1
|
Xin H, Li Q, Wu X, Yin B, Li J, Zhu J. The Arabidopsis thaliana integrin-like gene AT14A improves drought tolerance in Solanum lycopersicum. JOURNAL OF PLANT RESEARCH 2023:10.1007/s10265-023-01459-3. [PMID: 37133572 DOI: 10.1007/s10265-023-01459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
Using effective genes to improve crop stress tolerance through genetic engineering is an important way to stabilize crop yield and quality across complex climatic environments. Integrin-like AT14A, as a continuum of the cell wall-plasma membrane-cytoskeleton, functions in the regulation of cell wall synthesis, signal transduction, and the response to stress. In this study, AT14A was overexpressed in Solanum lycopersicum L. In transgenic plants, both chlorophyll content and net photosynthetic rate increased. Physiological experiments suggested that the proline content and antioxidant enzyme (superoxide dismutase, catalase, peroxidase) activities of the transgenic line were significantly higher than those of wild-type plants under stress, which contributed to the enhanced water retention capacity and free radical scavenging ability of the transgenic line. Transcriptome analysis revealed that AT14A enhanced drought tolerance by regulating waxy cuticle synthesis genes, such as 3-ketoacyl-CoA synthase 20 (KCS20), non-specific lipid-transfer protein 2 (LTP2), antioxidant enzyme system genes peroxidase 42-like (PER42), and dehydroascorbate reductase (DHAR2). AT14A regulates expression of Protein phosphatase 2 C 51 (PP2C 51) and ABSCISIC ACID-INSENSITIVE 5 (ABI5) to participate in ABA pathways to enhance drought tolerance. In conclusion, AT14A effectively improved photosynthesis and enhanced drought tolerance in S. lycopersicum.
Collapse
Affiliation(s)
- Hongliang Xin
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Qianqin Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - XiaoYan Wu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Bo Yin
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Jin Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China.
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
2
|
Wu Z, Luo L, Wan Y, Liu F. Genome-wide characterization of the PP2C gene family in peanut ( Arachis hypogaea L.) and the identification of candidate genes involved in salinity-stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1093913. [PMID: 36778706 PMCID: PMC9911800 DOI: 10.3389/fpls.2023.1093913] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Plant protein phosphatase 2C (PP2C) play important roles in response to salt stress by influencing metabolic processes, hormone levels, growth factors, etc. Members of the PP2C family have been identified in many plant species. However, they are rarely reported in peanut. In this study, 178 PP2C genes were identified in peanut, which were unevenly distributed across the 20 chromosomes, with segmental duplication in 78 gene pairs. AhPP2Cs could be divided into 10 clades (A-J) by phylogenetic analysis. AhPP2Cs had experienced segmental duplications and strong purifying selection pressure. 22 miRNAs from 14 different families were identified, targeting 57 AhPP2C genes. Gene structures and motifs analysis exhibited PP2Cs in subclades AI and AII had high structural and functional similarities. Phosphorylation sites of AhPP2C45/59/134/150/35/121 were predicted in motifs 2 and 4, which located within the catalytic site at the C-terminus. We discovered multiple MYB binding factors and ABA response elements in the promoter regions of the six genes (AhPP2C45/59/134/150/35/121) by cis-elements analysis. GO and KEGG enrichment analysis confirmed AhPP2C-A genes in protein binding, signal transduction, protein modification process response to abiotic stimulus through environmental information processing. Based on RNA-Seq data of 22 peanut tissues, clade A AhPP2Cs showed a varying degree of tissue specificity, of which, AhPP2C35 and AhPP2C121 specifically expressed in seeds, while AhPP2C45/59/134/150 expressed in leaves and roots. qRT-PCR indicated that AhPP2C45 and AhPP2C134 displayed significantly up-regulated expression in response to salt stress. These results indicated that AhPP2C45 and AhPP2C134 could be candidate PP2Cs conferring salt tolerance. These results provide further insights into the peanut PP2C gene family and indicate PP2Cs potentially involved in the response to salt stress, which can now be further investigated in peanut breeding efforts to obtain cultivars with improved salt tolerance.
Collapse
Affiliation(s)
- Zhanwei Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Lu Luo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yongshan Wan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
3
|
Sobol G, Chakraborty J, Martin GB, Sessa G. The Emerging Role of PP2C Phosphatases in Tomato Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:737-747. [PMID: 35696659 DOI: 10.1094/mpmi-02-22-0037-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The antagonistic effect of plant immunity on growth likely drove evolution of molecular mechanisms that prevent accidental initiation and prolonged activation of plant immune responses. Signaling networks of pattern-triggered and effector-triggered immunity, the two main layers of plant immunity, are tightly regulated by the activity of protein phosphatases that dephosphorylate their protein substrates and reverse the action of protein kinases. Members of the PP2C class of protein phosphatases have emerged as key negative regulators of plant immunity, primarily from research in the model plant Arabidopsis thaliana, revealing the potential to employ PP2C proteins to enhance plant disease resistance. As a first step towards focusing on the PP2C family for both basic and translational research, we analyzed the tomato genome sequence to ascertain the complement of the tomato PP2C family, identify conserved protein domains and signals in PP2C amino acid sequences, and examine domain combinations in individual proteins. We then identified tomato PP2Cs that are candidate regulators of single or multiple layers of the immune signaling network by in-depth analysis of publicly available RNA-seq datasets. These included expression profiles of plants treated with fungal or bacterial pathogen-associated molecular patterns, with pathogenic, nonpathogenic, and disarmed bacteria, as well as pathogenic fungi and oomycetes. Finally, we discuss the possible use of immunity-associated PP2Cs to better understand the signaling networks of plant immunity and to engineer durable and broad disease resistance in crop plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Guy Sobol
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Joydeep Chakraborty
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
4
|
Xing B, Gu C, Zhang T, Zhang Q, Yu Q, Jiang J, Liu G. Functional Study of BpPP2C1 Revealed Its Role in Salt Stress in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2021; 11:617635. [PMID: 33519877 PMCID: PMC7841333 DOI: 10.3389/fpls.2020.617635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/17/2020] [Indexed: 05/15/2023]
Abstract
PP2C protein phosphatase family is one of the largest gene families in the plant genome. Many PP2C family members are involved in the regulation of abiotic stress. We found that BpPP2C1 gene has highly up-regulated in root under salt stress in Betula platyphylla. Thus, transgenic plants of Betula platyphylla with overexpression and knockout of BpPP2C1 gene were generated using a zygote transformation system. Under NaCl stress treatment, we measured the phenotypic traits of transgenic plants, chlorophyll-fluorescence parameters, peroxidase (POD) activity, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content. We found that BpPP2C1 overexpressed lines showed obvious salt tolerance, while BpPP2C1 knocked out plants were sensitive to salt stress. Transcriptome analysis identified significantly amount of differentially expressed genes associated with salt stress in BpPP2C1 transgenic lines, especially genes in abscisic acid signaling pathway, flavonoid biosynthetic pathway, oxidative stress and anion transport. Functional study of BpPP2C1 in Betula platyphylla revealed its role in salt stress.
Collapse
Affiliation(s)
- Baoyue Xing
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chenrui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
García-Andrade J, González B, Gonzalez-Guzman M, Rodriguez PL, Vera P. The Role of ABA in Plant Immunity is Mediated through the PYR1 Receptor. Int J Mol Sci 2020; 21:ijms21165852. [PMID: 32824010 PMCID: PMC7461614 DOI: 10.3390/ijms21165852] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 01/13/2023] Open
Abstract
ABA is involved in plant responses to a broad range of pathogens and exhibits complex antagonistic and synergistic relationships with salicylic acid (SA) and ethylene (ET) signaling pathways, respectively. However, the specific receptor of ABA that triggers the positive and negative responses of ABA during immune responses remains unknown. Through a reverse genetic analysis, we identified that PYR1, a member of the family of PYR/PYL/RCAR ABA receptors, is transcriptionally upregulated and specifically perceives ABA during biotic stress, initiating downstream signaling mediated by ABA-activated SnRK2 protein kinases. This exerts a damping effect on SA-mediated signaling, required for resistance to biotrophic pathogens, and simultaneously a positive control over the resistance to necrotrophic pathogens controlled by ET. We demonstrated that PYR1-mediated signaling exerted control on a priori established hormonal cross-talk between SA and ET, thereby redirecting defense outputs. Defects in ABA/PYR1 signaling activated SA biosynthesis and sensitized plants for immune priming by poising SA-responsive genes for enhanced expression. As a trade-off effect, pyr1-mediated activation of the SA pathway blunted ET perception, which is pivotal for the activation of resistance towards fungal necrotrophs. The specific perception of ABA by PYR1 represented a regulatory node, modulating different outcomes in disease resistance.
Collapse
Affiliation(s)
| | | | | | | | - Pablo Vera
- Correspondence: ; Tel.: +34-963877884; Fax: +34-963877859
| |
Collapse
|
6
|
Phosphatase AtDBP1 negatively regulates drought and salt tolerance through altering leaf surface permeability in Arabidopsis. Mol Biol Rep 2020; 47:3585-3592. [PMID: 32342434 DOI: 10.1007/s11033-020-05451-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/09/2020] [Indexed: 02/03/2023]
Abstract
In our previous study, AtDBP1 encoding a DBP factor was identified as a putative abiotic stress candidate gene. DBP factors are important regulators that participate in both transcriptional regulation and post-translational regulation, but their roles in abiotic stress are still not well-understood. So we conducted a detailed study on the function of AtDBP1 in abiotic stress. It is found that expression of AtDBP1 could be induced by drought and salt, and the induction by salt was inhibited in ABA-deficient mutant aba2-3, indicating the expression of AtDBP1 was ABA-inducible. Overexpression of AtDBP1 resulted in a rapid stomatal closure, and elevated expression of drought/salt-responsive genes, which should help Arabidopsis to enhance the drought and salt tolerance. Unexpectedly, overexpression of AtDBP1 decreased the drought and salt tolerance of Arabidopsis. Further analysis suggested that AtDBP1 is involved in cuticle wax and cuticle membrane regulation. Overexpression of AtDBP1 showed increased cuticular conductance due to a decreased cuticle wax accumulation and cuticle membrane thickness. The cuticular wax provides an essential barrier for decreasing nonstomatal water loss during drought stress, so overexpression of AtDBP1 showed decreased drought tolerance possibly ascribed to the change of cuticle membrane structure. Our previous study elucidated that AtDBP1 was also involved in flowering time regulation. Taken together, the results above indicated that AtDBP1 was involved in both plant development and stress regulation. The mechanism of AtDBP1 in this study indicates that genes involved in both plant development and stress regulation might be not suitable for production application in breeding. Collectively, our results provide some new ideas on purposefully increasing the abiotic stress without influence on plant growth and development.
Collapse
|
7
|
Sargolzaei M, Maddalena G, Bitsadze N, Maghradze D, Bianco PA, Failla O, Toffolatti SL, De Lorenzis G. Rpv29, Rpv30 and Rpv31: Three Novel Genomic Loci Associated With Resistance to Plasmopara viticola in Vitis vinifera. FRONTIERS IN PLANT SCIENCE 2020; 11:562432. [PMID: 33163011 PMCID: PMC7583455 DOI: 10.3389/fpls.2020.562432] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/17/2020] [Indexed: 05/21/2023]
Abstract
Plasmopara viticola (Berk. et Curt.) Berl. and de Toni, the agent of downy mildew, is one of the most important pathogens of European grapevine (Vitis vinifera L.). Extensive evaluation of cultivated grapevine germplasm has highlighted the existence of resistant phenotypes in the Georgian (Southern Caucasus) germplasm. Resistance is shown as a reduction in disease severity. Unraveling the genetic architecture of grapevine response to P. viticola infection is crucial to develop resistant varieties and reduce the impact of disease management. The aim of this work was to apply a genome-wide association (GWA) approach to a panel of Georgian-derived accessions phenotyped for P. viticola susceptibility and genotyped with Vitis18kSNP chip array. GWA identified three highly significant novel loci on chromosomes 14 (Rpv29), 3 (Rpv30) and 16 (Rpv31) associated with a low level of pathogen sporulation. Rpv29, Rpv30, and Rpv31 loci appeared to be associated with plant defense genes against biotic stresses, such as genes involved in pathogen recognition and signal transduction. This study provides the first evidence of resistant loci against P. viticola in V. vinifera germplasm, and identifies potential target genes for breeding P. viticola resistant grapevine cultivars.
Collapse
Affiliation(s)
- Maryam Sargolzaei
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Giuliana Maddalena
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Nana Bitsadze
- Department of Agriculture and Life Sciences, Agricultural University of Georgia, Tbilisi, Georgia
| | - David Maghradze
- Faculty of Viticulture and Winemaking, Caucasus International University, Tbilisi, Georgia
- National Wine Agency of Georgia, Tbilisi, Georgia
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Osvaldo Failla
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Silvia Laura Toffolatti
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
- *Correspondence: Gabriella De Lorenzis,
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
- Silvia Laura Toffolatti,
| |
Collapse
|
8
|
Bhaskara GB, Wong MM, Verslues PE. The flip side of phospho-signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs. PLANT, CELL & ENVIRONMENT 2019; 42:2913-2930. [PMID: 31314921 DOI: 10.1111/pce.13616] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 05/12/2023]
Abstract
Protein phosphorylation is a key signalling mechanism and has myriad effects on protein function. Phosphorylation by protein kinases can be reversed by protein phosphatases, thus allowing dynamic control of protein phosphorylation. Although this may suggest a straightforward kinase-phosphatase relationship, plant genomes contain five times more kinases than phosphatases. Here, we examine phospho-signalling from a protein phosphatase centred perspective and ask how relatively few phosphatases regulate many phosphorylation sites. The most abundant class of plant phosphatases, the protein phosphatase 2Cs (PP2Cs), is surrounded by a web of regulation including inhibitor and activator proteins as well as posttranslational modifications that regulate phosphatase activity, control phosphatase stability, or determine the subcellular locations where the phosphatase is present and active. These mechanisms are best established for the Clade A PP2Cs, which are key components of stress and abscisic acid signalling. We also describe other PP2C clades and illustrate how these phosphatases are highly regulated and involved in a wide range of physiological functions. Together, these examples of multiple layers of phosphatase regulation help explain the unbalanced kinase-phosphatase ratio. Continued use of phosphoproteomics to examine phosphatase targets and phosphatase-kinase relationships will be important for deeper understanding of phosphoproteome regulation.
Collapse
Affiliation(s)
| | - Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
9
|
Zhai H, Ning W, Wu H, Zhang X, Lü S, Xia Z. DNA-binding protein phosphatase AtDBP1 acts as a promoter of flowering in Arabidopsis. PLANTA 2016; 243:623-33. [PMID: 26586176 DOI: 10.1007/s00425-015-2433-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/11/2015] [Indexed: 05/13/2023]
Abstract
We provide evidence that AtDBP1 promotes flowering by regulating the transcript levels of several important integrators and floral meristem identity genes, including FLC, CO, SOC1, LFY, FT and FD. DNA-binding protein phosphatases (DBP) which exhibit both sequence specific DNA-binding and protein phosphatase 2C activities are important regulators that are involved in both the transcriptional and post-translational regulations. DBP factors are known to mediate susceptibility to potyviruses; however, whether they are involved in other processes is still unclear. In this study, under both long day (LD) and short day conditions, AtDBP1 overexpressing plants displayed early flowering, while the knock out mutants, atdbp1, exhibited a delay in flowering relative to the wild-type plants; both the overexpressing lines and atdbp1 mutants remained photoperiodic sensitive, indicating that AtDBP1 was involved in the autonomous pathway. AtDBP1 does not respond to vernalization at transcript level, and both AtDBP1 overexpressing plants and atdbp1 mutants remain responsive to vernalization, indicating that AtDBP1 may not be directly involved in vernalization. Real-time PCR analysis showed that AtDBP1 can suppress FLOWERING LOCUC C (FLC) expression, a key integrator of the autonomous and vernalization pathways, and enhance the expression levels of CONSTANS and FLOWERING LOCUC T, key regulators of the LD pathway. Furthermore, expression of floral meristem identity genes including SUPPRESSOR OF OVEREXPRESSION OF CO 1, LEAFY and FD was also promoted in AtDBP1 overexpressing plants. AtDBP1 transcription can be detected in root, leaf, stem, flower and silique. AtDBP1-GFP and YFP-AtDBP1 fusion protein were localized in the cytosol and nucleus. Our results provide the evidence demonstrating the effective role of AtDBP1 for flowering time regulation and report a novel function of DBP factors in planta besides in plant defense.
Collapse
Affiliation(s)
- Hong Zhai
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wenfeng Ning
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyan Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Xingzheng Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Shixiang Lü
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
10
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
11
|
Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense. PLoS One 2014; 9:e90734. [PMID: 24595057 PMCID: PMC3942490 DOI: 10.1371/journal.pone.0090734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/03/2014] [Indexed: 11/20/2022] Open
Abstract
Arabidopsis thaliana DBP1 belongs to the plant-specific family of DNA-binding protein phosphatases. Although recently identified as a novel host factor mediating susceptibility to potyvirus, little is known about DBP1 targets and partners and the molecular mechanisms underlying its function. Analyzing changes in the phosphoproteome of a loss-of-function dbp1 mutant enabled the identification of 14-3-3λ isoform (GRF6), a previously reported DBP1 interactor, and MAP kinase (MAPK) MPK11 as components of a small protein network nucleated by DBP1, in which GRF6 stability is modulated by MPK11 through phosphorylation, while DBP1 in turn negatively regulates MPK11 activity. Interestingly, grf6 and mpk11 loss-of-function mutants showed altered response to infection by the potyvirus Plum pox virus (PPV), and the described molecular mechanism controlling GRF6 stability was recapitulated upon PPV infection. These results not only contribute to a better knowledge of the biology of DBP factors, but also of MAPK signalling in plants, with the identification of GRF6 as a likely MPK11 substrate and of DBP1 as a protein phosphatase regulating MPK11 activity, and unveils the implication of this protein module in the response to PPV infection in Arabidopsis.
Collapse
|
12
|
The GATA and SORLIP motifs in the 3-hydroxy-3-methylglutaryl-CoA reductase promoter of Picrorhiza kurrooa for the control of light-mediated expression. Funct Integr Genomics 2013; 14:191-203. [PMID: 24318764 DOI: 10.1007/s10142-013-0350-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 10/25/2022]
Abstract
Light upregulates the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in Picrorhiza kurrooa, an endangered medicinal herb. Upstream sequences of HMGR of P. kurrooa (PropkHMGR) were analyzed in relation to its role in light-mediated regulation of gene expression. GATA motif in PropkHMGR exhibited stronger DNA-protein interaction with the nuclear extract of dark-exposed plants in contrast to SORLIP that exhibited stronger binding with the nuclear extract of light-exposed plants. Analysis of PropkHMGR (PropkHMGR-D1, -1,059/-1) and its deletion fragments PropkHMGR-D2 (-825/-1), PropkHMGR-D3 (-651/-1), PropkHMGR-D4 (-452/-1), and PropkHMGR-D5 (-101/-1) in Arabidopsis thaliana showed PropkHMGR to regulate gene expression [β-glucuronidase (GUS) was used as a reporter gene] at all the developmental stages but only in actively dividing tissues, excluding anthers. Whereas, PropkHMGR-D2 regulated GUS expression in relatively older seedlings but the expression was observed only in shoot apical meristem, root tips, and anthers. PropkHMGR-mediated gene expression was higher in dark as compared to that in the light in Arabidopsis across four temperatures studied. As opposed to the results in P. kurrooa, GATA motifs exhibited DNA-protein interaction with nuclear extract of light-exposed plants of Arabidopsis. SORLIP motifs in Arabidopsis also exhibited DNA-protein interaction with nuclear extract of light-exposed plants as in P. kurrooa. Data showed that (1) PropkHMGR regulated light-mediated gene expression and (2) GATA motif exhibited an inverse relationship between strength of DNA-protein interaction and the gene expression whereas the relationship was species specific for SORLIP.
Collapse
|
13
|
Hosseini P, Ovcharenko I, Matthews BF. Using an ensemble of statistical metrics to quantify large sets of plant transcription factor binding sites. PLANT METHODS 2013; 9:12. [PMID: 23578135 PMCID: PMC3639912 DOI: 10.1186/1746-4811-9-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/28/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND From initial seed germination through reproduction, plants continuously reprogram their transcriptional repertoire to facilitate growth and development. This dynamic is mediated by a diverse but inextricably-linked catalog of regulatory proteins called transcription factors (TFs). Statistically quantifying TF binding site (TFBS) abundance in promoters of differentially expressed genes can be used to identify binding site patterns in promoters that are closely related to stress-response. Output from today's transcriptomic assays necessitates statistically-oriented software to handle large promoter-sequence sets in a computationally tractable fashion. RESULTS We present Marina, an open-source software for identifying over-represented TFBSs from amongst large sets of promoter sequences, using an ensemble of 7 statistical metrics and binding-site profiles. Through software comparison, we show that Marina can identify considerably more over-represented plant TFBSs compared to a popular software alternative. CONCLUSIONS Marina was used to identify over-represented TFBSs in a two time-point RNA-Seq study exploring the transcriptomic interplay between soybean (Glycine max) and soybean rust (Phakopsora pachyrhizi). Marina identified numerous abundant TFBSs recognized by transcription factors that are associated with defense-response such as WRKY, HY5 and MYB2. Comparing results from Marina to that of a popular software alternative suggests that regardless of the number of promoter-sequences, Marina is able to identify significantly more over-represented TFBSs.
Collapse
Affiliation(s)
- Parsa Hosseini
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, Virginia, USA
- Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Beltsville, Maryland, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin F Matthews
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Beltsville, Maryland, USA
| |
Collapse
|
14
|
Castelló MJ, Carrasco JL, Navarrete-Gómez M, Daniel J, Granot D, Vera P. A plant small polypeptide is a novel component of DNA-binding protein phosphatase 1-mediated resistance to plum pox virus in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:2206-15. [PMID: 22021419 PMCID: PMC3327197 DOI: 10.1104/pp.111.188953] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 10/20/2011] [Indexed: 05/21/2023]
Abstract
DNA-binding protein phosphatases (DBPs) have been identified as a novel class of plant-specific regulatory factors playing a role in plant-virus interactions. NtDBP1 from tobacco (Nicotiana tabacum) was shown to participate in transcriptional regulation of gene expression in response to virus infection in compatible interactions, and AtDBP1, its closest relative in the model plant Arabidopsis (Arabidopsis thaliana), has recently been found to mediate susceptibility to potyvirus, one of the most speciose taxa of plant viruses. Here, we report on the identification of a novel family of highly conserved small polypeptides that interact with DBP1 proteins both in tobacco and Arabidopsis, which we have designated DBP-interacting protein 2 (DIP2). The interaction of AtDIP2 with AtDBP1 was demonstrated in vivo by bimolecular fluorescence complementation, and AtDIP2 was shown to functionally interfere with AtDBP1 in yeast. Furthermore, reducing AtDIP2 gene expression leads to increased susceptibility to the potyvirus Plum pox virus and to a lesser extent also to Turnip mosaic virus, whereas overexpression results in enhanced resistance. Therefore, we describe a novel family of conserved small polypeptides in plants and identify AtDIP2 as a novel host factor contributing to resistance to potyvirus in Arabidopsis.
Collapse
Affiliation(s)
- María José Castelló
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Ramírez V, Agorio A, Coego A, García-Andrade J, Hernández MJ, Balaguer B, Ouwerkerk PB, Zarra I, Vera P. MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1920-35. [PMID: 21282403 PMCID: PMC3091096 DOI: 10.1104/pp.110.171843] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/31/2011] [Indexed: 05/18/2023]
Abstract
In this study, we show that the Arabidopsis (Arabidopsis thaliana) transcription factor MYB46, previously described to regulate secondary cell wall biosynthesis in the vascular tissue of the stem, is pivotal for mediating disease susceptibility to the fungal pathogen Botrytis cinerea. We identified MYB46 by its ability to bind to a new cis-element located in the 5' promoter region of the pathogen-induced Ep5C gene, which encodes a type III cell wall-bound peroxidase. We present genetic and molecular evidence indicating that MYB46 modulates the magnitude of Ep5C gene induction following pathogenic insults. Moreover, we demonstrate that different myb46 knockdown mutant plants exhibit increased disease resistance to B. cinerea, a phenotype that is accompanied by selective transcriptional reprogramming of a set of genes encoding cell wall proteins and enzymes, of which extracellular type III peroxidases are conspicuous. In essence, our results substantiate that defense-related signaling pathways and cell wall integrity are interconnected and that MYB46 likely functions as a disease susceptibility modulator to B. cinerea through the integration of cell wall remodeling and downstream activation of secondary lines of defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain (V.R., A.A., A.C., J.G.-A., M.J.H., B.B., P.V.); Institute of Biology, Leiden University, 2333 CC Leiden, The Netherlands (P.B.F.O.); Departamento de Fisiología Vegetal, Universidad de Santiago, Campus Sur, 15782 Santiago de Compostela, Spain (I.Z.)
| |
Collapse
|
16
|
Weirauch MT, Hughes TR. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. Subcell Biochem 2011; 52:25-73. [PMID: 21557078 DOI: 10.1007/978-90-481-9069-0_3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Transcription factors (TFs) play key roles in the regulation of gene expression by binding in a sequence-specific manner to genomic DNA. In eukaryotes, DNA binding is achieved by a wide range of structural forms and motifs. TFs are typically classified by their DNA-binding domain (DBD) type. In this chapter, we catalogue and survey 91 different TF DBD types in metazoa, plants, fungi, and protists. We briefly discuss well-characterized TF families representing the major DBD superclasses. We also examine the species distributions and inferred evolutionary histories of the various families, and the potential roles played by TF family expansion and dimerization.
Collapse
Affiliation(s)
- Matthew T Weirauch
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada,
| | | |
Collapse
|
17
|
Castelló MJ, Carrasco JL, Vera P. DNA-binding protein phosphatase AtDBP1 mediates susceptibility to two potyviruses in Arabidopsis. PLANT PHYSIOLOGY 2010; 153:1521-5. [PMID: 20508138 PMCID: PMC2923898 DOI: 10.1104/pp.110.158923] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
18
|
Wang H, Waller L, Tripathy S, St. Martin SK, Zhou L, Krampis K, Tucker DM, Mao Y, Hoeschele I, Saghai Maroof M, Tyler BM, Dorrance AE. Analysis of Genes Underlying Soybean Quantitative Trait Loci Conferring Partial Resistance to
Phytophthora sojae. THE PLANT GENOME 2010. [PMID: 0 DOI: 10.3835/plantgenome2009.12.0029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Hehe Wang
- Dep. of Plant PathologyThe Ohio State Univ.WoosterOH44691
| | - LaChelle Waller
- Virginia Bioinformatics Inst., Virginia Polytechnic Inst. and State Univ.BlacksburgVA24061
| | - Sucheta Tripathy
- Virginia Bioinformatics Inst., Virginia Polytechnic Inst. and State Univ.BlacksburgVA24061
| | | | - Lecong Zhou
- Virginia Bioinformatics Inst., Virginia Polytechnic Inst. and State Univ.BlacksburgVA24061
- Dep. of Crop and Soil Environmental SciencesVirginia Polytechnic Inst. and State Univ.BlacksburgVA24061
| | - Konstantinos Krampis
- Virginia Bioinformatics Inst., Virginia Polytechnic Inst. and State Univ.BlacksburgVA24061
- Dep. of Crop and Soil Environmental SciencesVirginia Polytechnic Inst. and State Univ.BlacksburgVA24061
| | - Dominic M. Tucker
- Dep. of Crop and Soil Environmental SciencesVirginia Polytechnic Inst. and State Univ.BlacksburgVA24061
| | - Yongcai Mao
- Virginia Bioinformatics Inst., Virginia Polytechnic Inst. and State Univ.BlacksburgVA24061
| | - Ina Hoeschele
- Virginia Bioinformatics Inst., Virginia Polytechnic Inst. and State Univ.BlacksburgVA24061
- Dep. of StatisticsVirginia Polytechnic Inst. and State Univ.BlacksburgVA24061
| | - M.A. Saghai Maroof
- Dep. of Crop and Soil Environmental SciencesVirginia Polytechnic Inst. and State Univ.BlacksburgVA24061
| | - Brett M. Tyler
- Virginia Bioinformatics Inst., Virginia Polytechnic Inst. and State Univ.BlacksburgVA24061
| | | |
Collapse
|
19
|
Chen KX, Li ZG. Exploring the structural requirements for jasmonates and related compounds as novel plant growth regulators: a current computational perspective. PLANT SIGNALING & BEHAVIOR 2009; 4:1007-9. [PMID: 20009552 PMCID: PMC2819504 DOI: 10.4161/psb.4.11.9717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Jasmonates and related compounds have been highlighted recently in the field of plant physiology and plant molecular biology due to their significant regulatory roles in the signaling pathway for the diverse aspects of plant development and survival. Though a considerable amount of studies concerning their biological effects in different plants have been widely reported, the molecular details of the signaling mechanism are still poorly understood. This review sheds new light on the structural requirements for the bioactivity/property of jasmonic acid derivatives in current computational perspective, which differs from previous research that mainly focus on their biological evaluation, gene and metabolic regulation and the enzymes in their biosynthesis. The computational results may contribute to further understanding the mechanism of drug-receptor interactions in their signaling pathway and designing novel plant growth regulators as high effective ecological pesticides.
Collapse
Affiliation(s)
- Ke-Xian Chen
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, China
| | | |
Collapse
|
20
|
Hu X, Zhang H, Li G, Yang Y, Zheng Z, Song F. Ectopic expression of a rice protein phosphatase 2C gene OsBIPP2C2 in tobacco improves disease resistance. PLANT CELL REPORTS 2009; 28:985-95. [PMID: 19381642 DOI: 10.1007/s00299-009-0701-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 02/12/2009] [Accepted: 03/31/2009] [Indexed: 05/04/2023]
Abstract
Protein phosphatase 2Cs (PP2Cs) have been demonstrated to play critical roles in regulation of plant growth/development, abscisic acid signaling pathway and adaptation to environmental stresses. Here we report the cloning and molecular characterization of a novel rice protein phosphatase 2C gene, OsBIPP2C2 (Oryza sativa L. BTH-induced protein phosphatase 2C 2). OsBIPP2C2 has three alternatively spliced transcripts and the largest transcript OsBIPP2C2a encodes a 380 aa protein containing all 11 conserved catalytic subdomains of PP2Cs. Expression of OsBIPP2C2a was significantly induced by benzothiadiazole (BTH), one of defense-related signal molecules in plants. Expression of OsBIP2C2a was induced by infection with the blast fungus, Magnaporthe grisea, and the pathogen-induced expression of OsBIPP2C2a in BTH-treated rice seedlings was much earlier and stronger than those in water-treated seedlings. Overexpression of OsBIPP2C2a in transgenic tobacco plants resulted in increased disease resistance against tobacco mosaic virus and Phytophthora parasitica var. nicotianae. Importantly, the OsBIPP2C2a-overexpressing transgenic tobacco plants showed constitutive expression of defense-related genes. These results suggest that OsBIPP2C2a may play an important role in disease resistance through activation of defense response.
Collapse
Affiliation(s)
- Xuebo Hu
- State Key Laboratory of Rice Biology, Department of Plant Protection, Institute of Biotechnology, Zhejiang University-Huajiachi Campus, 310029, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Doi K, Hosaka A, Nagata T, Satoh K, Suzuki K, Mauleon R, Mendoza MJ, Bruskiewich R, Kikuchi S. Development of a novel data mining tool to find cis-elements in rice gene promoter regions. BMC PLANT BIOLOGY 2008; 8:20. [PMID: 18302796 PMCID: PMC2270273 DOI: 10.1186/1471-2229-8-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 02/27/2008] [Indexed: 05/24/2023]
Abstract
BACKGROUND Information on more than 35 000 full-length Oryza sativa cDNAs, together with associated microarray gene expression data collected under various treatment conditions, has made it feasible to identify motifs that are conserved in gene promoters and may act as cis-regulatory elements with key roles under the various conditions. RESULTS We have developed a novel tool that searches for cis-element candidates in the upstream, downstream, or coding regions of differentially regulated genes. The tool first lists cis-element candidates by motif searching based on the supposition that if there are cis-elements playing important roles in the regulation of a given set of genes, they will be statistically overrepresented and will be conserved. Then it evaluates the likelihood scores of the listed candidate motifs by association rule analysis. This strategy depends on the idea that motifs overrepresented in the promoter region could play specific roles in the regulation of expression of these genes. The tool is designed so that any biological researchers can use it easily at the publicly accessible Internet site http://hpc.irri.cgiar.org/tool/nias/ces. We evaluated the accuracy and utility of the tool by using a dataset of auxin-inducible genes that have well-studied cis-elements. The test showed the effectiveness of the tool in identifying significant relationships between cis-element candidates and related sets of genes. CONCLUSION The tool lists possible cis-element motifs corresponding to genes of interest, and it will contribute to the deeper understanding of gene regulatory mechanisms in plants.
Collapse
Affiliation(s)
- Koji Doi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Aeni Hosaka
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Toshifumi Nagata
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kouji Satoh
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kohji Suzuki
- Hitachi Software Engineering Japan Co., Ltd., 6-81 Onoe-cho, Naka-ku, Yokohama 231-0015, Japan
| | - Ramil Mauleon
- International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Michael J Mendoza
- International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | | | - Shoshi Kikuchi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
22
|
Prats E, Martínez F, Rojas-Molina MM, Rubiales D. Differential effects of phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase, and energetic metabolism inhibition on resistance of appropriate host and nonhost cereal-rust interactions. PHYTOPATHOLOGY 2007; 97:1578-1583. [PMID: 18943718 DOI: 10.1094/phyto-97-12-1578] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Effects of phenylpropanoid and energetic metabolism inhibition on resistance were studied during appropriate host and nonhost cereal-rust interactions. In the appropriate barley-Puccinia hordei interaction, phenylalanine ammonia lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) inhibition reduced penetration resistance in two genotypes, suggesting a role for phenolics and lignins in resistance. Interestingly, penetration resistance of the barley genotype 17.5.16 was not affected by phenylpropanoid biosynthesis but penetration resistance was almost completely inhibited by D-mannose, which reduces the energy available in plant host cells. This suggests a parallel in the cellular basis of penetration resistance between 17.5.16 rust and mlo barleys powdery mildew interaction. Results revealed differing patterns of programmed cell death (PCD) in appropriate versus nonhost rust interactions. PAL and CAD inhibitors reduced PCD (hypersensitivity) in appropriate interactions. Conversely, they had no effect in PCD of wheat to P. hordei; whereas D-mannose dramatically reduced nonhost resistance and allowed colony establishment. The differential effects of inhibitors in the expression of the different resistances and the commonalities with the cereal-powdery mildew interaction is analyzed and discussed.
Collapse
|
23
|
Del Mar Rojas-Molina M, Rubiales D, Prats E, Sillero JC. Effects of phenylpropanoid and energetic metabolism inhibition on faba bean resistance mechanisms to rust. PHYTOPATHOLOGY 2007; 97:60-5. [PMID: 18942937 DOI: 10.1094/phyto-97-0060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
ABSTRACT Effects on penetration and hypersensitive resistance of the cinnamyl acid dehydrogenase (CAD) suicide inhibitor ([(2-hydroxyphenyl) amino] sulphinyl) acetic acid, 1.1 dimethyl ester, which suppresses phenylpro-panoid biosynthesis, and of D-mannose, which sequesters phosphate and reduces energy available in host cells, were studied in faba bean (Vicia faba) genotypes with differing resistance mechanisms to faba bean rust (Uromyces viciae-fabae). Inhibition of CAD reduced penetration resistance in lines 2N-34, 2N-52, V-1271, and V-1272, revealing an important role for phenylpropanoid biosynthesis in the resistance of these lines. Inhibition of CAD also inhibited hypersensitive cell death in these lines. D-mannose had little or no effect on resistance. By contrast, CAD inhibition did not affect penetration resistance of line BPL-261, which has a high degree of penetration resistance not associated with hypersensitive cell death. In BPL-261, D-mannose inhibited penetration resistance. The parallelism between the faba bean genotype responses to rust observed here and the response of barley genotypes with differing resistance mechanisms to powdery mildew after similar inhibitor treatments is analyzed and discussed.
Collapse
|
24
|
Carrasco JL, Castelló MJ, Vera P. 14-3-3 mediates transcriptional regulation by modulating nucleocytoplasmic shuttling of tobacco DNA-binding protein phosphatase-1. J Biol Chem 2006; 281:22875-81. [PMID: 16762921 DOI: 10.1074/jbc.m512611200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tobacco DBP1 is the founding member of a novel class of plant transcription factors featuring sequence-specific DNA binding and protein phosphatase activity. To understand the mechanisms underlying the function of this family of transcriptional regulators, we have identified the tobacco 14-3-3 isoform G as the first protein interacting with a DBP factor. 14-3-3 recognition involves the N-terminal region of DBP1, which also supports the DNA binding activity attributed to DBP1. The relevance of this interaction is reinforced by its conservation in Arabidopsis plants, where the closest relative of DBP1 in this species also interacts with a homologous 14-3-3 protein through its N-terminal region. Furthermore, we show that in planta 14-3-3 G is directly involved in regulating DBP1 function by promoting nuclear export and subsequent cytoplasmic retention of DBP1 under conditions that in turn alleviate DBP1-mediated repression of target gene expression.
Collapse
Affiliation(s)
- José L Carrasco
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | | | | |
Collapse
|
25
|
Prats E, Carver TLW, Lyngkjær MF, Roberts PC, Zeyen RJ. Induced inaccessibility and accessibility in the oat powdery mildew system: insights gained from use of metabolic inhibitors and silicon nutrition. MOLECULAR PLANT PATHOLOGY 2006; 7:47-59. [PMID: 20507427 DOI: 10.1111/j.1364-3703.2005.00315.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Fungal-induced inaccessibility in oat to Blumeria graminis requires active cell processes. These are reiterative de novo cell processes involved in inherent penetration resistance. Therefore, induced inaccessibility may well involve cellular memory of the initial attack. Phenylpropanoid biosynthesis inhibitors (AOPP and OH-PAS) and phosphate scavengers (DDG and d-mannose) strongly suppressed induced inaccessibility, but silicon nutrition had no effect. Induced accessibility was modulated by the presence of fungal haustoria inside cells. Haustoria actively suppress or reprogram infected plant cells toward a constant state of penetration susceptibility. Neither inhibitor treatments nor silicon nutrition affected fungal-induced accessibility.
Collapse
Affiliation(s)
- Elena Prats
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | | | | | | | | |
Collapse
|
26
|
Li J, Li X, Guo L, Lu F, Feng X, He K, Wei L, Chen Z, Qu LJ, Gu H. A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1263-73. [PMID: 16531467 DOI: 10.1093/jxb/erj094] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
MYB transcription factor genes play important roles in many developmental processes and in various defence responses of plants. Two Arabidopsis R2R3-type MYB genes, AtMYB59 and AtMYB48, were found to undergo similar alternative splicing. Both genes have four distinctively spliced transcripts that encode either MYB-related proteins or R2R3-MYB proteins. An extensive BLAST search of the GenBank database resulted in finding and cloning two rice homologues, both of which were also found to share a similar alternative splicing pattern. In a semi-quantitative study, the expression of one splice variant of AtMYB59 was found to be differentially regulated in treatments with different phytohormones and stresses. GFP fusion protein analysis revealed that both of the two predicted nuclear localization signals (NLSs) in the R3 domain are required for localizing to the nucleus. Promoter-GUS analysis in transgenic plants showed that 5'-UTR is sufficient for the translation initiation of type 3 transcripts (encoding R2R3-MYB proteins), but not for type 2 transcripts (encoding MYB-related proteins). Moreover, a new type of non-canonical intron, with the same nucleotide repeats at the 5' and 3' splice sites, was identified. Thirty-eight Arabidopsis and rice genes were found to have this type of non-canonical intron, most of which undergo alternative splicing. These data suggest that this subgroup of transcription factor genes may be involved in multiple biological processes and may be transcriptionally regulated by alternative splicing.
Collapse
Affiliation(s)
- Jigang Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gurr SJ, Rushton PJ. Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 2005; 23:283-90. [PMID: 15922080 DOI: 10.1016/j.tibtech.2005.04.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 03/21/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
Precise control of transgene expression is pivotal to the engineering of plants with increased disease resistance. Many early attempts to boost disease resistance used constitutive overexpression of defence components but frequently this resulted in poor quality plants. It is now clear that the extensive cellular reprogramming associated with defence will reduce yields if uncontrolled defence reactions are activated in uninfected cells. Therefore, for many strategies pathogen-inducible promoters might be the most useful as they limit the cost of resistance by restricting expression to infection sites. Although progress to date has been hindered by a lack of suitable promoters, new research should reveal more potentially useful native promoters. Additionally, the first steps towards 'designer' synthetic promoters have proved encouraging.
Collapse
Affiliation(s)
- Sarah J Gurr
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | |
Collapse
|
28
|
Gurr SJ, Rushton PJ. Engineering plants with increased disease resistance: what are we going to express? Trends Biotechnol 2005; 23:275-82. [PMID: 15922079 DOI: 10.1016/j.tibtech.2005.04.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 02/16/2005] [Accepted: 04/06/2005] [Indexed: 01/15/2023]
Abstract
To engineer plants with increased and durable disease resistance using transgenic technologies we must address two questions. First, what gene or genes do we want to express to improve disease resistance, and second, how are we going to express these genes so that crop yields are actually increased? Emerging technologies are providing us with a plethora of candidate genes that might lead to enhanced crop protection through genetic engineering. These genes can come from plants, from pathogens or from other organisms and several strategies for their manipulation show promise. Here, we discuss recent advances and consider future perspectives for producing plants with durable disease resistance.
Collapse
Affiliation(s)
- Sarah J Gurr
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | |
Collapse
|
29
|
Coego A, Ramirez V, Ellul P, Mayda E, Vera P. The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:283-293. [PMID: 15807789 DOI: 10.1111/j.1365-313x.2005.02372.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacterial speck caused by the pathogen Pseudomonas syringae pv. tomato (P. s. tomato) is a devastating disease of tomato plants. Here we show that inhibition of Ep5C gene expression, which encodes a secreted cationic peroxidase, is sufficient to confer resistance against P. s. tomato. The inhibition of Ep5C protein accumulation in antisense tomato plants established resistance that was not accompanied by the pre-activation of known defense pathways. Therefore, Ep5C inhibition represents a novel form of disease resistance based on a loss-of-gene function in the plant required for successful infection by a compatible bacterial pathogen. Ep5C expression is rapidly induced by H2O2, a reactive oxygen intermediate normally generated during the course of a plant-pathogen interaction. This was corroborated by monitoring the expression of an Ep5C-GUS gene in transgenic Arabidopsis plants. Collectively, these results identify a signaling pathway that uses early signals generated during the oxidative burst, such as H2O2, for the selective activation of host factors required for mounting a compatible interaction. Thus, Ep5C provides a new resource for developing bacterial speck disease-resistant varieties.
Collapse
Affiliation(s)
- Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, U.P.V.-C.S.I.C., Camino de Vera, s/n 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
30
|
Carrasco JL, Ancillo G, Castelló MJ, Vera P. A novel DNA-binding motif, hallmark of a new family of plant transcription factors. PLANT PHYSIOLOGY 2005; 137:602-6. [PMID: 15710688 PMCID: PMC1065360 DOI: 10.1104/pp.104.056002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- José L Carrasco
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | | | | | | |
Collapse
|