1
|
Hamana T, Shah P, Grogan A, Kawakami R, Williams D, Diaz KM, Virmani R, Finn AV. Risk Factors Favoring Plaque Erosion. Curr Atheroscler Rep 2024; 27:17. [PMID: 39661076 DOI: 10.1007/s11883-024-01262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
PURPOSE OF REVIEW Plaque erosion is the second leading cause of coronary thrombosis following plaque rupture and represents a key pathophysiological process underlying acute coronary syndromes that can culminate in sudden coronary death. While the precise mechanisms and risk factors driving plaque rupture are well-established, those for erosion have only recently been explored. This review summarizes current literature on the characteristics and risk factors favoring plaque erosion. RECENT FINDINGS Plaque erosion is characterized by a defective endothelial layer in the intima, promoting thrombus formation in the presence of an intact fibrous cap. It is more common in younger women (< 50 years) and smokers. Pathologic intimal thickening or fibroatheroma are common underlying lesions. Risk factors include gender, age, smoking, and disturbances in shear flow. Advances in pathogenic and molecular mechanisms, such as endothelial shear stress, neutrophil activation, and toll-like receptor-2 pathways, are discussed. Understanding the major risk factors for plaque erosion can inform diagnostics and therapeutics to prevent the progression of arterial thrombosis.
Collapse
Affiliation(s)
- Tomoyo Hamana
- CVPath Institute, Inc, 19 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Palak Shah
- CVPath Institute, Inc, 19 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Alyssa Grogan
- CVPath Institute, Inc, 19 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Rika Kawakami
- CVPath Institute, Inc, 19 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Desiree Williams
- CVPath Institute, Inc, 19 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Renu Virmani
- CVPath Institute, Inc, 19 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Aloke V Finn
- CVPath Institute, Inc, 19 Firstfield Road, Gaithersburg, MD, 20878, USA.
- School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
2
|
Tang H, Yu X, Chen Q, Zhu Y, Zhang S, Tang L, Zhao Y, Hua G, Hu J. Hemodynamics in nutcracker syndrome: implications for diagnosis. J Nephrol 2024; 37:1063-1075. [PMID: 38594600 DOI: 10.1007/s40620-024-01894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/07/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Nutcracker syndrome is a disease characterized by complex symptoms, making its diagnosis challenging and often delayed, often resulting in a painful experience for the patients. OBJECTIVE This study aimed to investigate the pathogenesis of nutcracker syndrome through the perspective of hemodynamics by simulating blood flow with varying compression degrees of the left renal vein. METHODS 3D patient-specific vascular models of the abdominal aorta, superior mesenteric artery and left renal vein were constructed based on CT images of patients suspected of having nutcracker syndrome. A hemodynamic simulation was then conducted using computational fluid dynamics to identify the correlation between alterations in hemodynamic parameters and varying degrees of compression. RESULTS The study indicated the presence of an evident gradient in velocity distribution over the left renal vein with relatively high degrees of stenosis (α ≤ 50°), with maximum velocity in the central region of the stenosis. Additionally, when the compression degree of the left renal vein increases, the pressure distribution of the left renal vein presents an increasing number of gradient layers. Furthermore, the wall shear stress shows a correlation with the variation of blood flow velocity, i.e., the increase of wall shear stress correlates with the acceleration of the blood flow velocity. CONCLUSIONS Using computational fluid dynamics as a non-invasive instrument to obtain the hemodynamic characteristics of nutcracker syndrome is feasible and could provide insights into the pathological mechanisms of the nutcracker syndrome supporting clinicians in diagnosis.
Collapse
Affiliation(s)
- Hui Tang
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xianchao Yu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qun Chen
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yuexing Zhu
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Shikun Zhang
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Lu Tang
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yinghong Zhao
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
- China University of Mining and Technology, No.1, Daxue Road, Xuzhou, 221116, China.
| | - Gang Hua
- China University of Mining and Technology, No.1, Daxue Road, Xuzhou, 221116, China.
| | - Jinqiu Hu
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| |
Collapse
|
3
|
Poon EKW, Wu X, Dijkstra J, O'Leary N, Torii R, Reiber JHC, Bourantas CV, Barlis P, Onuma Y, Serruys PW. Angiography and optical coherence tomography derived shear stress: are they equivalent in my opinion? THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023; 39:1953-1961. [PMID: 37733283 DOI: 10.1007/s10554-023-02949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Advances in image reconstruction using either single or multimodality imaging data provide increasingly accurate three-dimensional (3D) patient's arterial models for shear stress evaluation using computational fluid dynamics (CFD). We aim to evaluate the impacts on endothelial shear stress (ESS) derived from a simple image reconstruction using 3D-quantitative coronary angiography (3D-QCA) versus a multimodality reconstruction method using optical coherence tomography (OCT) in patients' vessels treated with bioresorbable scaffolds. Seven vessels at baseline and five-year follow-up of seven patients from a previous CFD investigation were retrospectively selected for a head-to-head comparison of angiography-derived versus OCT-derived ESS. 3D-QCA significantly underestimated the minimum stent area [MSA] (-2.38mm2) and the stent length (-1.46 mm) compared to OCT-fusion method reconstructions. After carefully co-registering the region of interest for all cases with a sophisticated statistical method, the difference in MSA measurements as well as the inability of angiography to visualise the strut footprint in the lumen surface have translated to higher angiography-derived ESS than OCT-derived ESS (1.76 Pa or 1.52 times for the overlapping segment). The difference in ESS widened with a more restricted region of interest (1.97 Pa or 1.63 times within the scaffold segment). Angiography and OCT offer two distinctive methods of ESS calculation. Angiography-derived ESS tends to overestimate the ESS compared to OCT-derived ESS. Further investigations into ESS analysis resolution play a vital role in adopting OCT-derived ESS.
Collapse
Affiliation(s)
- Eric K W Poon
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Xinlei Wu
- Department of Cardiology, University of Galway, Galway, Ireland
- Department of Cardiology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jouke Dijkstra
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Neil O'Leary
- Department of Cardiology, University of Galway, Galway, Ireland
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Johan H C Reiber
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christos V Bourantas
- Device and Innovation Centre, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Cardiology, Barts Heart Centre, London, UK
| | - Peter Barlis
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, University of Galway, Galway, Ireland.
- Emeritus Professor of Medicine, Erasmus University, Rotterdam, The Netherlands.
- CÚRAM, SFI Research Centre for Medical Devices, Galway, Ireland.
- School of Engineering, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
4
|
Kumar S, Molony D, Khawaja S, Crawford K, Thompson EW, Hung O, Shah I, Navas-Simbana J, Ho A, Kumar A, Ko YA, Hosseini H, Lefieux A, Lee JM, Hahn JY, Chen SL, Otake H, Akasaka T, Shin ES, Koo BK, Stankovic G, Milasinovic D, Nam CW, Won KB, Escaned J, Erglis A, Murasato Y, Veneziani A, Samady H. Stent underexpansion is associated with high wall shear stress: a biomechanical analysis of the shear stent study. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023:10.1007/s10554-023-02838-6. [PMID: 37119348 DOI: 10.1007/s10554-023-02838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 03/15/2023] [Indexed: 05/01/2023]
Abstract
Coronary stent underexpansion is associated with restenosis and stent thrombosis. In clinical studies of atherosclerosis, high wall shear stress (WSS) has been associated with activation of prothrombotic pathways, upregulation of matrix metalloproteinases, and future myocardial infarction. We hypothesized that stent underexpansion is predictive of high WSS. WSS distribution was investigated in patients enrolled in the prospective randomized controlled study of angulated coronary arteries randomized to undergo percutaneous coronary intervention with R-ZES or X-EES. WSS was calculated from 3D reconstructions of arteries from intravascular ultrasound (IVUS) and angiography using computational fluid dynamics. A logistic regression model investigated the relationship between WSS and underexpansion and the relationship between underexpansion and stent platform. Mean age was 63±11, 78% were male, 35% had diabetes, mean pre-stent angulation was 36.7°±14.7°. Underexpansion was assessed in 83 patients (6,181 IVUS frames). Frames with stent underexpansion were significantly more likely to exhibit high WSS (> 2.5 Pa) compared to those without underexpansion with an OR of 2.197 (95% CI = [1.233-3.913], p = 0.008). There was no significant association between underexpansion and low WSS (< 1.0 Pa) and no significant differences in underexpansion between R-ZES and X-EES. In the Shear Stent randomized controlled study, underexpanded IVUS frames were more than twice as likely to be associated with high WSS than frames without underexpansion.
Collapse
Affiliation(s)
- Sonali Kumar
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - David Molony
- Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA, USA
| | - Sameer Khawaja
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kaylyn Crawford
- Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA, USA
| | - Elizabeth W Thompson
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Olivia Hung
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Imran Shah
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA
| | - Jessica Navas-Simbana
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Arlen Ho
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Arnav Kumar
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yi-An Ko
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hossein Hosseini
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Adrien Lefieux
- Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA, USA
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joo-Yong Hahn
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Shao-Liang Chen
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan Medical Center, Ulsan, Republic of Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Goran Stankovic
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Dejan Milasinovic
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Chang-Wook Nam
- Department of Medicine, Dongsan Medical Center, Keimyung University, Daegu, Republic of Korea
| | - Ki-Bum Won
- Department of Cardiology, Ulsan Medical Center, Ulsan, Republic of Korea
| | - Javier Escaned
- Department of Cardiology, Hospital Clínico San Carlos Madrid, Madrid, Spain
| | - Andrejs Erglis
- Pauls Stradins Clinical University Hospital, University of Latvia, Riga, Latvia
| | - Yoshinobu Murasato
- Department of Cardiology and Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Alessandro Veneziani
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA
| | - Habib Samady
- Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA, USA.
| |
Collapse
|
5
|
Poon EKW, Ono M, Wu X, Dijkstra J, Sato Y, Kutyna M, Torii R, Reiber JHC, Bourantas CV, Barlis P, El-Kurdi MS, Cox M, Virmani R, Onuma Y, Serruys PW. An optical coherence tomography and endothelial shear stress study of a novel bioresorbable bypass graft. Sci Rep 2023; 13:2941. [PMID: 36805474 PMCID: PMC9941467 DOI: 10.1038/s41598-023-29573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Endothelial shear stress (ESS) plays a key role in the clinical outcomes in native and stented segments; however, their implications in bypass grafts and especially in a synthetic biorestorative coronary artery bypass graft are yet unclear. This report aims to examine the interplay between ESS and the morphological alterations of a biorestorative coronary bypass graft in an animal model. Computational fluid dynamics (CFD) simulation derived from the fusion of angiography and optical coherence tomography (OCT) imaging was used to reconstruct data on the luminal anatomy of a bioresorbable coronary bypass graft with an endoluminal "flap" identified during OCT acquisition. The "flap" compromised the smooth lumen surface and considerably disturbed the local flow, leading to abnormally low ESS and high oscillatory shear stress (OSI) in the vicinity of the "flap". In the presence of the catheter, the flow is more stable (median OSI 0.02384 versus 0.02635, p < 0.0001; maximum OSI 0.4612 versus 0.4837). Conversely, OSI increased as the catheter was withdrawn which can potentially cause back-and-forth motions of the "flap", triggering tissue fatigue failure. CFD analysis in this report provided sophisticated physiological information that complements the anatomic assessment from imaging enabling a complete understanding of biorestorative graft pathophysiology.
Collapse
Affiliation(s)
- Eric K. W. Poon
- grid.1008.90000 0001 2179 088XDepartment of Medicine, St Vincent’s & Northern Hospitals, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Masafumi Ono
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.7177.60000000084992262Department of Clinical and Experimental Cardiology, Amsterdam UMC, Heart Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Xinlei Wu
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.417384.d0000 0004 1764 2632Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jouke Dijkstra
- grid.10419.3d0000000089452978Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yu Sato
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Matthew Kutyna
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Ryo Torii
- grid.83440.3b0000000121901201Department of Mechanical Engineering, University College London, London, UK
| | - Johan H. C. Reiber
- grid.10419.3d0000000089452978Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christos V. Bourantas
- grid.83440.3b0000000121901201Institute of Cardiovascular Science, University College London, London, UK ,grid.416353.60000 0000 9244 0345Department of Cardiology, Barts Heart Centre, London, UK
| | - Peter Barlis
- grid.1008.90000 0001 2179 088XDepartment of Medicine, St Vincent’s & Northern Hospitals, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | | | - Martijn Cox
- Xeltis BV, De Lismortel 31, 5612AR Eindhoven, The Netherlands
| | - Renu Virmani
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland
| | - Patrick W. Serruys
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.6906.90000000092621349Emeritus Professor of Medicine, Erasmus University, Rotterdam, The Netherlands ,CÚRAM, SFI Research Centre for Medical Devices, Galway, H91 TK33 Ireland
| |
Collapse
|
6
|
Tabesh H, Poorkhalil A, Akbari H, Rafiei F, Mottaghy K. Phenomenological characterization of blood's intermediate shear rate: a new concept for hemorheology. Phys Eng Sci Med 2022; 45:1205-1217. [PMID: 36319841 DOI: 10.1007/s13246-022-01188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
Abstract
The phenomena of aggregation, breakdown, and disaggregation of the rouleaux of red blood cells (RBCs) in addition to deformability affect the human blood viscosity at different shear rates. In this study, the intermediate shear rate is introduced and defined when the effect of aggregation on the change of blood viscosity is diminished; and afterwards, the alteration in the blood viscosity is dominantly affected by the deformation of RBCs. With this respect, modeling the effective parameters on the blood shear-thinning behavior including hematocrit and plasma viscosity was performed for the two different shear regions discriminated by the proposed intermediate shear rates. The presented rheological model reflects a phenomenological approach to assess the human blood viscosity with an average error of ± 5% compared to experimental data for hematocrits between 0.299 and 0.702, subjected to various shear rates from 0.2 to 680 1/s. The temperature changes as well as biochemical effects on whole blood viscosity are characterized by the introduced plasma viscosity-dependent model. The presented comprehensive model could be used for better understanding of blood flow hemodynamics and analyzing the shear dependence of aggregation and deformability behaviors of RBCs.
Collapse
Affiliation(s)
- Hadi Tabesh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Street, 14399, Tehran, Iran.
| | - Ali Poorkhalil
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Street, 14399, Tehran, Iran
| | - Homa Akbari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Street, 14399, Tehran, Iran
| | - Fojan Rafiei
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Street, 14399, Tehran, Iran
| | - Khosrow Mottaghy
- Institute of Physiology, Aachen University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
7
|
Wu LT, Wang JL, Wang YL. Ophthalmic artery changes in type 2 diabetes with and without acute coronary syndrome. J Transl Med 2022; 20:512. [PMCID: PMC9636615 DOI: 10.1186/s12967-022-03712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Ocular blood flow provides a new perspective for studying the effects of diabetes and ischemic heart disease on systemic blood flow, pathological mechanisms, and prognosis. Previous studies have analyzed the hemodynamic changes of the ophthalmic artery (OA) in patients with diabetes and ischemic heart disease, but the results remain controversial due to limited observation methods. We aimed to explore the morphological and hemodynamic features in the OA in patients with type 2 diabetes (T2D) with and without acute coronary syndrome (ACS).
Methods
In total, 134 participants, including 30 control participants, 34 with ACS only, 34 with T2D only, and 36 with both ACS and T2D, undergoing computed tomography angiography were enrolled. Three-dimensional OA models were reconstructed, and morphological parameters of the OA were measured. In addition, numerical simulations using computational fluid dynamics were used to acquire hemodynamic parameters of the OA.
Results
In this study, 134 OA models were reconstructed. Morphological measurements revealed a smaller initial OA diameter in the T2D group than in the other two ACS groups. A hemodynamic simulation showed a significantly lower OA blood velocity in patients with ACS and T2D than that in controls (P < 0.001). The mass flow ratios in all disease groups were lower than those in the control group (P < 0.001, P = 0.020, and P < 0.001, respectively). The ACS and T2D groups had higher OA pressure levels than those of the control group (P = 0.013). The OA blood velocity and mass flow ratio were correlated with several clinical parameters.
Conclusions
This study revealed morphological and hemodynamic differences in the OA between patients with T2D with and without ACS. Furthermore, the hemodynamic characteristics of the OA correlated with clinical prognostic biomarkers, suggesting the potential predictive ability of the OA.
Collapse
|
8
|
de Winter RJ, Zaman A, Hara H, Gao C, Ono M, Garg S, Smits PC, Tonino PAL, Hofma SH, Moreno R, Choudhury A, Petrov I, Cequier A, Colombo A, Kaul U, Onuma Y, Serruys PW. Sirolimus-eluting stents with ultrathin struts versus everolimus-eluting stents for patients undergoing percutaneous coronary intervention: final three-year results of the TALENT trial. EUROINTERVENTION 2022; 18:492-502. [PMID: 35285804 PMCID: PMC10241281 DOI: 10.4244/eij-d-21-00766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND In the TALENT study, the sirolimus-eluting ultrathin strut Supraflex stent was non-inferior to the XIENCE stent for a device-oriented composite endpoint (DoCE: defined as cardiac death, target vessel myocardial infarction [TV-MI], or clinically indicated target lesion revascularisation [CI-TLR]) at 12 months. AIMS This study investigated the 3-year outcomes of the TALENT trial and long-term impact of ultrathin drug-eluting stents (DES), compared to the XIENCE everolimus-eluting thin stent. METHODS The TALENT trial is a prospective, multicentre, randomised all-comers trial comparing the Supraflex sirolimus-eluting stent with the XIENCE everolimus-eluting stent, with planned follow-up for 3 years. RESULTS The TALENT trial enrolled 1,435 patients (Supraflex n=720, XIENCE n=715) with 3-year follow-up data available in 97.8% in the Supraflex group, and in 98.9% in the XIENCE group. At 3 years, DoCE occurred in 57 patients (8.1%) in the Supraflex group, and in 66 patients (9.4%) in the XIENCE group (p=0.406). There were no significant between-group differences in rates of cardiac death, TV-MI or CI-TLR. The rates of definite or probable stent thrombosis were low and similar between groups (1.1% vs 1.4%; p=0.640). In a meta-analysis of long-term follow-up (3-5 years), ultrathin strut DES tended to reduce DoCE (relative risk 0.89 [0.79-1.01]; p=0.068), compared to thicker strut DES. The risks for cardiac death and definite or probable stent thrombosis were similar between ultrathin strut DES and thicker strut DES. CONCLUSIONS At 3-year follow-up, the use of the Supraflex stent was at least as safe and efficacious as the XIENCE stent in an all-comers population. CLINICALTRIALS gov: NCT02870140.
Collapse
Affiliation(s)
| | - Azfar Zaman
- Newcastle Freeman Hospital, Newcastle University, and Newcastle upon Tyne Hospitals NHS Trust, Newcastle, United Kingdom
| | - Hironori Hara
- Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Cardiology, National University of Ireland Galway, Galway, Ireland
| | - Chao Gao
- Department of Cardiology, National University of Ireland Galway, Galway, Ireland
- Department of Cardiology, Radboud University, Nijmegen, the Netherlands
| | - Masafumi Ono
- Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Cardiology, National University of Ireland Galway, Galway, Ireland
| | - Scot Garg
- Department of Cardiology, Royal Blackburn Hospital, Blackburn, United Kingdom
| | | | - Pim A L Tonino
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | | | - Raul Moreno
- Cardiology Department, La Paz University Hospital, Madrid, Spain
| | - Anirban Choudhury
- Department of Cardiology, University Hospital of Wales, Cardiff, United Kingdom
| | - Ivo Petrov
- Acibadem City Clinic Cardiovascular Center, Sofia, Bulgaria
| | - Angel Cequier
- Bellvitge University Hospital, University of Barcelona, IDIBELL, Barcelona, Spain
| | - Antonio Colombo
- Invasive Cardiology Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Upendra Kaul
- Academics and Research, Batra Hospital and Medical Research Center, New Delhi, India
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland Galway, Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, National University of Ireland Galway, Galway, Ireland
- NHLI, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Wu LT, Wang JL, Wang YL. Ophthalmic Artery Morphological and Hemodynamic Features in Acute Coronary Syndrome. Invest Ophthalmol Vis Sci 2021; 62:7. [PMID: 34757418 PMCID: PMC8590173 DOI: 10.1167/iovs.62.14.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To examine the morphological and hemodynamic changes of the ophthalmic artery (OA) in patients with acute coronary syndrome (ACS). Methods This cross-sectional observational study included 31 patients with ACS and 10 healthy controls (HCs). The ACS subgroups were ST-segment elevation myocardial infarction (STEMI; n = 10), non-STEMI (n = 10), and unstable angina (n = 11). OA three-dimensional (3D) models were reconstructed based on computed tomographic angiography, and morphological aspects of the OA were measured quantitatively. Moreover, numerical simulation by computational fluid dynamics was used to obtain hemodynamic information of the OA. Results The study reconstructed 41 OA models. Hemodynamic simulation revealed a significant decrease in OA blood velocity in patients with ACS compared with the HCs (median velocity, 0.046 vs. 0.147 m/s; P < 0.001). No differences in the morphological data for the OA were observed. Also, no differences in the mass flow ratio of OA to the ipsilateral internal carotid artery was found. Similar differences were observed between the ACS subgroups and HCs. OA blood velocity was negatively correlated with body mass index, abdominal circumference, left ventricular ejection fraction, and triacylglycerol and was positively correlated with early to late transmitral flow velocity, N-terminal pro-brain natriuretic peptide, serum creatinine, and potassium. Conclusions The initial OA blood velocity was slower in patients with ACS and was associated with ACS-related clinical parameters. To our knowledge, this is the first study to analyze OA characteristics in ACS using 3D model reconstruction and hemodynamic simulation, providing new perspectives on the relationship between ischemic heart disease and ocular manifestations.
Collapse
Affiliation(s)
- Lan-Ting Wu
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Vozzi F, Cecchettini A, Cabiati M, Mg F, Aretini P, Del Ry S, Rocchiccioli S, Pelosi G. Modulated molecular markers of restenosis and thrombosis by in-vitrovascular cells exposed to bioresorbable scaffolds. Biomed Mater 2021; 16. [PMID: 34020430 DOI: 10.1088/1748-605x/ac0401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/21/2021] [Indexed: 01/06/2023]
Abstract
Drug-eluting bioresorbable vascular scaffolds (BVSs) have emerged as a potential breakthrough for the treatment of coronary artery stenosis, providing mechanical support and drug delivery followed by complete resorption. Restenosis and thrombosis remain the primary limitations in clinical use. The study aimed to identify potential markers of restenosis and thrombosis analyzing the vascular wall cell transcriptomic profile modulation triggered by BVS at different values of shear stress (SS). Human coronary artery endothelial cells and smooth muscle cells were cultured under SS (1 and 20 dyne cm-2) for 6 h without and with application of BVS and everolimus 600 nM. Cell RNA-Seq and bioinformatics analysis identified modulated genes by direct comparison of SS conditions and Gene Ontology (GO). The results of different experimental conditions and GO analysis highlighted the modulation of specific genes as semaphorin 3E, mesenchyme homeobox 2, bone morphogenetic protein 4, (heme oxygenase 1) and selectin E, with different roles in pathological evolution of disease. Transcriptomic analysis of dynamic vascular cell cultures identifies candidate genes related to pro-restenotic and pro-thrombotic mechanisms in anin-vitrosetting of BVS, which are not adequately contrasted by everolimus addition.
Collapse
Affiliation(s)
- F Vozzi
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - A Cecchettini
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, Pisa, Italy
| | - M Cabiati
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - Fornaro Mg
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - P Aretini
- Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini, 13, San Giuliano Terme, Italy
| | - S Del Ry
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - S Rocchiccioli
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - G Pelosi
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| |
Collapse
|
11
|
Wu X, Wu S, Kawashima H, Hara H, Ono M, Gao C, Wang R, Lunardi M, Sharif F, Wijns W, Serruys PW, Onuma Y. Current perspectives on bioresorbable scaffolds in coronary intervention and other fields. Expert Rev Med Devices 2021; 18:351-365. [PMID: 33739213 DOI: 10.1080/17434440.2021.1904894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The first-generation bioresorbable scaffolds (BRSs) had a large strut profile to compensate for the insufficient radial strength of bioresorbable polymer materials, resulting in higher scaffold thrombosis rates than conventional drug-eluting stents. To improve the clinical safety and efficacy, the new generation BRSs have been improved by optimal structure design, post-processing of bioresorbable polymer materials, or altering bioresorbable metallic alloys.Areas covered: This review summarizes the lessons learned from the first-generation BRS, updates the clinical outcomes of trials evaluating ABSORB bioresorbable vascular scaffold at long-term and bioresorbable metallic alloy-based devices, and examines recent outcomes of BRS treated in STEMI patients. This review also provides an overview of the current clinical data of seven BRSs manufactured in Asia, and of the BRSs extended application in other clinical arenas.Expert opinion: Drawbacks of the first-generation BRSs need to be addressed by the next generation of these stents with novel materials and technologies. Clinical research, including randomized controlled trials, are required to further evaluate BRSs application in coronary artery disease. The encouraging results of BRSs innovation applied in the peripheral arteries and gastrointestinal tracts support other potential clinical applications of BRS technology.
Collapse
Affiliation(s)
- Xinlei Wu
- Institute of Cardiovascular Development and Translational Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Sijing Wu
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Beijing Anzhen Hospital, Beijing, China
| | - Hideyuki Kawashima
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Hironori Hara
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Masafumi Ono
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Chao Gao
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Xijing Hospital, Xi'an, China
| | - Rutao Wang
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Xijing Hospital, Xi'an, China
| | - Mattia Lunardi
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Faisal Sharif
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - William Wijns
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,National Heart & Lung Institute, Imperial College London, London, UK
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| |
Collapse
|
12
|
Tarrahi I, Colombo M, Hartman EMJ, Tovar Forero MN, Torii R, Chiastra C, Daemen J, Gijsen FJH. Impact of bioresorbable scaffold design characteristics on local haemodynamic forces: an ex vivo assessment with computational fluid dynamics simulations. EUROINTERVENTION 2020; 16:e930-e937. [PMID: 31951204 DOI: 10.4244/eij-d-19-00657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Bioresorbable scaffold (BRS) regions exposed to flow recirculation, low time-averaged wall shear stress (TAWSS) and high oscillatory shear index (OSI) develop increased neointima tissue. We investigated haemodynamic features in four different BRSs. METHODS AND RESULTS Fantom (strut height [SH] = 125 µm), Fantom Encore (SH = 98 µm), Absorb (SH = 157 µm) and Magmaris (SH = 150 µm) BRSs were deployed in phantom tubes and imaged with microCT. Both 2D and 3D geometrical scaffold models were reconstructed. Computational fluid dynamics (CFD) simulation was performed to compute TAWSS and OSI. Thicker struts had larger recirculation zones and lower TAWSS in 2D. Absorb had the largest recirculation zone and the lowest TAWSS (240 µm and -0.18 Pa), followed by Magmaris (170 µm and -0.15 Pa), Fantom (140 µm and -0.14 Pa) and Fantom Encore (100 µm and -0.13 Pa). Besides strut size, stent design played a dominant role in 3D. The highest percentage area adverse TAWSS (<0.5 Pa) and OSI (>0.2) were found for Fantom (56% and 30%) and Absorb (53% and 33%), followed by Fantom Encore (30% and 25%) and Magmaris (25% and 20%). Magmaris had the smallest areas due to a small footprint and rounded struts. CONCLUSIONS Due to stent design, both Fantom Encore and Magmaris showed smaller TAWSS and OSI than Fantom and Absorb. This study quantifies which scaffold features are most important to reduce long-term restenosis.
Collapse
Affiliation(s)
- Imane Tarrahi
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hara H, Gao C, Kogame N, Ono M, Kawashima H, Wang R, Morel MA, O'Leary N, Sharif F, Möllmann H, Reiber JH, Sabaté M, Zaman A, Wijns W, Onuma Y, Serruys PW. A randomised controlled trial of the sirolimus-eluting biodegradable polymer ultra-thin Supraflex stent versus the everolimus-eluting biodegradable polymer SYNERGY stent for three-vessel coronary artery disease: rationale and design of the Multivessel TALENT trial. EUROINTERVENTION 2020; 16:e997-e1004. [DOI: 10.4244/eij-d-20-00772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Eslami P, Thondapu V, Karady J, Hartman EMJ, Jin Z, Albaghdadi M, Lu M, Wentzel JJ, Hoffmann U. Physiology and coronary artery disease: emerging insights from computed tomography imaging based computational modeling. Int J Cardiovasc Imaging 2020; 36:2319-2333. [PMID: 32779078 PMCID: PMC8323761 DOI: 10.1007/s10554-020-01954-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
Improvements in spatial and temporal resolution now permit robust high quality characterization of presence, morphology and composition of coronary atherosclerosis in computed tomography (CT). These characteristics include high risk features such as large plaque volume, low CT attenuation, napkin-ring sign, spotty calcification and positive remodeling. Because of the high image quality, principles of patient-specific computational fluid dynamics modeling of blood flow through the coronary arteries can now be applied to CT and allow the calculation of local lesion-specific hemodynamics such as endothelial shear stress, fractional flow reserve and axial plaque stress. This review examines recent advances in coronary CT image-based computational modeling and discusses the opportunity to identify lesions at risk for rupture much earlier than today through the combination of anatomic and hemodynamic information.
Collapse
Affiliation(s)
- Parastou Eslami
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Vikas Thondapu
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia Karady
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eline M J Hartman
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Zexi Jin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mazen Albaghdadi
- Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Lu
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Cerrato E, Belliggiano D, Quadri G, Erriquez A, Anselmino M, Quirós A, Franzè A, Ferrari F, Rolfo C, Mejia‐Renteria H, Escaned J, Gonzalo N, Campo G, Varbella F. Anatomical and functional healing after resorbable magnesium scaffold implantation in human coronary vessels: A combined optical coherence tomography and quantitative flow ratio analysis. Catheter Cardiovasc Interv 2020; 98:1038-1046. [DOI: 10.1002/ccd.29397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/18/2020] [Accepted: 11/09/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Enrico Cerrato
- Interventional Cardiology Unit San Luigi Gonzaga University Hospital, Orbassano, and Rivoli Infermi Hospital, Rivoli Turin Italy
| | - Davide Belliggiano
- Division of Cardiology, "Città della Salute e della Scienza di Torino" Hospital, Department of Medical Sciences University of Turin Turin Italy
| | - Giorgio Quadri
- Interventional Cardiology Unit San Luigi Gonzaga University Hospital, Orbassano, and Rivoli Infermi Hospital, Rivoli Turin Italy
| | - Andrea Erriquez
- Cardiovascular Institute Azienda Ospedaliero‐Universitaria di Ferrara, Cona, Italy; Maria Cecilia Hospital, GVM Care & Research Cotignola Italy
| | - Matteo Anselmino
- Division of Cardiology, "Città della Salute e della Scienza di Torino" Hospital, Department of Medical Sciences University of Turin Turin Italy
| | - Alicia Quirós
- Departmento de Matemáticas Universidad de León León Spain
| | - Alfonso Franzè
- Interventional Cardiology Unit San Luigi Gonzaga University Hospital, Orbassano, and Rivoli Infermi Hospital, Rivoli Turin Italy
| | - Fabio Ferrari
- Interventional Cardiology Unit San Luigi Gonzaga University Hospital, Orbassano, and Rivoli Infermi Hospital, Rivoli Turin Italy
| | - Cristina Rolfo
- Interventional Cardiology Unit San Luigi Gonzaga University Hospital, Orbassano, and Rivoli Infermi Hospital, Rivoli Turin Italy
| | - Hernan Mejia‐Renteria
- Cardiology Department, Hospital Clinico San Carlos IDISSC & Universidad Complutense de Madrid Madrid Spain
| | - Javier Escaned
- Cardiology Department, Hospital Clinico San Carlos IDISSC & Universidad Complutense de Madrid Madrid Spain
| | - Nieves Gonzalo
- Cardiology Department, Hospital Clinico San Carlos IDISSC & Universidad Complutense de Madrid Madrid Spain
| | - Gianluca Campo
- Cardiovascular Institute Azienda Ospedaliero‐Universitaria di Ferrara, Cona, Italy; Maria Cecilia Hospital, GVM Care & Research Cotignola Italy
| | - Ferdinando Varbella
- Interventional Cardiology Unit San Luigi Gonzaga University Hospital, Orbassano, and Rivoli Infermi Hospital, Rivoli Turin Italy
| |
Collapse
|
16
|
He S, Liu W, Qu K, Yin T, Qiu J, Li Y, Yuan K, Zhang H, Wang G. Effects of different positions of intravascular stent implantation in stenosed vessels on in-stent restenosis: An experimental and numerical simulation study. J Biomech 2020; 113:110089. [PMID: 33181394 DOI: 10.1016/j.jbiomech.2020.110089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
Percutaneous coronary intervention (PCI) has been widely used in the treatment of atherosclerosis, while in-stent restenosis (ISR) has not been completely resolved. Studies have shown that changes in intravascular mechanical environment are related to ISR. Hence, an in-depth understanding of the effects of stent intervention on vascular mechanics is important for clinically optimizing stent implantation and relieving ISR. Nine rabbits with stenotic carotid artery were collected by balloon injury. Intravascular stents were implanted into different longitudinal positions (proximal, middle and distal relative to the stenotic area) of the stenotic vessels for numerical simulations. Optical coherence tomography (OCT) scanning was performed to reconstruct the three-dimensional configuration of the stented carotid artery and blood flow velocity waveforms were collected by Doppler ultrasound. The numerical simulations were performed through direct solution of Naiver-Stokes equation in ANSYS. Results showed that the distributions of time-averaged wall shear stress (TAWSS), oscillating shear index (OSI) and relative residual time (RRT) in near-end segment were distinctively different from other regions of the stent which considered to promote restenosis for all three models. Spearman rank-correlation analysis showed a significant correlation between hemodynamic descriptors and the stent longitudinal positions (rTAWSS = -0.718, rOSI = 0.898, rRRT = 0.818, p < 0.01). Histology results of the near-end segment showed neointima thickening deepened with the longitudinal positions of stent which was consistent with the numerical simulations. The results suggest that stent implantation can promote restenosis at the near-end segment. As the stenting position moves to distal end, the impact on ISR is more significant.
Collapse
Affiliation(s)
- Shicheng He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Wanling Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China.
| | - Yan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Kunshan Yuan
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, Shandong 251100, PR China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, Shandong 251100, PR China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
17
|
Gijsen F, Katagiri Y, Barlis P, Bourantas C, Collet C, Coskun U, Daemen J, Dijkstra J, Edelman E, Evans P, van der Heiden K, Hose R, Koo BK, Krams R, Marsden A, Migliavacca F, Onuma Y, Ooi A, Poon E, Samady H, Stone P, Takahashi K, Tang D, Thondapu V, Tenekecioglu E, Timmins L, Torii R, Wentzel J, Serruys P. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J 2020; 40:3421-3433. [PMID: 31566246 PMCID: PMC6823616 DOI: 10.1093/eurheartj/ehz551] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Frank Gijsen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yuki Katagiri
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Barlis
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Cardiology, Northern Hospital, 185 Cooper Street, Epping, Australia.,St Vincent's Heart Centre, Building C, 41 Victoria Parade, Fitzroy, Australia
| | - Christos Bourantas
- Institute of Cardiovascular Sciences, University College of London, London, UK.,Department of Cardiology, Barts Heart Centre, London, UK.,School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Carlos Collet
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Umit Coskun
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost Daemen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jouke Dijkstra
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Elazer Edelman
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Kim van der Heiden
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rod Hose
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK.,Department of Circulation and Imaging, NTNU, Trondheim, Norway
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,Institute of Aging, Seoul National University, Seoul, Korea
| | - Rob Krams
- School of Engineering and Materials Science Queen Mary University of London, London, UK
| | - Alison Marsden
- Departments of Bioengineering and Pediatrics, Institute of Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Yoshinobu Onuma
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andrew Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peter Stone
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kuniaki Takahashi
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing, China; Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Vikas Thondapu
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erhan Tenekecioglu
- Department of Interventional Cardiology, Thoraxcentre, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Lucas Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, UK
| | - Jolanda Wentzel
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Patrick Serruys
- Erasmus University Medical Center, Rotterdam, the Netherlands.,Imperial College London, London, UK.,Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| |
Collapse
|
18
|
Tenekecioglu E, Katagiri Y, Takahashi K, Tomaniak M, Dudek D, Cequier A, Carrié D, Iñiguez A, Johannes van der Schaaf R, Dominici M, Boven AJV, Helqvist S, Sabaté M, Baumbach A, Piek JJ, Wykrzykowska JJ, Kitslaar P, Dijkstra J, Reiber JHC, Chevalier B, Ural D, Pekkan K, Bourantas CV, Gijsen F, Onuma Y, Torii R, Serruys PW. Endothelial shear stress and vascular remodeling in bioresorbable scaffold and metallic stent. Atherosclerosis 2020; 312:79-89. [PMID: 32979635 DOI: 10.1016/j.atherosclerosis.2020.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIMS The impact of endothelial shear stress (ESS) on vessel remodeling in vessels implanted with bioresorbable scaffold (BRS) as compared to metallic drug-eluting stent (DES) remains elusive. The aim of this study was to determine whether the relationship between ESS and remodeling patterns differs in BRS from those seen in metallic DES at 3-year follow-up. METHODS In the ABSORB II randomized trial, lesions were investigated by serial coronary angiography and intravascular ultrasound (IVUS). Three-dimensional reconstructions of coronary arteries post-procedure and at 3 years were performed. ESS was quantified using non-Newtonian steady flow simulation. IVUS cross-sections in device segment were matched using identical landmarks. RESULTS Paired ESS calculations post-procedure and at 3 years were feasible in 57 lesions in 56 patients. Post-procedure, median ESS at frame level was higher in BRS than in DES, with marginal statistical significance (0.97 ± 0.48 vs. 0.75 ± 0.39 Pa, p = 0.063). In the BRS arm, vessel area and lumen area showed larger increases in the highest tercile of median ESS post-procedure as compared to the lowest tercile. In contrast, in DES, no significant relationship between median ESS post-procedure and remodeling was observed. In multivariate analysis, smaller vessel area, larger lumen area, higher plaque burden post-procedure, and higher median ESS post-procedure were independently associated with expansive remodeling in matched frames. Only in BRS, younger age was an additional significant predictor of expansive remodeling. CONCLUSIONS In a subset of lesions with large plaque burden, shear stress could be associated with expansive remodeling and late lumen enlargement in BRS, while ESS had no impact on vessel dimension in metallic DES.
Collapse
Affiliation(s)
- Erhan Tenekecioglu
- Department of Interventional Cardiology, Erasmus University Medical Center. Thoraxcenter, Rotterdam, the Netherlands
| | - Yuki Katagiri
- Department of Cardiology Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kuniaki Takahashi
- Department of Cardiology Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mariusz Tomaniak
- Department of Interventional Cardiology, Erasmus University Medical Center. Thoraxcenter, Rotterdam, the Netherlands; First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Dudek
- Department of Interventional Cardiology, Jagiellonian University, Krakow, Poland
| | | | | | - Andrés Iñiguez
- Interventional Cardiology Unit, Cardiology Department, Hospital Alvaro Cunqueiro, University Hospital of Vigo, Vigo, Spain
| | | | | | | | | | - Manel Sabaté
- Biomédiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | | | - Jan J Piek
- Department of Cardiology Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Joanna J Wykrzykowska
- Department of Cardiology Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Pieter Kitslaar
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jouke Dijkstra
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Johan H C Reiber
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Bernard Chevalier
- Ramsay Générale de Santé, Institut Cardiovasculaire Paris Sud, Massy, France
| | - Dilek Ural
- Department of Cardiology, Koç University, Istanbul, Turkey
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koç University, Istanbul, Turkey
| | - Christos V Bourantas
- Department of Cardiology, University College of London Hospitals, London, United Kingdom; Department of Cardiology, Barts Heart Centre, London, United Kingdom
| | - Frank Gijsen
- Department of Biomedical Engineering, Erasmus University Medical Center, Thoraxcenter, Rotterdam, the Netherlands
| | - Yoshinobu Onuma
- Department of Interventional Cardiology, Erasmus University Medical Center. Thoraxcenter, Rotterdam, the Netherlands
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, United Kingdom
| | - Patrick W Serruys
- Imperial College London, London, United Kingdom; Department of cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland.
| |
Collapse
|
19
|
Thondapu V, Mamon C, Poon EKW, Kurihara O, Kim HO, Russo M, Araki M, Shinohara H, Yamamoto E, Dijkstra J, Tacey M, Lee H, Ooi A, Barlis P, Jang IK. High spatial endothelial shear stress gradient independently predicts site of acute coronary plaque rupture and erosion. Cardiovasc Res 2020; 117:1974-1985. [PMID: 32832991 DOI: 10.1093/cvr/cvaa251] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/28/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023] Open
Abstract
AIMS To investigate local haemodynamics in the setting of acute coronary plaque rupture and erosion. METHODS AND RESULTS Intracoronary optical coherence tomography performed in 37 patients with acute coronary syndromes caused by plaque rupture (n = 19) or plaque erosion (n = 18) was used for three-dimensional reconstruction and computational fluid dynamics simulation. Endothelial shear stress (ESS), spatial ESS gradient (ESSG), and oscillatory shear index (OSI) were compared between plaque rupture and erosion through mixed-effects logistic regression. Lipid, calcium, macrophages, layered plaque, and cholesterol crystals were also analysed. By multivariable analysis, only high ESSG [odds ratio (OR) 5.29, 95% confidence interval (CI) 2.57-10.89, P < 0.001], lipid (OR 12.98, 95% CI 6.57-25.67, P < 0.001), and layered plaque (OR 3.17, 95% CI 1.82-5.50, P < 0.001) were independently associated with plaque rupture. High ESSG (OR 13.28, 95% CI 6.88-25.64, P < 0.001), ESS (OR 2.70, 95% CI 1.34-5.42, P = 0.005), and OSI (OR 2.18, 95% CI 1.33-3.54, P = 0.002) independently associated with plaque erosion. ESSG was higher at rupture sites than erosion sites [median (interquartile range): 5.78 (2.47-21.15) vs. 2.62 (1.44-6.18) Pa/mm, P = 0.009], OSI was higher at erosion sites than rupture sites [1.04 × 10-2 (2.3 × 10-3-4.74 × 10-2) vs. 1.29 × 10-3 (9.39 × 10-5-3.0 × 10-2), P < 0.001], but ESS was similar (P = 0.29). CONCLUSIONS High ESSG is independently associated with plaque rupture while high ESSG, ESS, and OSI associate with plaque erosion. While ESSG is higher at rupture sites than erosion sites, OSI is higher at erosion sites and ESS was similar. These results suggest that ESSG and OSI may play critical roles in acute plaque rupture and erosion, respectively.
Collapse
Affiliation(s)
- Vikas Thondapu
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.,Department of Mechanical Engineering, School of Engineering, University of Melbourne, Melbourne, VIC 3010, Australia.,Department of Medicine and Radiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Chris Mamon
- Department of Mechanical Engineering, School of Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Eric K W Poon
- Department of Mechanical Engineering, School of Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Osamu Kurihara
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Hyung Oh Kim
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Michele Russo
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Makoto Araki
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Hiroki Shinohara
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Erika Yamamoto
- Department of Cardiovascular Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jouke Dijkstra
- Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Mark Tacey
- Department of Medicine and Radiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia.,Northern Health, Epping, VIC 3076, Australia
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, 50 Standiford St, Suite 560, Boston, MA 02114, USA
| | - Andrew Ooi
- Department of Mechanical Engineering, School of Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peter Barlis
- Department of Medicine and Radiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.,Division of Cardiology, Kyung Hee University, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-872, Republic of Korea
| |
Collapse
|
20
|
Pellicano M, Di Gioia G, Ciccarelli G, Xaplanteris P, Delrue L, Toth GG, Van Durme F, Heyse A, Wyffels E, Vanderheyden M, Bartunek J, De Bruyne B, Barbato E. Procedural microvascular activation in long lesions treated with bioresorbable vascular scaffolds or everolimus-eluting stents: the PROACTIVE trial. EUROINTERVENTION 2020; 16:e147-e154. [PMID: 31085503 DOI: 10.4244/eij-d-18-01138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS Significant platelet activation after long stented coronary segments has been associated with periprocedural microvascular impairment and myonecrosis. In long lesions treated either with an everolimus-eluting bioresorbable vascular scaffold (BVS) or an everolimus-eluting stent (EES), we aimed to investigate (a) procedure-related microvascular impairment, and (b) the relationship of platelet activation with microvascular function and related myonecrosis. METHODS AND RESULTS Patients (n=66) undergoing elective percutaneous coronary intervention (PCI) in long lesions were randomised 1:1 to either BVS or EES. The primary endpoint was the difference between groups in changes of pressure-derived corrected index of microvascular resistance (cIMR) after PCI. Periprocedural myonecrosis was assessed by high-sensitivity cardiac troponin T (hs-cTnT), platelet reactivity by high-sensitivity adenosine diphosphate (hs-ADP)-induced platelet reactivity with the Multiplate Analyzer. Post-dilatation was more frequent in the BVS group, with consequent longer procedure time. A significant difference was observed between the two groups in the primary endpoint of ΔcIMR (p=0.04). hs-ADP was not different between the groups at different time points. hs-cTnT significantly increased after PCI, without difference between the groups. CONCLUSIONS In long lesions, BVS implantation is associated with significant acute reduction in IMR as compared with EES, with no significant interaction with platelet reactivity or periprocedural myonecrosis.
Collapse
|
21
|
Gomez-Lara J, Salvatella N, Romaguera R, Brugaletta S, Ñato M, Roura G, Ferreiro JL, Teruel L, Gracida M, Sabate M, Vaquerizo B, Cequier À, Gomez-Hospital JA. Coronary vasomotor function and myocardial flow with bioresorbable vascular scaffolds or everolimus-eluting metallic stents: a randomised trial. EUROINTERVENTION 2020; 16:e155-e163. [PMID: 31217148 DOI: 10.4244/eij-d-18-01203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS The aim of this study was to compare the hyperaemic flow and vasomotor response to endothelium-dependent stimuli between bioresorbable vascular scaffolds (BVS) and metallic everolimus-eluting stents (EES) at 13 months. METHODS AND RESULTS Seventy non-diabetic patients aiming to achieve complete revascularisation were randomised 1:1 to BVS or EES implantation. At 13 months, invasive coronary angiography was performed using intracoronary pressure and Doppler ultrasound measurements at rest and maximal hyperaemia. A vasomotor test to endothelium-dependent (acetylcholine) and independent (nitroglycerine) stimuli and optical coherence tomography (OCT) were also performed. Fifty-nine patients (30 BVS and 29 EES) underwent 13-month examination. Doppler ultrasound average peak velocity (49.0±17.5 vs 49.3±18.3 cm/sec; p=0.95), coronary blood flow (97.4±53.5 vs 88.3±46.7 ml/min; p=0.51), coronary flow reserve (2.6±0.9 vs 2.7±0.8; p=0.84) and fractional flow reserve (0.92±0.06 vs 0.94±0.04; p=0.17) were similar between the groups. The vasomotor test showed vasoconstriction response to acetylcholine in 75.6% proximal and 72.2% distal peri-scaffold segments without differences between study devices. BVS had larger in-scaffold vasoconstriction than EES (60.0% vs 27.6%; p=0.01) despite similar neointima response as assessed by OCT. CONCLUSIONS BVS and EES had similar microcirculatory response to hyperaemia and predominant vasoconstrictive response in the peri-scaffold segments to endothelium-dependent stimuli. However, BVS exhibited larger vasoconstriction to endothelium-dependent stimuli in the scaffold segment.
Collapse
Affiliation(s)
- Josep Gomez-Lara
- Grup de Recerca en Malalties del Cor, Hospital Universitari de Bellvitge; Institut d´Investigacio Biomedica de Bellvitge (IDIBELL), Universitat de Barcelona, L´Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kawashima H, Ono M, Kogame N, Takahashi K, Chang CC, Hara H, Gao C, Wang R, Tomaniak M, Modolo R, Wykrzykowska JJ, De Winter RJ, Sharif F, Serruys PW, Onuma Y. Drug-eluting bioresorbable scaffolds in cardiovascular disease, peripheral artery and gastrointestinal fields: a clinical update. Expert Opin Drug Deliv 2020; 17:931-945. [DOI: 10.1080/17425247.2020.1764932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hideyuki Kawashima
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Cardiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Masafumi Ono
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Norihiro Kogame
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kuniaki Takahashi
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Chun-Chin Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hironori Hara
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Chao Gao
- Department of Cardiology, Radboudumc, Nijmegen, The Netherlands
| | - Rutao Wang
- Department of Cardiology, Radboudumc, Nijmegen, The Netherlands
| | - Mariusz Tomaniak
- First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Rodrigo Modolo
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Internal Medicine, Cardiology Division, University of Campinas (UNICAMP), Campinas, Brazil
| | - Joanna J. Wykrzykowska
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Robbert J. De Winter
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Faisal Sharif
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Patrick W. Serruys
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
- NHLI, Imperial College London, London, UK
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| |
Collapse
|
23
|
Kilic Y, Safi H, Bajaj R, Serruys PW, Kitslaar P, Ramasamy A, Tufaro V, Onuma Y, Mathur A, Torii R, Baumbach A, Bourantas CV. The Evolution of Data Fusion Methodologies Developed to Reconstruct Coronary Artery Geometry From Intravascular Imaging and Coronary Angiography Data: A Comprehensive Review. Front Cardiovasc Med 2020; 7:33. [PMID: 32296713 PMCID: PMC7136420 DOI: 10.3389/fcvm.2020.00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/01/2022] Open
Abstract
Understanding the mechanisms that regulate atherosclerotic plaque formation and evolution is a crucial step for developing treatment strategies that will prevent plaque progression and reduce cardiovascular events. Advances in signal processing and the miniaturization of medical devices have enabled the design of multimodality intravascular imaging catheters that allow complete and detailed assessment of plaque morphology and biology. However, a significant limitation of these novel imaging catheters is that they provide two-dimensional (2D) visualization of the lumen and vessel wall and thus they cannot portray vessel geometry and 3D lesion architecture. To address this limitation computer-based methodologies and user-friendly software have been developed. These are able to off-line process and fuse intravascular imaging data with X-ray or computed tomography coronary angiography (CTCA) to reconstruct coronary artery anatomy. The aim of this review article is to summarize the evolution in the field of coronary artery modeling; we thus present the first methodologies that were developed to model vessel geometry, highlight the modifications introduced in revised methods to overcome the limitations of the first approaches and discuss the challenges that need to be addressed, so these techniques can have broad application in clinical practice and research.
Collapse
Affiliation(s)
- Yakup Kilic
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Hannah Safi
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Retesh Bajaj
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Patrick W Serruys
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Pieter Kitslaar
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Vincenzo Tufaro
- Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | | | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Institute of Cardiovascular Sciences, University College London, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| |
Collapse
|
24
|
Affiliation(s)
- Thomas F Lüscher
- Professor of Cardiology, Imperial College, and Director of Research, Education & Development, Royal Brompton and Harefield Hospitals London, UK.,Professor and Chairman, Center for Molecular Cardiology, University of Zurich, Switzerland.,Editor-in-Chief, EHJ Editorial Office, Zurich Heart House, Hottingerstreet 14, 8032 Zurich, Switzerland
| |
Collapse
|
25
|
Chu M, Gutiérrez-Chico JL, Li Y, Holck EN, Zhang S, Huang J, Li Z, Chen L, Christiansen EH, Dijkstra J, Holm NR, Tu S. Effects of local hemodynamics and plaque characteristics on neointimal response following bioresorbable scaffolds implantation in coronary bifurcations. Int J Cardiovasc Imaging 2019; 36:241-249. [PMID: 31667662 DOI: 10.1007/s10554-019-01721-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022]
Abstract
Heterogeneous neointimal response has been observed after implantation of all generations of coronary stents. Our aim was assessing local factors of shear stress (SS) and plaque characteristics in neointimal response after implantation of bioresorbable scaffolds (BRS) in bifurcations. Ten patients from the BIFSORB pilot study were analysed. Follow-up optical frequency domain imaging (OFDI) was performed at 1 month and 2 years. Coronary lumen and BRS structure were reconstructed by fusion of OFDI and angiography and were used for subsequent flow simulation. Plaque arc degree and SS were quantified using post-procedural OFDI data and were matched with follow-up OFDI using anatomical landmarks. Strut-level and segment-level analysis were performed for 1-month and 2-year follow-up respectively. A total of 444 struts (54 jailing struts) were included at 1-month follow-up. Time-average SS (TASS) was significantly lower for covered struts than for uncovered struts in non-bifurcation segments (TASS: 1.81 ± 1.87 vs. 3.88 ± 3.72 Pa, p < 0.001). The trend remained the same for jailing struts, although statistically insignificant (TASS: 10.85 ± 13.12 vs. 13.64 ± 14.48 Pa, p = 0.328). For 2-year follow-up, a total of 66 sub-regions were analysed. Neointimal hyperplasia area (NTA) was negatively correlated with TASS in core-segments (ρ = - 0.389, p = 0.037) and positively correlated with plaque arc degree in non-core segments (ρ = 0.387, p = 0.018). Slightly stronger correlations with NTA were observed when combining TASS and plaque arc degree in both core segments (ρ = - 0.412, p = 0.026) and non-core segments (ρ = - 0.395, p = 0.015). Hemodynamic microenvironment and baseline plaque characteristics may regulate neointimal response after BRS implantation in bifurcation. These findings underline the combined role of plaque characteristics and local hemodynamics in vessel healing after stent implantation.
Collapse
Affiliation(s)
- Miao Chu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Room 123, No. 1954, Huashan Road, Shanghai, 200030, People's Republic of China.,Department of Cardiology, Campo de Gibraltar Health Trust, Algeciras (Cádiz), Spain
| | | | - Yingguang Li
- Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
| | - Emil N Holck
- Department of Cardiology, Aarhus University Hospital, Skejby, Denmark
| | - Su Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Room 123, No. 1954, Huashan Road, Shanghai, 200030, People's Republic of China
| | - Jiayue Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Room 123, No. 1954, Huashan Road, Shanghai, 200030, People's Republic of China
| | - Zehang Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Room 123, No. 1954, Huashan Road, Shanghai, 200030, People's Republic of China
| | - Lianglong Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | | | - Jouke Dijkstra
- Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
| | - Niels R Holm
- Department of Cardiology, Aarhus University Hospital, Skejby, Denmark
| | - Shengxian Tu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Room 123, No. 1954, Huashan Road, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
26
|
Lüscher TF. Frontiers in today's chronic coronary syndromes: detecting obstructive disease, role of beta-blockers and of anticoagulants. Eur Heart J 2019; 40:1387-1390. [PMID: 33215662 DOI: 10.1093/eurheartj/ehz293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Thomas F Lüscher
- Professor of Cardiology, Imperial College and Director of Research, Education & Development, Royal Brompton and Harefield Hospitals London, UK.,Professor and Chairman, Center for Molecular Cardiology, University of Zurich, Switzerland.,Editor-in-Chief, EHJ Editorial Office, Zurich Heart House, Hottingerstreet 14, 8032 Zurich, Switzerland
| |
Collapse
|
27
|
Tenekecioglu E, Torii R, Katagiri Y, Chichareon P, Asano T, Miyazaki Y, Takahashi K, Modolo R, Al-Lamee R, Al-Lamee K, Colet C, Reiber JHC, Pekkan K, van Geuns R, Bourantas CV, Onuma Y, Serruys PW. Post-implantation shear stress assessment: an emerging tool for differentiation of bioresorbable scaffolds. Int J Cardiovasc Imaging 2018; 35:409-418. [PMID: 30426299 PMCID: PMC6453863 DOI: 10.1007/s10554-018-1481-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/20/2018] [Indexed: 12/27/2022]
Abstract
Optical coherence tomography based computational flow dynamic (CFD) modeling provides detailed information about the local flow behavior in stented/scaffolded vessel segments. Our aim is to investigate the in-vivo effect of strut thickness and strut protrusion on endothelial wall shear stress (ESS) distribution in ArterioSorb Absorbable Drug-Eluting Scaffold (ArterioSorb) and Absorb everolimus-eluting Bioresorbable Vascular Scaffold (Absorb) devices that struts with similar morphology (quadratic structure) but different thickness. In three animals, six coronary arteries were treated with ArterioSorb. At different six animals, six coronary arteries were treated with Absorb. Following three-dimensional(3D) reconstruction of the coronary arteries, Newtonian steady flow simulation was performed and the ESS were estimated. Mixed effects models were used to compare ESS distribution in the two devices. There were 4591 struts in the analyzed 477 cross-sections in Absorb (strut thickness = 157 µm) and 3105 struts in 429 cross-sections in ArterioSorb (strut thickness = 95 µm) for the protrusion analysis. In cross-section level analysis, there was significant difference between the scaffolds in the protrusion distances. The protrusion was higher in Absorb (97% of the strut thickness) than in ArterioSorb (88% of the strut thickness). ESS was significantly higher in ArterioSorb (1.52 ± 0.34 Pa) than in Absorb (0.73 ± 2.19 Pa) (p = 0.001). Low- and very-low ESS data were seen more often in Absorb than in ArterioSorb. ArterioSorb is associated with a more favorable ESS distribution compared to the Absorb. These differences should be attributed to different strut thickness/strut protrusion that has significant effect on shear stress distribution.
Collapse
Affiliation(s)
- Erhan Tenekecioglu
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Yuki Katagiri
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ply Chichareon
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Taku Asano
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yosuke Miyazaki
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Kuniaki Takahashi
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rodrigo Modolo
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rasha Al-Lamee
- International Centre for Circulatory Health, Imperial College London, London, UK
| | | | - Carlos Colet
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cardiology, Universitair Ziekenhuis Brussel, Brussel, Belgium
| | - Johan H C Reiber
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Robert van Geuns
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Christos V Bourantas
- Department of Cardiology, University College of London Hospitals, London, UK.,Department of Cardiology, Barts Heart Centre, London, UK
| | - Yoshinobu Onuma
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Patrick W Serruys
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands. .,Imperial College, London, UK. .,Dr.h.c. Melbourne School of Engineering, University of Melbourne, Melbourne (AUS), Westblaak 98, 3012KM, Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Katagiri Y, Onuma Y, Asano T, Chichareon P, Collet C, Miyazaki Y, Piek JJ, Wykrzykowska JJ, Abizaid A, Ormiston JA, Chevalier B, Serruys PW. Relation between bioresorbable scaffold sizing using QCA-Dmax and long-term clinical outcomes in 1,232 patients from three study cohorts (ABSORB Cohort B, ABSORB EXTEND, and ABSORB II). EUROINTERVENTION 2018; 14:e1057-e1066. [PMID: 29667581 DOI: 10.4244/eij-d-18-00301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS This study sought to investigate the long-term clinical outcomes related to scaffold sizing based on quantitative coronary angiography. METHODS AND RESULTS A total of 1,248 patients who received Absorb bioresorbable scaffolds in the ABSORB Cohort B, ABSORB EXTEND, and ABSORB II trials were included in the analysis. The incidence of MACE (a composite of cardiac death, any myocardial infarction [MI], and ischaemia-driven target lesion revascularisation [ID-TLR]) was analysed according to the Dmax subclassification of oversized scaffold group versus non-oversized (any undersize) scaffold group. At three years, event rates were similar in both groups in MACE (9.4% vs. 9.8%, p=0.847), target vessel MI (5.2% vs. 4.8%, p=0.795), and ID-TLR (4.8% vs. 5.8%, p=0.445). Landmark analysis after one year showed that the non-oversized scaffold group had higher rates of MACE (3.2% vs. 6.9%, log-rank p=0.004), target vessel MI (0.7% vs. 2.7%, log-rank p=0.007), and ID-TLR (2.5% vs. 4.7%, log-rank p=0.041). CONCLUSIONS Implantation of an undersized scaffold was associated with a higher risk of MACE between one and three years, while in the previous report an oversized scaffold was associated with a higher risk of MACE up to one year. This implies different mechanisms for early and late events after scaffold implantation.
Collapse
Affiliation(s)
- Yuki Katagiri
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ndrepepa G. Bioresorbable vascular scaffold failure - Post factum research to look for the reasons. Int J Cardiol 2018; 268:96-97. [PMID: 30041808 DOI: 10.1016/j.ijcard.2018.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Gjin Ndrepepa
- Department of Adult Cardiology, Deutsches Herzzentrum München, Technical University, Munich, Germany.
| |
Collapse
|
30
|
A Patient-Specific Study Investigating the Relation between Coronary Hemodynamics and Neo-Intimal Thickening after Bifurcation Stenting with a Polymeric Bioresorbable Scaffold. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We present an application of a validated reconstruction methodology for the comparison between patient-specific hemodynamics and neo-intimal thickening at nine months from the intervention. (1) Background: Coronary bifurcation stenting alters the vessel geometry, influencing the local hemodynamics. The evaluation of wall shear stress (WSS) relies on the application of computational fluid dynamics to model its distribution along the coronary tree. The endothelium actively responds to WSS, which triggers eventual cell proliferation to cover the stent struts. (2) Methods: Baseline optical coherence tomography and angiographic data were combined to reconstruct a patient-specific coronary bifurcation with an implanted bioresorbable scaffold and to simulate the hemodynamics. Results were linked with the neo-intimal thickening after nine months from the intervention. (3) Results: Blood velocity patterns were disrupted at the bifurcation due to the presence of the stent. It was observed that 55.6% of the scaffolded lumen surface was exposed to values of time-averaged WSS lower than 0.4 Pa. Follow-up images showed a luminal narrowing of 19% in the main branch. There was also a complete coverage in 99% of struts. (4) Conclusions: This approach provided valuable complementary information that might improve the clinical outcomes in this subset of coronary diseases.
Collapse
|
31
|
Affiliation(s)
- Thomas F Lüscher
- Editorial Office, Zurich Heart House, 8032 Zurich, Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Switzerland and Royal Brompton and Harefield Hospital Trust and Imperial College, London, SW3 6NP, UK
| |
Collapse
|
32
|
Poon EKW, Thondapu V, Hayat U, Barlis P, Yap CY, Kuo PH, Wang Q, Ma J, Zhu SJ, Moore S, Ooi ASH. Elevated Blood Viscosity and Microrecirculation Resulting From Coronary Stent Malapposition. J Biomech Eng 2018; 140:2673009. [DOI: 10.1115/1.4039306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 01/09/2023]
Abstract
One particular complexity of coronary artery is the natural tapering of the vessel with proximal segments having larger caliber and distal tapering as the vessel get smaller. The natural tapering of a coronary artery often leads to proximal incomplete stent apposition (ISA). ISA alters coronary hemodynamics and creates pathological path to develop complications such as in-stent restenosis, and more worryingly, stent thrombosis (ST). By employing state-of-the-art computer-aided design software, generic stent hoops were virtually deployed in an idealized tapered coronary artery with decreasing malapposition distance. Pulsatile blood flow simulations were carried out using computational fluid dynamics (CFD) on these computer-aided design models. CFD results reveal unprecedented details in both spatial and temporal development of microrecirculation environments throughout the cardiac cycle (CC). Arterial tapering also introduces secondary microrecirculation. These primary and secondary microrecirculations provoke significant fluctuations in arterial wall shear stress (WSS). There has been a direct correlation with changes in WSS and the development of atherosclerosis. Further, the presence of these microrecirculations influence strongly on the local levels of blood viscosity in the vicinity of the malapposed stent struts. The observation of secondary microrecirculations and changes in blood rheology is believed to complement the wall (-based) shear stress, perhaps providing additional physical explanations for tissue accumulation near ISA detected from high resolution optical coherence tomography (OCT).
Collapse
Affiliation(s)
- Eric K. W. Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Vikas Thondapu
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia
- Faculty of Medicine, Dentistry, and Health Sciences, Department of Medicine, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Umair Hayat
- Faculty of Medicine, Dentistry and Health Sciences, Department of Medicine, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Peter Barlis
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Chooi Yin Yap
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Po-Hung Kuo
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Qisen Wang
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Jiawei Ma
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Shuang J. Zhu
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Stephen Moore
- IBM Research Australia, Carlton 3053, Victoria, Australia e-mail:
| | - Andrew S. H. Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| |
Collapse
|