1
|
Wu H, Wei T, Yu B, Cheng R, Huang F, Lu X, Yan Y, Wang X, Liu C, Zhu B. A single mutation attenuates both the transcription termination and RNA-dependent RNA polymerase activity of T7 RNA polymerase. RNA Biol 2021; 18:451-466. [PMID: 34314299 PMCID: PMC8677023 DOI: 10.1080/15476286.2021.1954808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022] Open
Abstract
Transcription termination is one of the least understood processes of gene expression. As the prototype model for transcription studies, the single-subunit T7 RNA polymerase (RNAP) is known to respond to two types of termination signals, but the mechanism underlying such termination, especially the specific elements of the polymerase involved, is still unclear, due to a lack of knowledge with respect to the structure of the termination complex. Here we applied phage-assisted continuous evolution to obtain variants of T7 RNAP that can bypass the typical class I T7 terminator with stem-loop structure. Through in vivo selection and in vitro characterization, we discovered a single mutation (S43Y) that significantly decreased the termination efficiency of T7 RNAP at all transcription terminators tested. Coincidently, the S43Y mutation almost eliminates the RNA-dependent RNAP (RdRp) activity of T7 RNAP without impeding the major DNA-dependent RNAP (DdRp) activity of the enzyme. S43 is located in a hinge region and regulates the transformation between transcription initiation and elongation of T7 RNAP. Steady-state kinetics analysis and an RNA binding assay indicate that the S43Y mutation increases the transcription efficiency while weakening RNA binding of the enzyme. As an enzymatic reagent for in vitro transcription, the T7 RNAP S43Y mutant reduces the undesired termination in run-off RNA synthesis and produces RNA with higher terminal homogeneity.
Collapse
Affiliation(s)
- Hui Wu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Ting Wei
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, ShenzhenChina
| | - Bingbing Yu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Rui Cheng
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Fengtao Huang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Xuelin Lu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Yan Yan
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Xionglue Wang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, ShenzhenChina
- University of Chinese Academy of Sciences, BeijingChina
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, HubeiChina
| |
Collapse
|
2
|
Qian J, Dunlap D, Finzi L. Basic mechanisms and kinetics of pause-interspersed transcript elongation. Nucleic Acids Res 2021; 49:15-24. [PMID: 33330935 PMCID: PMC7797061 DOI: 10.1093/nar/gkaa1182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
RNA polymerase pausing during elongation is an important mechanism in the regulation of gene expression. Pausing along DNA templates is thought to be induced by distinct signals encoded in the nucleic acid sequence and halt elongation complexes to allow time for necessary co-transcriptional events. Pausing signals have been classified as those producing short-lived elemental, long-lived backtracked, or hairpin-stabilized pauses. In recent years, structural microbiology and single-molecule studies have significantly advanced our understanding of the paused states, but the dynamics of these states are still uncertain, although several models have been proposed to explain the experimentally observed pausing behaviors. This review summarizes present knowledge about the paused states, discusses key discrepancies among the kinetic models and their basic assumptions, and highlights the importance and challenges in constructing theoretical models that may further our biochemical understanding of transcriptional pausing.
Collapse
Affiliation(s)
- Jin Qian
- Physics, Emory University, Atlanta, GA 30307, USA
| | - David Dunlap
- Physics, Emory University, Atlanta, GA 30307, USA
| | - Laura Finzi
- Physics, Emory University, Atlanta, GA 30307, USA
| |
Collapse
|
3
|
Trasviña-Arenas CH, Baruch-Torres N, Cordoba-Andrade FJ, Ayala-García VM, García-Medel PL, Díaz-Quezada C, Peralta-Castro A, Ordaz-Ortiz JJ, Brieba LG. Identification of a unique insertion in plant organellar DNA polymerases responsible for 5'-dRP lyase and strand-displacement activities: Implications for Base Excision Repair. DNA Repair (Amst) 2018. [PMID: 29522990 DOI: 10.1016/j.dnarep.2018.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plant mitochondrial and chloroplast genomes encode essential proteins for oxidative phosphorylation and photosynthesis. For proper cellular function, plant organelles must ensure genome integrity. Although plant organelles repair damaged DNA using the multi-enzyme Base Excision Repair (BER) pathway, the details of this pathway in plant organelles are largely unknown. The initial enzymatic steps in BER produce a 5'-deoxyribose phosphate (5'-dRP) moiety that must be removed to allow DNA ligation and in plant organelles, the enzymes responsible for the removal of a 5'-dRP group are unknown. In metazoans, DNA polymerases (DNAPs) remove the 5'-dRP moiety using their intrinsic lyase and/or strand-displacement activities during short or long-patch BER sub-pathways, respectively. The plant model Arabidopsis thaliana encodes two family-A DNAPs paralogs, AtPolIA and AtPolIB, which are the sole DNAPs in plant organelles identified to date. Herein we demonstrate that both AtPolIs present 5'-dRP lyase activities. AtPolIB performs efficient strand-displacement on a BER-associated 1-nt gap DNA substrate, whereas AtPolIA exhibits only moderate strand-displacement activity. Both lyase and strand-displacement activities are dependent on an amino acid insertion that is exclusively present in plant organellar DNAPs. Within this insertion, we identified that residue AtPollB-Lys593 acts as nucleophile for lyase activity. Our results demonstrate that AtPolIs are functionally equipped to play a role in short-patch BER and suggest a major role of AtPolIB in a predicted long-patch BER sub-pathway. We propose that the acquisition of insertion 1 in the polymerization domain of AtPolIs was a key component in their evolution as BER associated and replicative DNAPs.
Collapse
Affiliation(s)
- Carlos H Trasviña-Arenas
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Noe Baruch-Torres
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Francisco J Cordoba-Andrade
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Víctor M Ayala-García
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Paola L García-Medel
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Corina Díaz-Quezada
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Antolín Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - José Juan Ordaz-Ortiz
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
4
|
Velazquez G, Sousa R, Brieba LG. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding. RNA Biol 2016; 12:514-24. [PMID: 25654332 DOI: 10.1080/15476286.2015.1014283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Single subunit RNA polymerases have evolved 2 mechanisms to synthesize long transcripts without falling off a DNA template: binding of nascent RNA and interactions with an RNA:DNA hybrid. Mitochondrial RNA polymerases share a common ancestor with T-odd bacteriophage single subunit RNA polymerases. Herein we characterized the role of the thumb subdomain of the yeast mtRNA polymerase gene (RPO41) in complex stability, processivity, and fidelity. We found that deletion and point mutants of the thumb subdomain of yeast mtRNA polymerase increase the synthesis of abortive transcripts and the probability that the polymerase will disengage from the template during the formation of the late initial transcription and elongation complexes. Mutations in the thumb subdomain increase the amount of slippage products from a homopolymeric template and, unexpectedly, thumb subdomain deletions decrease the binding affinity for mitochondrial transcription factor (Mtf1). The latter suggests that the thumb subdomain is part of an extended binding surface area involved in binding Mtf1.
Collapse
Affiliation(s)
- Gilberto Velazquez
- a Laboratorio Nacional de Genómica para la Biodiversidad ; Centro de Investigación y de Estudios ; Irapuato , Guanajuato , México
| | | | | |
Collapse
|
5
|
O'Sullivan JM, Pai DA, Cridge AG, Engelke DR, Ganley ARD. The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure? Biomol Concepts 2015; 4:277-86. [PMID: 25436580 DOI: 10.1515/bmc-2012-0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/21/2012] [Indexed: 11/15/2022] Open
Abstract
The nucleolus is a prominent nuclear structure that is the site of ribosomal RNA (rRNA) transcription, and hence ribosome biogenesis. Cellular demand for ribosomes, and hence rRNA, is tightly linked to cell growth and the rRNA makes up the majority of all the RNA within a cell. To fulfill the cellular demand for rRNA, the ribosomal RNA (rDNA) genes are amplified to high copy number and transcribed at very high rates. As such, understanding the rDNA has profound consequences for our comprehension of genome and transcriptional organization in cells. In this review, we address the question of whether the nucleolus is a raft adrift the sea of nuclear DNA, or actively contributes to genome organization. We present evidence supporting the idea that the nucleolus, and the rDNA contained therein, play more roles in the biology of the cell than simply ribosome biogenesis. We propose that the nucleolus and the rDNA are central factors in the spatial organization of the genome, and that rapid alterations in nucleolar structure in response to changing conditions manifest themselves in altered genomic structures that have functional consequences. Finally, we discuss some predictions that result from the nucleolus having a central role in nuclear organization.
Collapse
|
6
|
Zhang J, Russu IM. Site-Resolved Structural Energetics of the T7 Concatemer Junction. Biochemistry 2014; 53:4806-13. [DOI: 10.1021/bi500393q] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Zhang
- Department of Chemistry and
Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Irina M. Russu
- Department of Chemistry and
Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
7
|
Limanskaya O, Limanskii A. Study of elongation complexes for T7 RNA polymerase. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Kerby MB, Sarma AA, Patel MS, Artenstein AW, Opal SM, Tripathi A. Early in vitro transcription termination in human H5 influenza viral RNA synthesis. Appl Biochem Biotechnol 2011; 164:497-513. [PMID: 21207185 DOI: 10.1007/s12010-010-9152-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
Rapid diagnostic identification of the human H5 influenza virus is a strategic cornerstone for outbreak prevention. We recently reported a method for direct detection of viral RNA from a highly pathogenic human H5 influenza strain (A/Hanoi/30408/2005(H5N1)), which necessarily was transcribed in vitro from non-viral sources. This article provides an in-depth analysis of the reaction conditions for in vitro transcription (IVT) of full-length influenza H5 RNA, which is needed for diagnostic RNA production, for the T7 and SP6 phage promoter systems. Gel analysis of RNA transcribed from plasmids containing the H5 sequence between a 5' SP6 promoter and 3' restriction site (BsmBI) showed that three sequence-verified bands at 1,776, 784, and 591 bases were consistently produced, whereas only one 1,776-base band was expected. These fragments were not observed in H1 or H3 influenza RNA transcribed under similar conditions. A reverse complement of the sequence produced only a single band at 1,776 bases, which suggested either self-cleavage or early termination. Aliquots of the IVT reaction were quenched with EDTA to track the generation of the bands over time, which maintained a constant concentration ratio. The H5 sequence was cloned with T7 and SP6 RNA polymerase promoters to allow transcription in either direction with either polymerase. The T7 transcription product from purified, restricted plasmids in the vRNA direction only produced the 1,776-base full-length sequence and the 784-base fragment, instead of the three bands generated by the SP6 system, suggesting an early termination mechanism. Additionally, the T7 system produced a higher fraction of full-length vRNA transcripts than the SP6 system did under similar reaction conditions. By sequencing we identified a type II RNA hairpin loop terminator, which forms in a transcription direction-dependent fashion. Variation of the magnesium concentration produced the greatest impact on termination profiles, where some reaction mixtures were unable to produce full-length transcripts. Optimized conditions are presented for the T7 and SP6 phage polymerase systems to minimize these early termination events during in vitro transcription of H5 influenza vRNA.
Collapse
Affiliation(s)
- Matthew B Kerby
- School of Engineering and Division of Biology and Medicine, Biomedical Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
9
|
Bai L, Wang MD. Comparison of Pause Predictions of Two Sequence-Dependent Transcription Models. JOURNAL OF STATISTICAL MECHANICS (ONLINE) 2010; 2010:P12007. [PMID: 22446379 PMCID: PMC3310166 DOI: 10.1088/1742-5468/2010/12/p12007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two recent theoretical models, Bai et al. (2004, 2007) and Tadigotla et al. (2006), formulated thermodynamic explanations of sequence-dependent transcription pausing by RNA polymerase (RNAP). The two models differ in some basic assumptions and therefore make different yet overlapping predictions for pause locations, and different predictions on pause kinetics and mechanisms. Here we present a comprehensive comparison of the two models. We show that while they have comparable predictive power of pause locations at low NTP concentrations, the Bai et al. model is more accurate than Tadigotla et al. at higher NTP concentrations. Pausing kinetics predicted by Bai et al. is also consistent with time-course transcription reactions, while Tadigotla et al. is unsuited for this type of kinetic prediction. More importantly, the two models in general predict different pausing mechanisms even for the same pausing sites, and the Bai et al. model provides an explanation more consistent with recent single molecule observations.
Collapse
Affiliation(s)
- Lu Bai
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D. Wang
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Rodríguez I, Lázaro JM, Salas M, de Vega M. Involvement of the TPR2 subdomain movement in the activities of phi29 DNA polymerase. Nucleic Acids Res 2008; 37:193-203. [PMID: 19033368 PMCID: PMC2615600 DOI: 10.1093/nar/gkn928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The polymerization domain of phi29 DNA polymerase acquires a toroidal shape by means of an arch-like structure formed by the specific insertion TPR2 (Terminal Protein Region 2) and the thumb subdomain. TPR2 is connected to the fingers and palm subdomains through flexible regions, suggesting that it can undergo conformational changes. To examine whether such changes take place, we have constructed a phi29 DNA polymerase mutant able to form a disulfide bond between the apexes of TPR2 and thumb to limit the mobility of TPR2. Biochemical analysis of the mutant led us to conclude that TPR2 moves away from the thumb to allow the DNA polymerase to replicate circular ssDNA. Despite the fact that no TPR2 motion is needed to allow the polymerase to use the terminal protein (TP) as primer during the initiation of phi29 TP-DNA replication, the disulfide bond prevents the DNA polymerase from entering the elongation phase, suggesting that TPR2 movements are necessary to allow the TP priming domain to move out from the polymerase during transition from initiation to elongation. Furthermore, the TPR2-thumb bond does not affect the equilibrium between the polymerization and exonuclease activities, leading us to propose a primer-terminus transference model between both active sites.
Collapse
Affiliation(s)
- Irene Rodríguez
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Nayak D, Siller S, Guo Q, Sousa R. Mechanism of T7 RNAP pausing and termination at the T7 concatemer junction: a local change in transcription bubble structure drives a large change in transcription complex architecture. J Mol Biol 2008; 376:541-53. [PMID: 18166198 PMCID: PMC2254762 DOI: 10.1016/j.jmb.2007.11.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/27/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
The T7RNA polymerase (RNAP) elongation complex (EC) pauses and is destabilized at a unique 8 nucleotide (nt) sequence found at the junction of the head-to-tail concatemers of T7 genomic DNA generated during T7 DNA replication. The paused EC may recruit the T7 DNA processing machinery, which cleaves the concatemerized DNA within this 8 nt concatemer junction (CJ). Pausing of the EC at the CJ involves structural changes in both the RNAP and transcription bubble. However, these structural changes have not been fully defined, nor is it understood how the CJ sequence itself causes the EC to change its structure, to pause, and to become less stable. Here we use solution and RNAP-tethered chemical nucleases to probe the CJ transcript and changes in the EC structure as the polymerase pauses and terminates at the CJ. Together with extensive mutational scanning of regions of the polymerase that are likely to be involved in recognition of the CJ, we are able to develop a description of the events that occur as the EC transcribes through the CJ and subsequently pauses. In this process, a local change in the structure of the transcription bubble drives a large change in the architecture of the EC. This altered EC structure may then serve as the signal that recruits the processing machinery to the CJ.
Collapse
MESH Headings
- Base Sequence
- Cations, Divalent/pharmacology
- Crystallography, X-Ray
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Directed RNA Polymerases/genetics
- DNA-Directed RNA Polymerases/metabolism
- Dose-Response Relationship, Drug
- Escherichia coli/genetics
- Lead/pharmacology
- Models, Molecular
- Molecular Sequence Data
- Muramidase/metabolism
- Muramidase/pharmacology
- Mutation
- Promoter Regions, Genetic
- Protein Conformation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease H/pharmacology
- Ribonuclease T1/pharmacology
- Templates, Genetic
- Terminator Regions, Genetic
- Time Factors
- Transcription, Genetic
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Dhananjaya Nayak
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
12
|
Nayak D, Guo Q, Sousa R. Functional architecture of T7 RNA polymerase transcription complexes. J Mol Biol 2007; 371:490-500. [PMID: 17580086 PMCID: PMC1986751 DOI: 10.1016/j.jmb.2007.05.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/22/2007] [Accepted: 05/22/2007] [Indexed: 11/29/2022]
Abstract
Bacteriophage T7 RNA polymerase is the best-characterized member of a widespread family of single-subunit RNA polymerases. Crystal structures of T7 RNA polymerase initiation and elongation complexes have provided a wealth of detailed information on RNA polymerase interactions with the promoter and transcription bubble, but the absence of DNA downstream of the melted region of the template in the initiation complex structure, and the absence of DNA upstream of the transcription bubble in the elongation complex structure means that our picture of the functional architecture of T7 RNA polymerase transcription complexes remains incomplete. Here, we use the site-specifically tethered chemical nucleases and functional characterization of directed T7 RNAP mutants to both reveal the architecture of the duplex DNA that flanks the transcription bubble in the T7 RNAP initiation and elongation complexes, and to define the function of the interactions made by these duplex elements. We find that downstream duplex interactions made with a cluster of lysine residues (K711/K713/K714) are present during both elongation and initiation, where they contribute to stabilizing a bend in the downstream DNA that is important for promoter opening. The upstream DNA in the elongation complex is also found to be sharply bent at the upstream edge of the transcription bubble, thereby allowing formation of upstream duplex:polymerase interactions that contribute to elongation complex stability.
Collapse
Affiliation(s)
- Dhananjaya Nayak
- From the Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Qing Guo
- From the Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Rui Sousa
- From the Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| |
Collapse
|
13
|
Howe AYM, Cheng H, Thompson I, Chunduru SK, Herrmann S, O'Connell J, Agarwal A, Chopra R, Del Vecchio AM. Molecular mechanism of a thumb domain hepatitis C virus nonnucleoside RNA-dependent RNA polymerase inhibitor. Antimicrob Agents Chemother 2006; 50:4103-13. [PMID: 16940072 PMCID: PMC1693979 DOI: 10.1128/aac.00365-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A new pyranoindole class of small-molecule inhibitors was studied to understand viral resistance and elucidate the mechanism of inhibition in hepatitis C virus (HCV) replication. HCV replicon variants less susceptible to inhibition by the pyranoindoles were selected in Huh-7 hepatoma cells. Variant replicons contained clusters of mutations in the NS5B polymerase gene corresponding to the drug-binding pocket on the surface of the thumb domain identified by X-ray crystallography. An additional cluster of mutations present in part of a unique beta-hairpin loop was also identified. The mutations were characterized by using recombinant replicon variants engineered with the corresponding amino acid substitutions. A single mutation (L419M or M423V), located at the pyranoindole-binding site, resulted in an 8- to 10-fold more resistant replicon, while a combination mutant (T19P, M71V, A338V, M423V, A442T) showed a 17-fold increase in drug resistance. The results of a competition experiment with purified NS5B enzyme with GTP showed that the inhibitory activity of the pyranoindole inhibitor was not affected by GTP at concentrations up to 250 microM. Following de novo initiation, the presence of a pyranoindole inhibitor resulted in the accumulation of a five-nucleotide oligomer, with a concomitant decrease in higher-molecular-weight products. The results of these studies have confirmed that pyranoindoles target the NS5B polymerase through interactions at the thumb domain. This inhibition is independent of GTP concentrations and is likely mediated by an allosteric blockade introduced by the inhibitor during the transition to RNA elongation after the formation of an initiation complex.
Collapse
MESH Headings
- Amino Acid Substitution
- Binding Sites
- Binding, Competitive
- Cell Line, Tumor
- Crystallography, X-Ray
- Drug Resistance, Viral/genetics
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacology
- Genes, Viral
- Genetic Engineering
- Genetic Variation
- Guanosine Triphosphate/metabolism
- Hepacivirus/drug effects
- Hepacivirus/enzymology
- Hepacivirus/genetics
- Humans
- Models, Molecular
- Mutation
- Protein Binding
- Protein Structure, Tertiary
- RNA, Viral/genetics
- RNA-Dependent RNA Polymerase/antagonists & inhibitors
- Recombination, Genetic
- Replicon/genetics
- Selection, Genetic
- Viral Nonstructural Proteins/antagonists & inhibitors
- Viral Nonstructural Proteins/genetics
- Virus Replication
Collapse
Affiliation(s)
- Anita Y M Howe
- Infectious Diseases, Wyeth Research, 500 Arcola Road, Collegeville, PA 19426, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Guo Q, Sousa R. Translocation by T7 RNA polymerase: a sensitively poised Brownian ratchet. J Mol Biol 2006; 358:241-54. [PMID: 16516229 DOI: 10.1016/j.jmb.2006.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 01/27/2006] [Accepted: 02/01/2006] [Indexed: 11/18/2022]
Abstract
Studies of halted T7 RNA polymerase (T7RNAP) elongation complexes (ECs) or of T7RNAP transcription against roadblocks due to DNA-bound proteins indicate that T7RNAP translocates via a passive Brownian ratchet mechanism. Crystal structures of T7RNAP ECs suggest that translocation involves an active power-stroke. However, neither solution studies of halted or slowed T7RNAP ECs, nor crystal structures of static complexes, are necessarily relevant to how T7RNAP translocates during rapid elongation. A recent single molecule study of actively elongating T7RNAPs provides support for the Brownian ratchet mechanism. Here, we obtain additional evidence for the existence of a Brownian ratchet during active T7RNAP elongation by showing that both rapidly elongating and halted complexes are equally sensitive to pyrophosphate. Using chemical nucleases tethered to the polymerase we achieve sub-ångström resolution in measuring the average position of halted T7RNAP ECs and find that the positional equilibrium of the EC is sensitively poised between pre-translocated and post-translocated states. This may be important in maximizing the sensitivity of the polymerase to sequences that cause pausing or termination. We also confirm that a crystallographically observed disorder to order transition in a loop formed by residues 589-612 also occurs in solution and is coupled to pyrophosphate or NTP release. This transition allows the loop to make interactions with the DNA that help stabilize the laterally mobile, ligand-free EC against dissociation.
Collapse
Affiliation(s)
- Qing Guo
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | |
Collapse
|
15
|
Ma K, Temiakov D, Anikin M, McAllister WT. Probing conformational changes in T7 RNA polymerase during initiation and termination by using engineered disulfide linkages. Proc Natl Acad Sci U S A 2005; 102:17612-7. [PMID: 16301518 PMCID: PMC1308916 DOI: 10.1073/pnas.0508865102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Indexed: 11/18/2022] Open
Abstract
During the transition from an initiation complex to an elongation complex (EC), the single-subunit bacteriophage T7 RNA polymerase (RNAP) undergoes dramatic conformational changes. To explore the significance of these changes, we constructed mutant RNAPs that are able to form disulfide bonds that limit the mobility of elements that are involved in the transition (or its reversal) and examined the effects of the crosslinks on initiation and termination. A crosslink that is specific to the initiation complex conformation blocks transcription at 5-6 nt, presumably by preventing isomerization to an EC. A crosslink that is specific to the EC conformation has relatively little effect on elongation or on termination at a class I terminator (T), which involves the formation of a stable stem-loop structure in the RNA. Crosslinked ECs also pause and resume transcription normally at a class II pause site (concatamer junction) but are deficient in termination at a class II terminator (PTH, which is found in human preparathyroid hormone gene), both of which involve a specific recognition sequence. The crosslinked amino acids in the EC lie close to the upstream end of the RNA-DNA hybrid and may prevent a movement of the polymerase that would assist in displacing or releasing RNA from a relatively unstable DNA-RNA hybrid in the paused PTH complex.
Collapse
Affiliation(s)
- Kaiyu Ma
- Department of Microbiology and Immunology, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | | | | | | |
Collapse
|
16
|
Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM. Direct observation of base-pair stepping by RNA polymerase. Nature 2005; 438:460-5. [PMID: 16284617 PMCID: PMC1356566 DOI: 10.1038/nature04268] [Citation(s) in RCA: 575] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 09/26/2005] [Indexed: 11/08/2022]
Abstract
During transcription, RNA polymerase (RNAP) moves processively along a DNA template, creating a complementary RNA. Here we present the development of an ultra-stable optical trapping system with ångström-level resolution, which we used to monitor transcriptional elongation by single molecules of Escherichia coli RNAP. Records showed discrete steps averaging 3.7 +/- 0.6 A, a distance equivalent to the mean rise per base found in B-DNA. By combining our results with quantitative gel analysis, we conclude that RNAP advances along DNA by a single base pair per nucleotide addition to the nascent RNA. We also determined the force-velocity relationship for transcription at both saturating and sub-saturating nucleotide concentrations; fits to these data returned a characteristic distance parameter equivalent to one base pair. Global fits were inconsistent with a model for movement incorporating a power stroke tightly coupled to pyrophosphate release, but consistent with a brownian ratchet model incorporating a secondary NTP binding site.
Collapse
Affiliation(s)
- Elio A Abbondanzieri
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
17
|
Guo Q, Sousa R. Weakening of the T7 promoter-polymerase interaction facilitates promoter release. J Biol Chem 2005; 280:14956-61. [PMID: 15711016 DOI: 10.1074/jbc.m500518200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During transcription initiation, RNA polymerases retain interactions with their promoters until the RNA is extended to 8-13 nucleotides, at which point the polymerase releases the promoter and moves downstream. It has been shown that release of the T7 promoter is inhibited when the T7 RNA polymerase-promoter interaction is strengthened. Here we asked whether release would be facilitated when the T7 promoter-polymerase interaction is weakened by the introduction of promoter mutations known to reduce promoter activity. Using chemical and enzymatic probes to monitor the position of the polymerase as a function of RNA length, we found that promoter mutations upstream of -4 facilitated release of the polymerase from the promoter, but more downstream mutations did not have such effects. We also found that released complexes turn over more slowly than promoter-bound complexes, indicating that retention of promoter interactions contributes to the dissociation of short RNAs during initial transcription.
Collapse
Affiliation(s)
- Qing Guo
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
18
|
Sohn Y, Kang C. Sequential multiple functions of the conserved sequence in sequence-specific termination by T7 RNA polymerase. Proc Natl Acad Sci U S A 2004; 102:75-80. [PMID: 15615852 PMCID: PMC544054 DOI: 10.1073/pnas.0406581101] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli rrnB terminator t1 contains an RNA hairpin-dependent (class I) and a sequence-specific (class II) termination signal. The latter consists of an 8-bp conserved sequence (CS), TATCTGTT, immediately followed by an 8-bp T rich sequence. In this study, elongation complexes of T7 RNA polymerase at various positions of the class II signal and several mutant signals were obtained by stepwise walking on immobilized DNA templates free of the class I signal. Multiple CS-associated conformational changes were observed, starting at the beginning of the signal and occurring sequentially. When the complexes reach the first base pair of the CS-DNA duplex, which is downstream of the RNA-DNA heteroduplex, their stability, as measured by time-course retention of radiolabeled transcripts, markedly decreases. Further elongation leads to an abrupt change in polymerase-RNA interaction. Cross-linking of the polymerase to a 4-thio-UMP incorporated into RNA 8 nucleotides upstream of the 3' end and just upstream of the heteroduplex is initially strong but diminishes when the polymerase reaches the fourth base pair of the CS. After a further 7-nt elongation, the exposed single-stranded region of nontemplate strand is contracted; RNA in the upstream half of the heteroduplex becomes dissociated, and the CS-DNA duplex is reformed. During the next 5-nt elongation before termination, the CS duplex is prevented from translocation, and the contracted transcription bubble expands only downstream. These findings suggest that the CS duplex plays essential roles by successively binding to polymerase both downstream and upstream of the heteroduplex.
Collapse
Affiliation(s)
- Younghee Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | | |
Collapse
|
19
|
Guo Q, Sousa R. Multiple roles for the T7 promoter nontemplate strand during transcription initiation and polymerase release. J Biol Chem 2004; 280:3474-82. [PMID: 15561715 DOI: 10.1074/jbc.m412287200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription initiation begins with recruitment of an RNA polymerase to a promoter. Polymerase-promoter interactions are retained until the nascent RNA is extended to 8-12 nucleotides. It has been proposed that accumulation of "strain" in the transcription complex and RNA displacement of promoter-polymerase interactions contribute to releasing the polymerase from the promoter, and it has been further speculated that too strong a promoter interaction can inhibit the release step, whereas a weak interaction may facilitate release. We examined the effects of partial deletion of the nontemplate strand on release of T7 RNA polymerase from the T7 promoter. T7 polymerase will initiate from such partially single-stranded promoters but binds them with higher affinity than duplex promoters. We found that release on partially single-stranded promoters is strongly inhibited. The inhibition of release is not due to an indirect effect on transcription complex structure or loss of specific polymerase-nontemplate strand interactions, because release on partially single-stranded templates is recovered if the interaction with the promoter is weakened by a promoter base substitution. This same substitution also appears to allow the polymerase to escape more readily from a duplex promoter. Our results further suggest that template-nontemplate strand reannealing drives dissociation of abortive transcripts during initial transcription and that loss of interactions with either the nontemplate strand or duplex DNA downstream of the RNA lead to increased transcription complex slippage during initiation.
Collapse
Affiliation(s)
- Qing Guo
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
20
|
Ferrari R, Rivetti C, Dieci G. Transcription reinitiation properties of bacteriophage T7 RNA polymerase. Biochem Biophys Res Commun 2004; 315:376-80. [PMID: 14766218 DOI: 10.1016/j.bbrc.2004.01.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Indexed: 12/01/2022]
Abstract
We have analyzed the kinetics of transcription initiation and reinitiation in vitro by one of the simplest and best characterized transcription machineries, bacteriophage T7 RNA polymerase (T7 RNAP). We used a short transcription unit with T7-specific promoter and terminator elements as a template, and a heparin challenge assay to distinguish the first transcription cycle from the subsequent ones. When present at sub-saturating concentrations with respect to template DNA, T7 RNAP could find its promoter and initiate the first transcription cycle in less than 1min. Reinitiation under the same conditions proceeded more slowly, with only three new transcription cycles being completed in 10min; after that time, reinitiation practically ceased. When the polymerase was in large excess over template DNA, however, reinitiation proceeded linearly for longer times, at a rate of 1cycle/min. Our data suggest that polymerase recycling represents a critical step in T7 RNAP transcription, and that such a step may become rate-limiting for transcription at sub-saturating polymerase concentrations.
Collapse
Affiliation(s)
- Roberto Ferrari
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43100 Parma, Italy
| | | | | |
Collapse
|
21
|
Hawryluk PJ, Ujvári A, Luse DS. Characterization of a novel RNA polymerase II arrest site which lacks a weak 3' RNA-DNA hybrid. Nucleic Acids Res 2004; 32:1904-16. [PMID: 15047857 PMCID: PMC390359 DOI: 10.1093/nar/gkh505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcript elongation by RNA polymerase II is blocked at DNA sequences called arrest sites. An exceptionally weak RNA-DNA hybrid is often thought to be necessary at the point of arrest. We have identified an arrest site from the tyrosine hydroxylase (TH) gene which does not fit this pattern. Transcription of many sequence variants of this site shows that the RNA-DNA hybrid over the three bases immediately preceding the major arrest point may be strong (i.e. C:G) without interfering with arrest. However, arrest at the TH site requires the presence of a pyrimidine at the 3' end and arrest increases when the 3'-most segment is pyrimidine rich. We also demonstrated that arrest at the TH site is completely dependent on the presence of a purine-rich element immediately upstream of the RNA-DNA hybrid. Thus, the RNA polymerase II arrest element from the TH gene has several unanticipated characteristics: arrest is independent of a weak RNA-DNA hybrid at the 3' end of the transcript, but it requires both a pyrimidine at the 3' end and a polypurine element upstream of the RNA-DNA hybrid.
Collapse
Affiliation(s)
- Peter J Hawryluk
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|