on Dun1 but still relied on Rad53 and Rad9. In addition, the transcription factor Mcm1 was identified as a regulator of HOF1 transcription, with evidence of dynamic binding to its promoter region; however, this dynamic binding was interrupted following the deletion of RAD53. Furthermore, Rad53 was observed to directly interact with the promoter region of HOF1, thus suggesting a potential role in governing its transcription. Overall, checkpoints regulate global gene transcription in C. albicans and show species-specific regulation on HOF1; these discoveries improve our understanding of the signaling pathway related to checkpoints in this pathogen.
Collapse
Affiliation(s)
| | | | | | - Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226007, China; (Y.Z.); (H.C.); (R.C.)
| |
Collapse
|
2
|
Ivessa AS, Singh S. The increase in cell death rates in caloric restricted cells of the yeast helicase mutant rrm3 is Sir complex dependent. Sci Rep 2023; 13:17832. [PMID: 37857740 PMCID: PMC10587150 DOI: 10.1038/s41598-023-45125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
Calorie restriction (CR), which is a reduction in calorie intake without malnutrition, usually extends lifespan and improves tissue integrity. This report focuses on the relationship between nuclear genomic instability and dietary-restriction and its effect on cell survival. We demonstrate that the cell survival rates of the genomic instability yeast mutant rrm3 change under metabolic restricted conditions. Rrm3 is a DNA helicase, chromosomal replication slows (and potentially stalls) in its absence with increased rates at over 1400 natural pause sites including sites within ribosomal DNA and tRNA genes. Whereas rrm3 mutant cells have lower cell death rates compared to wild type (WT) in growth medium containing normal glucose levels (i.e., 2%), under CR growth conditions cell death rates increase in the rrm3 mutant to levels, which are higher than WT. The silent-information-regulatory (Sir) protein complex and mitochondrial oxidative stress are required for the increase in cell death rates in the rrm3 mutant when cells are transferred from growth medium containing 2% glucose to CR-medium. The Rad53 checkpoint protein is highly phosphorylated in the rrm3 mutant in response to genomic instability in growth medium containing 2% glucose. Under CR, Rad53 phosphorylation is largely reduced in the rrm3 mutant in a Sir-complex dependent manner. Since CR is an adjuvant treatment during chemotherapy, which may target genomic instability in cancer cells, our studies may gain further insight into how these therapy strategies can be improved.
Collapse
Affiliation(s)
- Andreas S Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA.
| | - Sukhwinder Singh
- Pathology and Laboratory Medicine/Flow Cytometry and Immunology Core Laboratory, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA
| |
Collapse
|
3
|
Liakopoulos D. Coupling DNA Replication and Spindle Function in Saccharomyces cerevisiae. Cells 2021; 10:cells10123359. [PMID: 34943867 PMCID: PMC8699587 DOI: 10.3390/cells10123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/02/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae DNA replication and spindle assembly can overlap. Therefore, signaling mechanisms modulate spindle dynamics in order to ensure correct timing of chromosome segregation relative to genome duplication, especially when replication is incomplete or the DNA becomes damaged. This review focuses on the molecular mechanisms that coordinate DNA replication and spindle dynamics, as well as on the role of spindle-dependent forces in DNA repair. Understanding the coupling between genome duplication and spindle function in yeast cells can provide important insights into similar processes operating in other eukaryotic organisms, including humans.
Collapse
Affiliation(s)
- Dimitris Liakopoulos
- CRBM, Université de Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier, France;
- Laboratory of Biology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of loannina, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
4
|
Abstract
Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.
Collapse
Affiliation(s)
- David P Waterman
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA;
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA;
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
5
|
Yam CQX, Chia DB, Shi I, Lim HH, Surana U. Dun1, a Chk2-related kinase, is the central regulator of securin-separase dynamics during DNA damage signaling. Nucleic Acids Res 2020; 48:6092-6107. [PMID: 32402080 PMCID: PMC7293041 DOI: 10.1093/nar/gkaa355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 01/26/2023] Open
Abstract
The DNA damage checkpoint halts cell cycle progression in G2 in response to genotoxic insults. Central to the execution of cell cycle arrest is the checkpoint-induced stabilization of securin-separase complex (yeast Pds1-Esp1). The checkpoint kinases Chk1 and Chk2 (yeast Chk1 and Rad53) are thought to critically contribute to the stability of securin-separase complex by phosphorylation of securin, rendering it resistant to proteolytic destruction by the anaphase promoting complex (APC). Dun1, a Rad53 paralog related to Chk2, is also essential for checkpoint-imposed arrest. Dun1 is required for the DNA damage-induced transcription of DNA repair genes; however, its role in the execution of cell cycle arrest remains unknown. Here, we show that Dun1′s role in checkpoint arrest is independent of its involvement in the transcription of repair genes. Instead, Dun1 is necessary to prevent Pds1 destruction during DNA damage in that the Dun1-deficient cells degrade Pds1, escape G2 arrest and undergo mitosis despite the presence of checkpoint-active Chk1 and Rad53. Interestingly, proteolytic degradation of Pds1 in the absence of Dun1 is mediated not by APC but by the HECT domain-containing E3 ligase Rsp5. Our results suggest a regulatory scheme in which Dun1 prevents chromosome segregation during DNA damage by inhibiting Rsp5-mediated proteolytic degradation of securin Pds1.
Collapse
Affiliation(s)
- Candice Qiu Xia Yam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore
| | - David Boy Chia
- Biotransformation Innovation Platform, A*STAR, Singapore
| | - Idina Shi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore.,Biotransformation Innovation Platform, A*STAR, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| |
Collapse
|
6
|
Zhao Y, Wang D, Zhang Z, Lu Y, Yang X, Ouyang Q, Tang C, Li F. Critical slowing down and attractive manifold: A mechanism for dynamic robustness in the yeast cell-cycle process. Phys Rev E 2020; 101:042405. [PMID: 32422801 DOI: 10.1103/physreve.101.042405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 01/13/2020] [Indexed: 11/07/2022]
Abstract
Biological processes that execute complex multiple functions, such as the cell cycle, must ensure the order of sequential events and maintain dynamic robustness against various fluctuations. Here, we examine the mechanisms and fundamental structure that achieve these properties in the cell cycle of the budding yeast Saccharomyces cerevisiae. We show that this process behaves like an excitable system containing three well-decoupled saddle-node bifurcations to execute DNA replication and mitosis events. The yeast cell-cycle regulatory network can be divided into three modules-the G1/S phase, early M phase, and late M phase-wherein both positive feedback loops in each module and interactions among modules play important roles. Specifically, when the cell-cycle process operates near the critical points of the saddle-node bifurcations, a critical slowing down effect takes place. Such interregnum then allows for an attractive manifold and sufficient duration for cell-cycle events, within which to assess the completion of DNA replication and mitosis, e.g., spindle assembly. Moreover, such arrangement ensures that any fluctuation in an early module or event will not transmit to a later module or event. Thus, our results suggest a possible dynamical mechanism of the cell-cycle process to ensure event order and dynamic robustness and give insight into the evolution of eukaryotic cell-cycle processes.
Collapse
Affiliation(s)
- Yao Zhao
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Dedi Wang
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Zhiwen Zhang
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaojing Yang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Qi Ouyang
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Chao Tang
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Fangting Li
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Matellán L, Monje-Casas F. Regulation of Mitotic Exit by Cell Cycle Checkpoints: Lessons From Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E195. [PMID: 32059558 PMCID: PMC7074328 DOI: 10.3390/genes11020195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
In order to preserve genome integrity and their ploidy, cells must ensure that the duplicated genome has been faithfully replicated and evenly distributed before they complete their division by mitosis. To this end, cells have developed highly elaborated checkpoints that halt mitotic progression when problems in DNA integrity or chromosome segregation arise, providing them with time to fix these issues before advancing further into the cell cycle. Remarkably, exit from mitosis constitutes a key cell cycle transition that is targeted by the main mitotic checkpoints, despite these surveillance mechanisms being activated by specific intracellular signals and acting at different stages of cell division. Focusing primarily on research carried out using Saccharomyces cerevisiae as a model organism, the aim of this review is to provide a general overview of the molecular mechanisms by which the major cell cycle checkpoints control mitotic exit and to highlight the importance of the proper regulation of this process for the maintenance of genome stability during the distribution of the duplicated chromosomes between the dividing cells.
Collapse
Affiliation(s)
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC)—University of Seville—University Pablo de Olavide, Avda, Américo Vespucio, 24, 41092 Sevilla, Spain;
| |
Collapse
|
8
|
Julius J, Peng J, McCulley A, Caridi C, Arnak R, See C, Nugent CI, Feng W, Bachant J. Inhibition of spindle extension through the yeast S phase checkpoint is coupled to replication fork stability and the integrity of centromeric DNA. Mol Biol Cell 2019; 30:2771-2789. [PMID: 31509480 PMCID: PMC6789157 DOI: 10.1091/mbc.e19-03-0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.
Collapse
Affiliation(s)
- Jeff Julius
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Jie Peng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Andrew McCulley
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Chris Caridi
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Remigiusz Arnak
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Colby See
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Constance I Nugent
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Jeff Bachant
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| |
Collapse
|
9
|
Corcoles-Saez I, Dong K, Johnson AL, Waskiewicz E, Costanzo M, Boone C, Cha RS. Essential Function of Mec1, the Budding Yeast ATM/ATR Checkpoint-Response Kinase, in Protein Homeostasis. Dev Cell 2018; 46:495-503.e2. [DOI: 10.1016/j.devcel.2018.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/22/2018] [Accepted: 07/13/2018] [Indexed: 12/29/2022]
|
10
|
Tsabar M, Waterman DP, Aguilar F, Katsnelson L, Eapen VV, Memisoglu G, Haber JE. Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair. Genes Dev 2017; 30:1211-24. [PMID: 27222517 PMCID: PMC4888841 DOI: 10.1101/gad.280685.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 02/07/2023]
Abstract
In this study, Tsabar et al. investigated how the DNA damage checkpoint is extinguished and found that dissociation of histone H3 from Asf1, a histone chaperone, is required for efficient recovery. They also show that Asf1 is required for complete dephosphorylation of Rad53 when the upstream DNA damage checkpoint signaling is turned off, providing new insights into the mechanisms regulating the response to DNA damage. To allow for sufficient time to repair DNA double-stranded breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint. In budding yeast, Rad53 (mammalian Chk2) phosphorylation parallels the persistence of the unrepaired DSB and is extinguished when repair is complete in a process termed recovery or when the cells adapt to the DNA damage checkpoint. A strain containing a slowly repaired DSB does not require the histone chaperone Asf1 to resume cell cycle progression after DSB repair. When a second, rapidly repairable DSB is added to this strain, Asf1 becomes required for recovery. Recovery from two repairable DSBs also depends on the histone acetyltransferase Rtt109 and the cullin subunit Rtt101, both of which modify histone H3 that is associated with Asf1. We show that dissociation of histone H3 from Asf1 is required for efficient recovery and that Asf1 is required for complete dephosphorylation of Rad53 when the upstream DNA damage checkpoint signaling is turned off. Our data suggest that the requirements for recovery from the DNA damage checkpoint become more stringent with increased levels of damage and that Asf1 plays a histone chaperone-independent role in facilitating complete Rad53 dephosphorylation following repair.
Collapse
Affiliation(s)
- Michael Tsabar
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - David P Waterman
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Fiona Aguilar
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Lizabeth Katsnelson
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Vinay V Eapen
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gonen Memisoglu
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - James E Haber
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
11
|
S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion. Cell Mol Life Sci 2017; 74:2361-2380. [PMID: 28220209 PMCID: PMC5487892 DOI: 10.1007/s00018-017-2474-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022]
Abstract
DNA replication stress, an important source of genomic instability, arises upon different types of DNA replication perturbations, including those that stall replication fork progression. Inhibitors of the cellular pool of deoxynucleotide triphosphates (dNTPs) slow down DNA synthesis throughout the genome. Following depletion of dNTPs, the highly conserved replication checkpoint kinase pathway, also known as the S-phase checkpoint, preserves the functionality and structure of stalled DNA replication forks and prevents chromosome fragmentation. The underlying mechanisms involve pathways extrinsic to replication forks, such as those involving regulation of the ribonucleotide reductase activity, the temporal program of origin firing, and cell cycle transitions. In addition, the S-phase checkpoint modulates the function of replisome components to promote replication integrity. This review summarizes the various functions of the replication checkpoint in promoting replication fork stability and genome integrity in the face of replication stress caused by dNTP depletion.
Collapse
|
12
|
Hegedus DD, Gerbrandt K, Coutu C. The eukaryotic protein kinase superfamily of the necrotrophic fungal plant pathogen, Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2016; 17:634-647. [PMID: 26395470 PMCID: PMC6638376 DOI: 10.1111/mpp.12321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein kinases have been implicated in the regulation of many processes that guide pathogen development throughout the course of infection. A survey of the Sclerotinia sclerotiorum genome for genes encoding proteins containing the highly conserved eukaryotic protein kinase (ePK) domain, the largest protein kinase superfamily, revealed 92 S. sclerotiorum ePKs. This review examines the composition of the S. sclerotiorum ePKs based on conserved motifs within the ePK domain family, and relates this to orthologues found in other filamentous fungi and yeasts. The ePKs are also discussed in terms of their proposed role(s) in aspects of host pathogenesis, including the coordination of mycelial growth/development and deployment of pathogenicity determinants in response to environmental stimuli, nutrients and stress.
Collapse
Affiliation(s)
- Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A9
| | - Kelsey Gerbrandt
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| |
Collapse
|
13
|
Palou G, Palou R, Zeng F, Vashisht AA, Wohlschlegel JA, Quintana DG. Three Different Pathways Prevent Chromosome Segregation in the Presence of DNA Damage or Replication Stress in Budding Yeast. PLoS Genet 2015; 11:e1005468. [PMID: 26332045 PMCID: PMC4558037 DOI: 10.1371/journal.pgen.1005468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
A surveillance mechanism, the S phase checkpoint, blocks progression into mitosis in response to DNA damage and replication stress. Segregation of damaged or incompletely replicated chromosomes results in genomic instability. In humans, the S phase checkpoint has been shown to constitute an anti-cancer barrier. Inhibition of mitotic cyclin dependent kinase (M-CDK) activity by Wee1 kinases is critical to block mitosis in some organisms. However, such mechanism is dispensable in the response to genotoxic stress in the model eukaryotic organism Saccharomyces cerevisiae. We show here that the Wee1 ortholog Swe1 does indeed inhibit M-CDK activity and chromosome segregation in response to genotoxic insults. Swe1 dispensability in budding yeast is the result of a redundant control of M-CDK activity by the checkpoint kinase Rad53. In addition, our results indicate that Swe1 is an effector of the checkpoint central kinase Mec1. When checkpoint control on M-CDK and on Pds1/securin stabilization are abrogated, cells undergo aberrant chromosome segregation. Genetic inheritance during cell proliferation requires chromosome duplication (replication) and segregation of the replicated chromosomes to the two daughter cells. In response to the presence of DNA damage, cells block chromosome segregation to avoid the inheritance of damaged, incompletely replicated chromosomes. Failure to do so results in loss of genomic integrity. Here we show that three different, redundant pathways are responsible for such control in budding yeast, a model eukaryotic organism. One of the pathways had been described before and blocks the separation of the replicated chromosomes. We show now that two additional pathways inhibit the essential pro-mitotic Cyclin Dependent Kinase (M-CDK) activity. One of them involves the conserved inhibition of M-CDK through tyrosine phosphorylation, which was puzzlingly dispensable in the response to challenged replication in budding yeast. We show that the reason for such dispensability is the existence of redundant control of M-CDK activity by Rad53. Rad53 is part of a surveillance mechanism termed the S phase checkpoint that detects and responds to replication insults. Such control mechanism has been proposed to constitute an anti-cancer barrier in human cells.
Collapse
Affiliation(s)
- Gloria Palou
- Department of Biochemistry and Molecular Biology, Biophysics Unit, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Roger Palou
- Department of Biochemistry and Molecular Biology, Biophysics Unit, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Fanli Zeng
- Department of Biochemistry and Molecular Biology, Biophysics Unit, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Ajay A. Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - David G. Quintana
- Department of Biochemistry and Molecular Biology, Biophysics Unit, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain
- * E-mail:
| |
Collapse
|
14
|
Piya G, Mueller EN, Haas HK, Ghospurkar PL, Wilson TM, Jensen JL, Colbert CL, Haring SJ. Characterization of the interaction between Rfa1 and Rad24 in Saccharomyces cerevisiae. PLoS One 2015; 10:e0116512. [PMID: 25719602 PMCID: PMC4342240 DOI: 10.1371/journal.pone.0116512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/10/2014] [Indexed: 11/22/2022] Open
Abstract
Maintaining the integrity of the genome requires the high fidelity duplication of the genome and the ability of the cell to recognize and repair DNA lesions. The heterotrimeric single stranded DNA (ssDNA) binding complex Replication Protein A (RPA) is central to multiple DNA processes, which are coordinated by RPA through its ssDNA binding function and through multiple protein-protein interactions. Many RPA interacting proteins have been reported through large genetic and physical screens; however, the number of interactions that have been further characterized is limited. To gain a better understanding of how RPA functions in DNA replication, repair, and cell cycle regulation and to identify other potential functions of RPA, a yeast two hybrid screen was performed using the yeast 70 kDa subunit, Replication Factor A1 (Rfa1), as a bait protein. Analysis of 136 interaction candidates resulted in the identification of 37 potential interacting partners, including the cell cycle regulatory protein and DNA damage clamp loader Rad24. The Rfa1-Rad24 interaction is not dependent on ssDNA binding. However, this interaction appears affected by DNA damage. The regions of both Rfa1 and Rad24 important for this interaction were identified, and the region of Rad24 identified is distinct from the region reported to be important for its interaction with Rfc2 5. This suggests that Rad24-Rfc2-5 (Rad24-RFC) recruitment to DNA damage substrates by RPA occurs, at least partially, through an interaction between the N terminus of Rfa1 and the C terminus of Rad24. The predicted structure and location of the Rad24 C-terminus is consistent with a model in which RPA interacts with a damage substrate, loads Rad24-RFC at the 5’ junction, and then releases the Rad24-RFC complex to allow for proper loading and function of the DNA damage clamp.
Collapse
Affiliation(s)
- Gunjan Piya
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Erica N. Mueller
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Heather K. Haas
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Padmaja L. Ghospurkar
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Timothy M. Wilson
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Jaime L. Jensen
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Christopher L. Colbert
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
- Interdisciplinary Program in Cellular and Molecular Biology, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Stuart J. Haring
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
- Interdisciplinary Program in Cellular and Molecular Biology, North Dakota State University, Fargo, ND, 58108, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls.
Collapse
|
16
|
Kim Y, Jang JH, Choi S, Hwang D. TEMPI: probabilistic modeling time-evolving differential PPI networks with multiPle information. Bioinformatics 2014; 30:i453-60. [PMID: 25161233 PMCID: PMC4147907 DOI: 10.1093/bioinformatics/btu454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Motivation: Time-evolving differential protein–protein interaction (PPI) networks are essential to understand serial activation of differentially regulated (up- or downregulated) cellular processes (DRPs) and their interplays over time. Despite developments in the network inference, current methods are still limited in identifying temporal transition of structures of PPI networks, DRPs associated with the structural transition and the interplays among the DRPs over time. Results: Here, we present a probabilistic model for estimating Time-Evolving differential PPI networks with MultiPle Information (TEMPI). This model describes probabilistic relationships among network structures, time-course gene expression data and Gene Ontology biological processes (GOBPs). By maximizing the likelihood of the probabilistic model, TEMPI estimates jointly the time-evolving differential PPI networks (TDNs) describing temporal transition of PPI network structures together with serial activation of DRPs associated with transiting networks. This joint estimation enables us to interpret the TDNs in terms of temporal transition of the DRPs. To demonstrate the utility of TEMPI, we applied it to two time-course datasets. TEMPI identified the TDNs that correctly delineated temporal transition of DRPs and time-dependent associations between the DRPs. These TDNs provide hypotheses for mechanisms underlying serial activation of key DRPs and their temporal associations. Availability and implementation: Source code and sample data files are available at http://sbm.postech.ac.kr/tempi/sources.zip. Contact:seungjin@postech.ac.kr or dhwang@dgist.ac.kr Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yongsoo Kim
- School of Interdisciplinary Bioscience and Bioengineering and Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea and Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Korea
| | - Jin-Hyeok Jang
- School of Interdisciplinary Bioscience and Bioengineering and Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea and Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Korea
| | - Seungjin Choi
- School of Interdisciplinary Bioscience and Bioengineering and Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea and Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering and Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea and Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Korea School of Interdisciplinary Bioscience and Bioengineering and Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea and Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Korea
| |
Collapse
|
17
|
|
18
|
Vogel S, Herzinger T. The epithelium specific cell cycle regulator 14-3-3sigma is required for preventing entry into mitosis following ultraviolet B. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2013; 29:300-10. [PMID: 24102700 DOI: 10.1111/phpp.12071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Deoxyribonucleic acid damage activates cell cycle checkpoints in order to maintain genomic stability. We assessed the role of different checkpoint genes in response to ultraviolet B irradiation. METHODS Cell lines expressing a dominant negative mutant of ataxia telangiectasia and Rad3 related (Atr) protein or overexpressing Cdc25A, cells deficient for 14-3-3σ, Nijmegen breakage syndrome (Nbs), or Ataxia telangiectasia mutated (Atm) were treated with ultraviolet B (UVB) and harvested after 12 h, 24 h, or 48 h for analysis by flow cytometry. RESULTS Functional loss of Atm, Atr, or Nbs did not result in a significant alteration of the cell cycle profile. Overexpression of Cdc25A led to a delayed arrest at the G1/S transition in response to low doses of UVB. Loss of 14-3-3σ, a negative cell cycle regulator and downstream target of p53, caused a transient arrest at the G2/M boundary. CONCLUSIONS Loss of 14-3-3σ sensitizes cells to UVB. After a transient cell cycle arrest, 14-3-3σ-deficient cells die by undergoing mitotic catastrophe. Cdc25A overexpression causes a delayed arrest in response to low doses of UVB. After higher doses, Cdc25A is no longer able to overrun the checkpoint. Atm, Atr, or Nbs are not essential for the checkpoint response to UVB, suggesting the existence of redundant signaling pathways.
Collapse
Affiliation(s)
- Sandra Vogel
- Department of Dermatology and Allergy, Ludwig Maximilian University, Munich, Germany
| | | |
Collapse
|
19
|
Replication checkpoint: tuning and coordination of replication forks in s phase. Genes (Basel) 2013; 4:388-434. [PMID: 24705211 PMCID: PMC3924824 DOI: 10.3390/genes4030388] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 12/01/2022] Open
Abstract
Checkpoints monitor critical cell cycle events such as chromosome duplication and segregation. They are highly conserved mechanisms that prevent progression into the next phase of the cell cycle when cells are unable to accomplish the previous event properly. During S phase, cells also provide a surveillance mechanism called the DNA replication checkpoint, which consists of a conserved kinase cascade that is provoked by insults that block or slow down replication forks. The DNA replication checkpoint is crucial for maintaining genome stability, because replication forks become vulnerable to collapse when they encounter obstacles such as nucleotide adducts, nicks, RNA-DNA hybrids, or stable protein-DNA complexes. These can be exogenously induced or can arise from endogenous cellular activity. Here, we summarize the initiation and transduction of the replication checkpoint as well as its targets, which coordinate cell cycle events and DNA replication fork stability.
Collapse
|
20
|
Abstract
Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast.
Collapse
|
21
|
Albuquerque CP, Wang G, Lee NS, Kolodner RD, Putnam CD, Zhou H. Distinct SUMO ligases cooperate with Esc2 and Slx5 to suppress duplication-mediated genome rearrangements. PLoS Genet 2013; 9:e1003670. [PMID: 23935535 PMCID: PMC3731205 DOI: 10.1371/journal.pgen.1003670] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/06/2013] [Indexed: 11/18/2022] Open
Abstract
Suppression of duplication-mediated gross chromosomal rearrangements (GCRs) is essential to maintain genome integrity in eukaryotes. Here we report that SUMO ligase Mms21 has a strong role in suppressing GCRs in Saccharomyces cerevisiae, while Siz1 and Siz2 have weaker and partially redundant roles. Understanding the functions of these enzymes has been hampered by a paucity of knowledge of their substrate specificity in vivo. Using a new quantitative SUMO-proteomics technology, we found that Siz1 and Siz2 redundantly control the abundances of most sumoylated substrates, while Mms21 more specifically regulates sumoylation of RNA polymerase-I and the SMC-family proteins. Interestingly, Esc2, a SUMO-like domain-containing protein, specifically promotes the accumulation of sumoylated Mms21-specific substrates and functions with Mms21 to suppress GCRs. On the other hand, the Slx5-Slx8 complex, a SUMO-targeted ubiquitin ligase, suppresses the accumulation of sumoylated Mms21-specific substrates. Thus, distinct SUMO ligases work in concert with Esc2 and Slx5-Slx8 to control substrate specificity and sumoylation homeostasis to prevent GCRs.
Collapse
Affiliation(s)
- Claudio P. Albuquerque
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Guoliang Wang
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Nancy S. Lee
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Molecular basis of the essential s phase function of the rad53 checkpoint kinase. Mol Cell Biol 2013; 33:3202-13. [PMID: 23754745 DOI: 10.1128/mcb.00474-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The essential yeast kinases Mec1 and Rad53, or human ATR and Chk1, are crucial for checkpoint responses to exogenous genotoxic agents, but why they are also required for DNA replication in unperturbed cells remains poorly understood. Here we report that even in the absence of DNA-damaging agents, the rad53-4AQ mutant, lacking the N-terminal Mec1 phosphorylation site cluster, is synthetic lethal with a deletion of the RAD9 DNA damage checkpoint adaptor. This phenotype is caused by an inability of rad53-4AQ to activate the downstream kinase Dun1, which then leads to reduced basal deoxynucleoside triphosphate (dNTP) levels, spontaneous replication fork stalling, and constitutive activation of and dependence on S phase DNA damage checkpoints. Surprisingly, the kinase-deficient rad53-K227A mutant does not share these phenotypes but is rendered inviable by additional phosphosite mutations that prevent its binding to Dun1. The results demonstrate that ultralow Rad53 catalytic activity is sufficient for normal replication of undamaged chromosomes as long as it is targeted toward activation of the effector kinase Dun1. Our findings indicate that the essential S phase function of Rad53 is comprised by the combination of its role in regulating basal dNTP levels and its compensatory kinase function if dNTP levels are perturbed.
Collapse
|
23
|
Abreu CM, Kumar R, Hamilton D, Dawdy AW, Creavin K, Eivers S, Finn K, Balsbaugh JL, O'Connor R, Kiely PA, Shabanowitz J, Hunt DF, Grenon M, Lowndes NF. Site-specific phosphorylation of the DNA damage response mediator rad9 by cyclin-dependent kinases regulates activation of checkpoint kinase 1. PLoS Genet 2013; 9:e1003310. [PMID: 23593009 PMCID: PMC3616908 DOI: 10.1371/journal.pgen.1003310] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/24/2012] [Indexed: 01/05/2023] Open
Abstract
The mediators of the DNA damage response (DDR) are highly phosphorylated by kinases that control cell proliferation, but little is known about the role of this regulation. Here we show that cell cycle phosphorylation of the prototypical DDR mediator Saccharomyces cerevisiae Rad9 depends on cyclin-dependent kinase (CDK) complexes. We find that a specific G2/M form of Cdc28 can phosphorylate in vitro the N-terminal region of Rad9 on nine consensus CDK phosphorylation sites. We show that the integrity of CDK consensus sites and the activity of Cdc28 are required for both the activation of the Chk1 checkpoint kinase and its interaction with Rad9. We have identified T125 and T143 as important residues in Rad9 for this Rad9/Chk1 interaction. Phosphorylation of T143 is the most important feature promoting Rad9/Chk1 interaction, while the much more abundant phosphorylation of the neighbouring T125 residue impedes the Rad9/Chk1 interaction. We suggest a novel model for Chk1 activation where Cdc28 regulates the constitutive interaction of Rad9 and Chk1. The Rad9/Chk1 complex is then recruited at sites of DNA damage where activation of Chk1 requires additional DDR–specific protein kinases. Human cells activate the DNA damage response (DDR) to repair DNA damage and to prevent cells with DNA damage from proliferating. Alterations to the DDR are strongly implicated in the development of cancer. Using the budding yeast model system, we have studied how the regulation of the key DDR component Rad9 is integrated into cell cycle control. The cyclin-dependent kinase Cdc28 that regulates the yeast cell cycle also extensively phosphorylates Rad9 during cell cycle progression. We show here that Cdc28 controls Rad9 function in the activation of the important downstream DNA damage effector kinase Chk1. Two sites of phosphorylation in the N-terminus of Rad9 are crucial for the physical interaction between Rad9 and Chk1 regulated by Cdc28. We propose a novel model for Chk1 activation whereby a subset of Rad9 and Chk1 interacts constitutively in the absence of DNA damage. The Rad9/Chk1 complex is recruited to sites of DNA damage where activation of Chk1 involves additional DDR–specific protein kinases. Human cells contain multiple Rad9-like proteins that are also known to be cell cycle phosphorylated in the absence of exogenous DNA damage, suggesting that our observations may have important implications for DDR regulation in human cells.
Collapse
Affiliation(s)
- Carla Manuela Abreu
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Ramesh Kumar
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Danielle Hamilton
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Andrew William Dawdy
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kevin Creavin
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Sarah Eivers
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Karen Finn
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Jeremy Lynn Balsbaugh
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Rosemary O'Connor
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - Patrick A. Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Muriel Grenon
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
- * E-mail: (MG); (NFL)
| | - Noel Francis Lowndes
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
- * E-mail: (MG); (NFL)
| |
Collapse
|
24
|
Finn K, Lowndes NF, Grenon M. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cell Mol Life Sci 2012; 69:1447-73. [PMID: 22083606 PMCID: PMC11115150 DOI: 10.1007/s00018-011-0875-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term "checkpoint" was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in Saccharomyces cerevisiae, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.
Collapse
Affiliation(s)
- Karen Finn
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | |
Collapse
|
25
|
|
26
|
Dewar JM, Lydall D. Similarities and differences between "uncapped" telomeres and DNA double-strand breaks. Chromosoma 2011; 121:117-30. [PMID: 22203190 DOI: 10.1007/s00412-011-0357-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/08/2011] [Indexed: 11/25/2022]
Abstract
Telomeric DNA is present at the ends of eukaryotic chromosomes and is bound by telomere "capping" proteins, which are the (Cdc13-Stn1-Ten1) CST complex, Ku (Yku70-Yku80), and Rap1-Rif1-Rif2 in budding yeast. Inactivation of any of these complexes causes telomere "uncapping," stimulating a DNA damage response (DDR) that frequently involves resection of telomeric DNA and stimulates cell cycle arrest. This is presumed to occur because telomeres resemble one half of a DNA double-strand break (DSB). In this review, we outline the DDR that occurs at DSBs and compare it to the DDR occurring at uncapped telomeres, in both budding yeast and metazoans. We give particular attention to the resection of DSBs in budding yeast by Mre11-Xrs2-Rad50 (MRX), Sgs1/Dna2, and Exo1 and compare their roles at DSBs and uncapped telomeres. We also discuss how resection uncapped telomeres in budding yeast is promoted by the by 9-1-1 complex (Rad17-Mec3-Ddc1), to illustrate how analysis of uncapped telomeres can serve as a model for the DDR elsewhere in the genome. Finally, we discuss the role of the helicase Pif1 and its requirement for resection of uncapped telomeres, but not DSBs. Pif1 has roles in DNA replication and mammalian and plant CST complexes have been identified and have roles in global genome replication. Based on these observations, we suggest that while the DDR at uncapped telomeres is partially due to their resemblance to a DSB, it may also be partially due to defective DNA replication. Specifically, we propose that the budding yeast CST complex has dual roles to inhibit a DSB-like DDR initiated by Exo1 and a replication-associated DDR initiated by Pif1. If true, this would suggest that the mammalian CST complex inhibits a Pif1-dependent DDR.
Collapse
Affiliation(s)
- James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
27
|
Doerfler L, Harris L, Viebranz E, Schmidt KH. Differential genetic interactions between Sgs1, DNA-damage checkpoint components and DNA repair factors in the maintenance of chromosome stability. Genome Integr 2011; 2:8. [PMID: 22040455 PMCID: PMC3231943 DOI: 10.1186/2041-9414-2-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/31/2011] [Indexed: 11/21/2022] Open
Abstract
Background Genome instability is associated with human cancers and chromosome breakage syndromes, including Bloom's syndrome, caused by inactivation of BLM helicase. Numerous mutations that lead to genome instability are known, yet how they interact genetically is poorly understood. Results We show that spontaneous translocations that arise by nonallelic homologous recombination in DNA-damage-checkpoint-defective yeast lacking the BLM-related Sgs1 helicase (sgs1Δ mec3Δ) are inhibited if cells lack Mec1/ATR kinase. Tel1/ATM, in contrast, acts as a suppressor independently of Mec3 and Sgs1. Translocations are also inhibited in cells lacking Dun1 kinase, but not in cells defective in a parallel checkpoint branch defined by Chk1 kinase. While we had previously shown that RAD51 deletion did not inhibit translocation formation, RAD59 deletion led to inhibition comparable to the rad52Δ mutation. A candidate screen of other DNA metabolic factors identified Exo1 as a strong suppressor of chromosomal rearrangements in the sgs1Δ mutant, becoming even more important for chromosomal stability upon MEC3 deletion. We determined that the C-terminal third of Exo1, harboring mismatch repair protein binding sites and phosphorylation sites, is dispensable for Exo1's roles in chromosomal rearrangement suppression, mutation avoidance and resistance to DNA-damaging agents. Conclusions Our findings suggest that translocations between related genes can form by Rad59-dependent, Rad51-independent homologous recombination, which is independently suppressed by Sgs1, Tel1, Mec3 and Exo1 but promoted by Dun1 and the telomerase-inhibitor Mec1. We propose a model for the functional interaction between mitotic recombination and the DNA-damage checkpoint in the suppression of chromosomal rearrangements in sgs1Δ cells.
Collapse
Affiliation(s)
- Lillian Doerfler
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Lorena Harris
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Emilie Viebranz
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Kristina H Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
28
|
Dyavaiah M, Rooney JP, Chittur SV, Lin Q, Begley TJ. Autophagy-dependent regulation of the DNA damage response protein ribonucleotide reductase 1. Mol Cancer Res 2011; 9:462-75. [PMID: 21343333 DOI: 10.1158/1541-7786.mcr-10-0473] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein synthesis and degradation are posttranscriptional pathways used by cells to regulate protein levels. We have developed a systems biology approach to identify targets of posttranscriptional regulation and we have employed this system in Saccharomyces cerevisiae to study the DNA damage response. We present evidence that 50% to 75% of the transcripts induced by alkylation damage are regulated posttranscriptionally. Significantly, we demonstrate that two transcriptionally-induced DNA damage response genes, RNR1 and RNR4, fail to show soluble protein level increases after DNA damage. To determine one of the associated mechanisms of posttranscriptional regulation, we tracked ribonucleotide reductase 1 (Rnr1) protein levels during the DNA damage response. We show that RNR1 is actively translated after damage and that a large fraction of the corresponding Rnr1 protein is packaged into a membrane-bound structure and transported to the vacuole for degradation, with these last two steps dependent on autophagy proteins. We found that inhibition of target of rapamycin (TOR) signaling and subsequent induction of autophagy promoted an increase in targeting of Rnr1 to the vacuole and a decrease in soluble Rnr1 protein levels. In addition, we demonstrate that defects in autophagy result in an increase in soluble Rnr1 protein levels and a DNA damage phenotype. Our results highlight roles for autophagy and TOR signaling in regulating a specific protein and demonstrate the importance of these pathways in optimizing the DNA damage response.
Collapse
Affiliation(s)
- Madhu Dyavaiah
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer, New York 12144, USA
| | | | | | | | | |
Collapse
|
29
|
Checkpoint genes and Exo1 regulate nearby inverted repeat fusions that form dicentric chromosomes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2010; 107:21605-10. [PMID: 21098663 DOI: 10.1073/pnas.1001938107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genomic rearrangements are common, occur by largely unknown mechanisms, and can lead to human diseases. We previously demonstrated that some genome rearrangements occur in budding yeast through the fusion of two DNA sequences that contain limited sequence homology, lie in inverted orientation, and are within 5 kb of one another. This inverted repeat fusion reaction forms dicentric chromosomes, which are well-known intermediates to additional rearrangements. We have previously provided evidence indicating that an error of stalled or disrupted DNA replication forks can cause inverted repeat fusion. Here we analyze how checkpoint protein regulatory pathways known to stabilize stalled forks affect this form of instability. We find that two checkpoint pathways suppress inverted repeat fusion, and that their activities are distinguishable by their interactions with exonuclease 1 (Exo1). The checkpoint kinase Rad53 (Chk2) and recombination protein complex MRX(MRN) inhibit Exo1 in one pathway, whereas in a second pathway the ATR-like kinases Mec1 and Tel1, adaptor protein Rad9, and effector kinases Chk1 and Dun1 act independently of Exo1 to prevent inverted repeat fusion. We provide a model that indicates how in Rad53 or MRX mutants, an inappropriately active Exo1 may facilitate faulty template switching between nearby inverted repeats to form dicentric chromosomes. We further investigate the role of Rad53, using hypomorphic alleles of Rad53 and null mutations in Rad9 and Mrc1, and provide evidence that only local, as opposed to global, activity of Rad53 is sufficient to prevent inverted repeat fusion.
Collapse
|
30
|
Kang MS, Yu SL, Lim HS, Choi B, Park CS, Kang JH, Lee SK. Mitotic catastrophe induced by overexpression of budding yeast Rad2p. Yeast 2010; 27:399-411. [PMID: 20222011 DOI: 10.1002/yea.1764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mitotic catastrophe provokes endopolyploidy, giant cell formation and, eventually, delayed cell death. Mitotic catastrophe is induced by defective cell cycle checkpoints and by some anticancer drugs, ionizing radiation and microtubule-destabilizing agents. RAD2 is a yeast homologue of XPG, which is a human endonuclease involved in nucleotide excision repair. Here we show that Rad2p overexpression alone, in the absence of extrinsic DNA damage, causes cell growth arrest and mitotic catastrophe. Interestingly, Rad2p-induced cell growth arrest is not caused by the catalytic activity of Rad2p but rather by its C-terminal region. Cells growth-arrested by Rad2p induction do not show apoptotic phenotypes and deletion of YCA1, a yeast caspase homologue, does not affect cell growth arrest by Rad2p induction. However, Rad2p-induced cell growth arrest is released by rad9 deletion but is not affected by downstream DNA damage checkpoint genes. These observations suggest that RAD2 has a function in coordinating cell cycle regulation and damaged DNA repair.
Collapse
Affiliation(s)
- Mi-Sun Kang
- Department of Pharmacology, Inha Research Institute for Medical Sciences, Incheon 400-712, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Dotiwala F, Harrison JC, Jain S, Sugawara N, Haber JE. Mad2 prolongs DNA damage checkpoint arrest caused by a double-strand break via a centromere-dependent mechanism. Curr Biol 2010; 20:328-32. [PMID: 20096585 DOI: 10.1016/j.cub.2009.12.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/07/2009] [Accepted: 12/09/2009] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells employ a suite of replication and mitotic checkpoints to ensure the accurate transmission of their DNA. In budding yeast, both the DNA damage checkpoint and the spindle assembly checkpoint (SAC) block cells prior to anaphase. The presence of a single unrepaired double-strand break (DSB) activates ATR and ATM protein kinase homologs Mec1 and Tel1, which then activate downstream effectors to trigger G2/M arrest and also phosphorylate histone H2A (creating gamma-H2AX) in chromatin surrounding the DSB. The SAC monitors proper attachment of spindle microtubules to the kinetochore formed at each centromere and the biorientation of sister centromeres toward opposite spindle pole bodies. Although these two checkpoints sense quite different perturbations, recent evidence has demonstrated both synergistic interactions and cross-talk between them. Here we report that Mad2 and other SAC proteins play an unexpected role in prolonging G2/M arrest after induction of a single DSB. This function of the SAC depends not only on Mec1 and other components of the DNA damage checkpoint but also on the presence of the centromere located > or = 90 kb from the DNA damage. DNA damage induces epigenetic changes at the centromere, including the gamma-H2AX modification, that appear to alter kinetochore function, thus triggering the canonical SAC. Thus, a single DSB triggers a response by both checkpoints to prevent the segregation of a damaged chromosome.
Collapse
Affiliation(s)
- Farokh Dotiwala
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | | | |
Collapse
|
32
|
Zhang T, Nirantar S, Lim HH, Sinha I, Surana U. DNA damage checkpoint maintains CDH1 in an active state to inhibit anaphase progression. Dev Cell 2009; 17:541-51. [PMID: 19853567 DOI: 10.1016/j.devcel.2009.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 02/20/2009] [Accepted: 09/18/2009] [Indexed: 01/11/2023]
Abstract
DNA damage checkpoint prevents segregation of damaged chromosomes by imposing cell-cycle arrest. In budding yeast, Mec1, Chk1, and Rad53 (homologous to human ATM/ATR, Chk1, and Chk2 kinases, respectively) are among the main effectors of this pathway. The DNA damage checkpoint is thought to inhibit chromosome segregation by preventing separase-mediated cleavage of cohesins. Here, we describe a regulatory network that prevents segregation of damaged chromosomes by restricting spindle elongation and acts in parallel with inhibition of cohesin cleavage. This control circuit involves Rad53, polo kinase, the anaphase-promoting complex activator Cdh1, and the bimC kinesin family proteins Cin8 and Kip1. The inhibition of polo kinase by Rad53-dependent phosphorylation prevents it from inactivating Cdh1. As a result, Cdh1 remains in a partially active state and limits Cin8 and Kip1 accumulation, thereby restraining spindle elongation. Hence, the DNA damage checkpoint suppresses both cohesin cleavage and spindle elongation to preserve chromosome stability.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research) 61, Biopolis Drive, Proteos, Singapore 138673
| | | | | | | | | |
Collapse
|
33
|
Usui T, Foster SS, Petrini JHJ. Maintenance of the DNA-damage checkpoint requires DNA-damage-induced mediator protein oligomerization. Mol Cell 2009; 33:147-59. [PMID: 19187758 DOI: 10.1016/j.molcel.2008.12.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/17/2008] [Accepted: 12/16/2008] [Indexed: 12/30/2022]
Abstract
Oligomeric assembly of Brca1 C-terminal (BRCT) domain-containing mediator proteins occurs at sites of DNA damage. However, the functional significance and regulation of such assemblies are not well understood. In this study, we defined the molecular mechanism of DNA-damage-induced oligomerization of the S. cerevisiae BRCT protein Rad9. Our data suggest that Rad9's tandem BRCT domain mediates Rad9 oligomerization via its interaction with its own Mec1/Tel1-phosphorylated SQ/TQ cluster domain (SCD). Rad53 activation is unaffected by mutations that impair Rad9 oligomerization, but checkpoint maintenance is lost, indicating that oligomerization is required to sustain checkpoint signaling. Once activated, Rad53 phosphorylates the Rad9 BRCT domain, which attenuates the BRCT-SCD interaction. Failure to phosphorylate the Rad9 BRCT results in cytologically visible Rad9 foci. This suggests a feedback loop wherein Rad53 activity and Rad9 oligomerization are regulated to tune the DNA-damage response.
Collapse
Affiliation(s)
- Takehiko Usui
- Laboratory of Chromosome Biology, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|
34
|
Daniel JH. A fitness-based interferential genetics approach using hypertoxic/inactive gene alleles as references. Mol Genet Genomics 2009; 281:437-45. [PMID: 19152005 DOI: 10.1007/s00438-008-0416-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Accepted: 12/16/2008] [Indexed: 01/22/2023]
Abstract
Genetics, genomics, and biochemistry have all been of immense help in characterizing macromolecular cell entities and their interactions. Still, obtaining an overall picture of the functioning of even a simple unicellular species has remained a challenging task. One possible way to obtain a comprehensive picture has been described: by capitalizing on the observation that the overexpression on a multicopy plasmid of apparently any wild-type gene in yeast can lead to some negative effect on cell fitness (referring to the concept of "gene toxicity"), the FIG (fitness-based interferential genetics) approach was devised for selecting normal genes that are in antagonistic (and potentially also agonistic) relationship with a particular gene used as a reference. Herein, we take a complementary approach to FIG, by first selecting a "hypertoxic" allele of the reference gene--which easily provides the general possibility of obtaining gene products with the remarkable property of being inactive without altering their macromolecular interactivity--and then looking for the genes that interact functionally with this reference. Thus, FIG and the present approach (Trap-FIG), both taking advantage of the negative effects on cell fitness induced by various quantitative modulations in cellular networks, could potentially pave the way for the emergence of efficient in situ biochemistry.
Collapse
Affiliation(s)
- Jacques H Daniel
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, rue de la Terrasse, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
35
|
Koltovaya NA. Activation of repair and checkpoints by double-strand DNA breaks: Activational cascade of protein phosphorylation. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Chen Y, Caldwell JM, Pereira E, Baker RW, Sanchez Y. ATRMec1 phosphorylation-independent activation of Chk1 in vivo. J Biol Chem 2008; 284:182-190. [PMID: 18984588 DOI: 10.1074/jbc.m806530200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved protein kinase Chk1 is a player in the defense against DNA damage and replication blocks. The current model is that after DNA damage or replication blocks, ATR(Mec1) phosphorylates Chk1 on the non-catalytic C-terminal domain. However, the mechanism of activation of Chk1 and the function of the Chk1 C terminus in vivo remains largely unknown. In this study we used an in vivo assay to examine the role of the C terminus of Chk1 in the response to DNA damage and replication blocks. The conserved ATR(Mec1) phosphorylation sites were essential for the checkpoint response to DNA damage and replication blocks in vivo; that is, that mutation of the sites caused lethality when DNA replication was stalled by hydroxyurea. Despite this, loss of the ATR(Mec1) phosphorylation sites did not change the kinase activity of Chk1 in vitro. Furthermore, a single amino acid substitution at an invariant leucine in a conserved domain of the non-catalytic C terminus restored viability to cells expressing the ATR(Mec1) phosphorylation site-mutated protein and relieved the requirement of an upstream mediator for Chk1 activation. Our findings show that a single amino acid substitution in the C terminus, which could lead to an allosteric change in Chk1, allows it to bypass the requirement of the conserved ATR(Mec1) phosphorylation sites for checkpoint function.
Collapse
Affiliation(s)
- Yinhuai Chen
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755 and Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524
| | - Julie M Caldwell
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755 and Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524
| | - Elizabeth Pereira
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755 and Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524
| | - Robert W Baker
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755 and Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524
| | - Yolanda Sanchez
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755 and Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524.
| |
Collapse
|
37
|
Fu Y, Pastushok L, Xiao W. DNA damage-induced gene expression inSaccharomyces cerevisiae. FEMS Microbiol Rev 2008; 32:908-26. [DOI: 10.1111/j.1574-6976.2008.00126.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Segurado M, Diffley JFX. Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Genes Dev 2008; 22:1816-27. [PMID: 18593882 DOI: 10.1101/gad.477208] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The DNA damage checkpoint plays a crucial role in maintaining functional DNA replication forks when cells are exposed to genotoxic agents. In budding yeast, the protein kinases Mec1 (ATR) and Rad53 (Chk2) are especially important in this process. How these kinases act to stabilize DNA replication forks is currently unknown but is likely to have important implications for understanding how genomic instability is generated during oncogenesis and how chemotherapies that interfere with DNA replication could be improved. Here we show that the sensitivity of rad53 mutants to DNA-damaging agents can be almost completely suppressed by deletion of the EXO1 gene, which encodes an enigmatic flap endonuclease. Deletion of EXO1 also suppresses DNA replication fork instability in rad53 mutants. Surprisingly, deletion of EXO1 is completely ineffective in suppressing both the sensitivity and replication fork breakdown in mec1 mutants, indicating that Mec1 has a genetically separable role in replication fork stabilization from Rad53. Finally, our analysis indicates that a second downstream effector kinase, Chk1, can stabilize replication forks in the absence of Rad53. These results reveal previously unappreciated complexity in the downstream targets of the checkpoint kinases and provide a framework for elucidating the mechanisms of DNA replication fork stabilization by these kinases.
Collapse
Affiliation(s)
- Monica Segurado
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, United Kingdom
| | | |
Collapse
|
39
|
Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade. Mol Cell 2008; 30:767-78. [PMID: 18570878 DOI: 10.1016/j.molcel.2008.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/21/2008] [Accepted: 05/13/2008] [Indexed: 01/22/2023]
Abstract
Forkhead-associated (FHA) domains recognize phosphothreonines, and SQ/TQ cluster domains (SCDs) contain concentrated phosphorylation sites for ATM/ATR-like DNA-damage-response kinases. The Rad53-SCD1 has dual functions in regulating the activation of the Rad53-Dun1 checkpoint kinase cascade but with unknown molecular mechanisms. Here we present structural, biochemical, and genetic evidence that Dun1-FHA possesses an unprecedented diphosphothreonine-binding specificity. The Dun1-FHA has >100-fold increased affinity for diphosphorylated relative to monophosphorylated Rad53-SCD1 due to the presence of two separate phosphothreonine-binding pockets. In vivo, any single threonine of Rad53-SCD1 is sufficient for Rad53 activation and RAD53-dependent survival of DNA damage, but two adjacent phosphothreonines in the Rad53-SCD1 and two phosphothreonine-binding sites in the Dun1-FHA are necessary for Dun1 activation and DUN1-dependent transcriptional responses to DNA damage. The results uncover a phospho-counting mechanism that regulates the specificity of SCD, and provide mechanistic insight into a role of multisite phosphorylation in DNA-damage signaling.
Collapse
|
40
|
Abstract
Deacetylation of histone H3 K56, regulated by the sirtuins Hst3p and Hst4p, is critical for maintenance of genomic stability. However, the physiological consequences of a lack of H3 K56 deacetylation are poorly understood. Here we show that cells lacking Hst3p and Hst4p, in which H3 K56 is constitutively hyperacetylated, exhibit hallmarks of spontaneous DNA damage, such as activation of the checkpoint kinase Rad53p and upregulation of DNA-damage inducible genes. Consistently, hst3 hst4 cells display synthetic lethality interactions with mutations that cripple genes involved in DNA replication and DNA double-strand break (DSB) repair. In most cases, synthetic lethality depends upon hyperacetylation of H3 K56 because it can be suppressed by mutation of K56 to arginine, which mimics the nonacetylated state. We also show that hst3 hst4 phenotypes can be suppressed by overexpression of the PCNA clamp loader large subunit, Rfc1p, and by inactivation of the alternative clamp loaders CTF18, RAD24, and ELG1. Loss of CTF4, encoding a replisome component involved in sister chromatid cohesion, also suppresses hst3 hst4 phenotypes. Genetic analysis suggests that CTF4 is a part of the K56 acetylation pathway that converges on and modulates replisome function. This pathway represents an important mechanism for maintenance of genomic stability and depends upon proper regulation of H3 K56 acetylation by Hst3p and Hst4p. Our data also suggest the existence of a precarious balance between Rfc1p and the other RFC complexes and that the nonreplicative forms of RFC are strongly deleterious to cells that have genomewide and constitutive H3 K56 hyperacetylation.
Collapse
|
41
|
Koltovaya NA, Nikulushkina YV, Roshina MP, Devin AB. Interaction between checkpoint genes RAD9, RAD17, RAD24, and RAD53 involved in the determination of yeast Saccharomyces cerevisiae sensitivity to ionizing radiation. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408060057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Lazzaro F, Sapountzi V, Granata M, Pellicioli A, Vaze M, Haber JE, Plevani P, Lydall D, Muzi-Falconi M. Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO J 2008; 27:1502-12. [PMID: 18418382 PMCID: PMC2328446 DOI: 10.1038/emboj.2008.81] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Accepted: 03/26/2008] [Indexed: 01/01/2023] Open
Abstract
Cells respond to DNA double-strand breaks (DSBs) and uncapped telomeres by recruiting checkpoint and repair factors to the site of lesions. Single-stranded DNA (ssDNA) is an important intermediate in the repair of DSBs and is produced also at uncapped telomeres. Here, we provide evidence that binding of the checkpoint protein Rad9, through its Tudor domain, to methylated histone H3-K79 inhibits resection at DSBs and uncapped telomeres. Loss of DOT1 or mutations in RAD9 influence a Rad50-dependent nuclease, leading to more rapid accumulation of ssDNA, and faster activation of the critical checkpoint kinase, Mec1. Moreover, deletion of RAD9 or DOT1 partially bypasses the requirement for CDK1 in DSB resection. Interestingly, Dot1 contributes to checkpoint activation in response to low levels of telomere uncapping but is not essential with high levels of uncapping. We suggest that both Rad9 and histone H3 methylation allow transmission of the damage signal to checkpoint kinases, and keep resection of damaged DNA under control influencing, both positively and negatively, checkpoint cascades and contributing to a tightly controlled response to DNA damage.
Collapse
Affiliation(s)
- Federico Lazzaro
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Caldwell JM, Chen Y, Schollaert KL, Theis JF, Babcock GF, Newlon CS, Sanchez Y. Orchestration of the S-phase and DNA damage checkpoint pathways by replication forks from early origins. ACTA ACUST UNITED AC 2008; 180:1073-86. [PMID: 18347065 PMCID: PMC2290838 DOI: 10.1083/jcb.200706009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The S-phase checkpoint activated at replication forks coordinates DNA replication when forks stall because of DNA damage or low deoxyribonucleotide triphosphate pools. We explore the involvement of replication forks in coordinating the S-phase checkpoint using dun1Delta cells that have a defect in the number of stalled forks formed from early origins and are dependent on the DNA damage Chk1p pathway for survival when replication is stalled. We show that providing additional origins activated in early S phase and establishing a paused fork at a replication fork pause site restores S-phase checkpoint signaling to chk1Delta dun1Delta cells and relieves the reliance on the DNA damage checkpoint pathway. Origin licensing and activation are controlled by the cyclin-Cdk complexes. Thus, oncogene-mediated deregulation of cyclins in the early stages of cancer development could contribute to genomic instability through a deficiency in the forks required to establish the S-phase checkpoint.
Collapse
Affiliation(s)
- Julie M Caldwell
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Kim EM, Burke DJ. DNA damage activates the SAC in an ATM/ATR-dependent manner, independently of the kinetochore. PLoS Genet 2008; 4:e1000015. [PMID: 18454191 PMCID: PMC2265443 DOI: 10.1371/journal.pgen.1000015] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 01/31/2008] [Indexed: 12/21/2022] Open
Abstract
The DNA damage checkpoint and the spindle assembly checkpoint (SAC) are two important regulatory mechanisms that respond to different lesions. The DNA damage checkpoint detects DNA damage, initiates protein kinase cascades, and inhibits the cell cycle. The SAC relies on kinetochore-dependent assembly of protein complexes to inhibit mitosis when chromosomes are detached from the spindle. The two checkpoints are thought to function independently. Here we show that yeast cells lacking the DNA damage checkpoint arrest prior to anaphase in response to low doses of the DNA damaging agent methyl methane sulfonate (MMS). The arrest requires the SAC proteins Mad1, Mad2, Mad3, Bub1, and Bub3 and works through Cdc20 and Pds1 but unlike the normal SAC, does not require a functional kinetochore. Mec1 (ATR) and Tel1 (ATM) are also required, independently of Chk1 and Rad53, suggesting that Mec1 and Tel1 inhibit anaphase in response to DNA damage by utilizing SAC proteins. Our results demonstrate cross-talk between the two checkpoints and suggest that assembling inhibitory complexes of SAC proteins at unattached kinetochores is not obligatory for their inhibitory activity. Furthermore, our results suggest that there are novel, important targets of ATM and ATR for cell cycle regulation.
Collapse
Affiliation(s)
- Eun Mi Kim
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical Center, Charlottesville, Virginia, United States of America
| | - Daniel J. Burke
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical Center, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
45
|
Tsolou A, Lydall D. Mrc1 protects uncapped budding yeast telomeres from exonuclease EXO1. DNA Repair (Amst) 2007; 6:1607-17. [PMID: 17618841 PMCID: PMC2077361 DOI: 10.1016/j.dnarep.2007.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 12/24/2022]
Abstract
Mrc1 (Mediator of Replication Checkpoint 1) is a component of the DNA replication fork machinery and is necessary for checkpoint activation after replication stress. In this study, we addressed the role of Mrc1 at uncapped telomeres. Our experiments show that Mrc1 contributes to the vitality of both cdc13-1 and yku70Δ telomere capping mutants. Cells with telomere capping defects containing MRC1 or mrc1AQ, a checkpoint defective allele, exhibit similar growth, suggesting growth defects of cdc13-1 mrc1Δ are not due to checkpoint defects. This is in accordance with Mrc1-independent Rad53 activation after telomere uncapping. Poor growth of cdc13-1 mutants in the absence of Mrc1 is a result of enhanced single stranded DNA accumulation at uncapped telomeres. Consistent with this, deletion of EXO1, encoding a nuclease that contributes to single stranded DNA accumulation after telomere uncapping, improves growth of cdc13-1 mrc1Δ strains and decreases ssDNA production. Our observations show that Mrc1, a core component of the replication fork, plays an important role in telomere capping, protecting from nucleases and checkpoint pathways.
Collapse
Affiliation(s)
| | - David Lydall
- Corresponding author. Tel.: +44 191 256 3449; fax: +44 191 256 3445.
| |
Collapse
|
46
|
Dotiwala F, Haase J, Arbel-Eden A, Bloom K, Haber JE. The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage. Proc Natl Acad Sci U S A 2007; 104:11358-63. [PMID: 17586685 PMCID: PMC1896138 DOI: 10.1073/pnas.0609636104] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A single HO endonuclease-induced double-strand break (DSB) is sufficient to activate the DNA damage checkpoint and cause Saccharomyces cells to arrest at G(2)/M for 12-14 h, after which cells adapt to the presence of the DSB and resume cell cycle progression. The checkpoint signal leading to G(2)/M arrest was previously shown to be nuclear-limited. Cells lacking ATR-like Mec1 exhibit no DSB-induced cell cycle delay; however, cells lacking Mec1's downstream protein kinase targets, Rad53 or Chk1, still have substantial G(2)/M delay, as do cells lacking securin, Pds1. This delay is eliminated only in the triple mutant chk1Delta rad53Delta pds1Delta, suggesting that Rad53 and Chk1 control targets other than the stability of securin in enforcing checkpoint-mediated cell cycle arrest. The G(2)/M arrest in rad53Delta and chk1Delta revealed a unique cytoplasmic phenotype in which there are frequent dynein-dependent excursions of the nucleus through the bud neck, without entering anaphase. Such excursions are infrequent in wild-type arrested cells, but have been observed in cells defective in mitotic exit, including the semidominant cdc5-ad mutation. We suggest that Mec1-dependent checkpoint signaling through Rad53 and Chk1 includes the repression of nuclear movements that are normally associated with the execution of anaphase.
Collapse
Affiliation(s)
- Farokh Dotiwala
- *Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110; and
| | - Julian Haase
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280
| | - Ayelet Arbel-Eden
- *Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110; and
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280
- To whom correspondence may be addressed. E-mail:
| | - James E. Haber
- *Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110; and
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|
47
|
Liang F, Wang Y. DNA damage checkpoints inhibit mitotic exit by two different mechanisms. Mol Cell Biol 2007; 27:5067-78. [PMID: 17485442 PMCID: PMC1951953 DOI: 10.1128/mcb.00095-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin-dependent kinase (CDK) governs cell cycle progression, and its kinase activity fluctuates during the cell cycle. Mitotic exit pathways are responsible for the inactivation of CDK after chromosome segregation by promoting the release of a nucleolus-sequestered phosphatase, Cdc14, which antagonizes CDK. In the budding yeast Saccharomyces cerevisiae, mitotic exit is controlled by the FEAR (for "Cdc-fourteen early anaphase release") and mitotic exit network (MEN) pathways. In response to DNA damage, two branches of the DNA damage checkpoint, Chk1 and Rad53, are activated in budding yeast to prevent anaphase entry and mitotic exit, allowing cells more time to repair damaged DNA. Here we present evidence indicating that yeast cells negatively regulate mitotic exit through two distinct pathways in response to DNA damage. Rad53 prevents mitotic exit by inhibiting the MEN pathway, whereas the Chk1 pathway prevents FEAR pathway-dependent Cdc14 release in the presence of DNA damage. In contrast to previous data, the Rad53 pathway negatively regulates MEN independently of Cdc5, a Polo-like kinase essential for mitotic exit. Instead, a defective Rad53 pathway alleviates the inhibition of MEN by Bfa1.
Collapse
Affiliation(s)
- Fengshan Liang
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | | |
Collapse
|
48
|
Proctor CJ, Lydall DA, Boys RJ, Gillespie CS, Shanley DP, Wilkinson DJ, Kirkwood TBL. Modelling the checkpoint response to telomere uncapping in budding yeast. J R Soc Interface 2007; 4:73-90. [PMID: 17015293 PMCID: PMC2358953 DOI: 10.1098/rsif.2006.0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the DNA damage-response mechanisms in budding yeast is temporary cell-cycle arrest while DNA repair takes place. The DNA damage response requires the coordinated interaction between DNA repair and checkpoint pathways. Telomeres of budding yeast are capped by the Cdc13 complex. In the temperature-sensitive cdc13-1 strain, telomeres are unprotected over a specific temperature range leading to activation of the DNA damage response and subsequently cell-cycle arrest. Inactivation of cdc13-1 results in the generation of long regions of single-stranded DNA (ssDNA) and is affected by the activity of various checkpoint proteins and nucleases. This paper describes a mathematical model of how uncapped telomeres in budding yeast initiate the checkpoint pathway leading to cell-cycle arrest. The model was encoded in the Systems Biology Markup Language (SBML) and simulated using the stochastic simulation system Biology of Ageing e-Science Integration and Simulation (BASIS). Each simulation follows the time course of one mother cell keeping track of the number of cell divisions, the level of activity of each of the checkpoint proteins, the activity of nucleases and the amount of ssDNA generated. The model can be used to carry out a variety of in silico experiments in which different genes are knocked out and the results of simulation are compared to experimental data. Possible extensions to the model are also discussed.
Collapse
Affiliation(s)
- C J Proctor
- Institute for Ageing and Health, and School of Clinical Medical Sciences-Gerontology, Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 6BE, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
In response to even a single chromosomal double-strand DNA break, cells enact the DNA damage checkpoint. This checkpoint triggers cell cycle arrest, providing time for the cell to repair damaged chromosomes before entering mitosis. This mechanism helps prevent the segregation of damaged or mutated chromosomes and thus promotes genomic stability. Recent work has elucidated the molecular mechanisms underlying several critical steps in checkpoint activation, notably the recruitment of the upstream checkpoint kinases of the ATM and ATR families to different damaged DNA structures and the molecular events through which these kinases activate their effectors. Chromatin modification has emerged as one important component of checkpoint activation and maintenance. Following DNA repair, the checkpoint pathway is inactivated in a process termed recovery. A related but genetically distinct process, adaptation, controls cell cycle re-entry in the face of unrepairable damage.
Collapse
Affiliation(s)
- Jacob C Harrison
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02445, USA.
| | | |
Collapse
|
50
|
Usui T, Petrini JHJ. The Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 directly influence the DNA damage-dependent functions of Rad53. Proc Natl Acad Sci U S A 2007; 104:2797-802. [PMID: 17299042 PMCID: PMC1797148 DOI: 10.1073/pnas.0611259104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we mutated autophosphorylation sites in Rad53 based on their conservation with previously identified autophosphorylation sites in the mammalian Rad53 ortholog, Chk2. As with wild-type Rad53, the autophosphorylation mutant, rad53-TA, undergoes Mec1/Tel1-dependent interactions with Rad9 and Dun1 in response to genotoxic stress. Whereas rad53-TA in vitro kinase activity is severely impaired, the rad53-TA strains are not completely deficient for cell-cycle checkpoint functions, indicating that the mutant kinase retains a basal level of function. We describe a genetic interaction among Rad53, Dun1, and the 14-3-3 proteins Bmh1 and Bmh2 and present evidence that 14-3-3 proteins directly facilitate Rad53 function in vivo. The data presented account for the previously observed checkpoint defects associated with 14-3-3 mutants in Saccharomyces pombe and Saccharomyces cerevisiae. The 14-3-3 functional interaction appears to modulate Rad53 activity, reminiscent of 14-3-3's effect on human Raf1 kinase and distinct from the indirect mode of regulation by 14-3-3 observed for Chk1 or Cdc25.
Collapse
Affiliation(s)
- Takehiko Usui
- *Laboratory of Chromosome Biology, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021; and
| | - John H. J. Petrini
- *Laboratory of Chromosome Biology, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021; and
- Weill Medical College, Cornell University Graduate School of Medical Sciences, 445 East 69th Street, New York, NY 10021
- To whom correspondence should be addressed at:
Laboratory of Chromosome Biology, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, RRL 901C, New York, NY 10021. E-mail:
| |
Collapse
|