1
|
Haase T, Ludwig A, Stach A, Mohtashamdolatshahi A, Hauptmann R, Mundhenk L, Kratz H, Metzkow S, Kader A, Freise C, Mueller S, Stolzenburg N, Radon P, Liebl M, Wiekhorst F, Hamm B, Taupitz M, Schnorr J. Repeated Injection of Very Small Superparamagnetic Iron Oxide Particles (VSOPs) in Murine Atherosclerosis: A Safety Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:773. [PMID: 38727367 PMCID: PMC11085881 DOI: 10.3390/nano14090773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Citrate-coated electrostatically stabilized very small superparamagnetic iron oxide particles (VSOPs) have been successfully tested as magnetic resonance angiography (MRA) contrast agents and are promising tools for molecular imaging of atherosclerosis. Their repeated use in the background of pre-existing hyperlipidemia and atherosclerosis has not yet been studied. This study aimed to investigate the effect of multiple intravenous injections of VSOPs in atherosclerotic mice. Taurine-formulated VSOPs (VSOP-T) were repeatedly intravenously injected at 100 µmol Fe/kg in apolipoprotein E-deficient (ApoE KO) mice with diet-induced atherosclerosis. Angiographic imaging was carried out by in vivo MRI. Magnetic particle spectrometry was used to detect tissue VSOP content, and tissue iron content was quantified photometrically. Pathological changes in organs, atherosclerotic plaque development, and expression of hepatic iron-related proteins were evaluated. VSOP-T enabled the angiographic imaging of heart and blood vessels with a blood half-life of one hour. Repeated intravenous injection led to VSOP deposition and iron accumulation in the liver and spleen without affecting liver and spleen pathology, expression of hepatic iron metabolism proteins, serum lipids, or atherosclerotic lesion formation. Repeated injections of VSOP-T doses sufficient for MRA analyses had no significant effects on plaque burden, steatohepatitis, and iron homeostasis in atherosclerotic mice. These findings underscore the safety of VSOP-T and support its further development as a contrast agent and molecular imaging tool.
Collapse
Affiliation(s)
- Tobias Haase
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Antje Ludwig
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
| | - Anke Stach
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Azadeh Mohtashamdolatshahi
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Ralf Hauptmann
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany;
| | - Harald Kratz
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Susanne Metzkow
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Avan Kader
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Christian Freise
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Susanne Mueller
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- Charité 3R|Replace, Reduce, Refine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Nicola Stolzenburg
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Patricia Radon
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany; (P.R.); (M.L.); (F.W.)
| | - Maik Liebl
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany; (P.R.); (M.L.); (F.W.)
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany; (P.R.); (M.L.); (F.W.)
| | - Bernd Hamm
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Taupitz
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Schnorr
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
2
|
Zhang Y, He Y, Liu S, Deng L, Zuo Y, Huang K, Liao B, Li G, Feng J. SGLT2 Inhibitors in Aging-Related Cardiovascular Disease: A Review of Potential Mechanisms. Am J Cardiovasc Drugs 2023; 23:641-662. [PMID: 37620652 DOI: 10.1007/s40256-023-00602-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Population aging combined with higher susceptibility to cardiovascular diseases in older adults is increasing the incidence of conditions such as atherosclerosis, myocardial infarction, heart failure, myocardial hypertrophy, myocardial fibrosis, arrhythmia, and hypertension. sodium-glucose cotransporter 2 inhibitors (SGLT2i) were originally developed as a novel oral drug for patients with type 2 diabetes mellitus. Unexpectedly, recent studies have shown that, beyond their effect on hyperglycemia, SGLT2i also have a variety of beneficial effects on cardiovascular disease. Experimental models of cardiovascular disease have shown that SGLT2i ameliorate the process of aging-related cardiovascular disease by inhibiting inflammation, reducing oxidative stress, and reversing endothelial dysfunction. In this review, we discuss the role of SGLT2i in aging-related cardiovascular disease and propose the use of SGLT2i to prevent and treat these conditions in older adults.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yumei Zuo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiac Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guang Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Fernandes S, Tlemçani M, Bortoli D, Feliciano M, Lopes ME. A Portable Measurement Device Based on Phenanthroline Complex for Iron Determination in Water. SENSORS (BASEL, SWITZERLAND) 2023; 23:1058. [PMID: 36772098 PMCID: PMC9919581 DOI: 10.3390/s23031058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
In this work, a newly developed self-contained, portable, and compact iron measurement system (IMS) based on spectroscopy absorption for determination of Fe2+ in water is presented. One of the main goals of the IMS is to operate the device in the field as opposed to instruments commonly used exclusively in the laboratory. In addition, the system has been tuned to quantify iron concentrations in accordance with the values proposed by the regulations for human consumption. The instrument uses the phenanthroline standard method for iron determination in water samples. This device is equipped with an optical sensing system consisting of a light-emitting diode paired with a photodiode to measure absorption radiation through ferroin complex medium. To assess the sensor response, four series of Fe2+ standard samples were prepared with different iron concentrations in various water matrices. Furthermore, a new solid reagent prepared in-house was investigated, which is intended as a "ready-to-use" sample pre-treatment that optimizes work in the field. The IMS showed better analytical performance compared with the state-of-the-art instrument. The sensitivity of the instrument was found to be 2.5 µg Fe2+/L for the measurement range established by the regulations. The linear response of the photodiode was determined for concentrations between 25 and 1000 µg Fe2+/L, making this device suitable for assessing iron in water bodies.
Collapse
Affiliation(s)
- Samuel Fernandes
- Department of Mechatronics Engineering, School of Science and Technology, Universidade de Évora, 7000-671 Évora, Portugal
- Instrumentation and Control Laboratory (ICL), Insititute of Earth Sciences (ICT), Universidade de Évora, 7000-671 Évora, Portugal
| | - Mouhaydine Tlemçani
- Department of Mechatronics Engineering, School of Science and Technology, Universidade de Évora, 7000-671 Évora, Portugal
- Instrumentation and Control Laboratory (ICL), Insititute of Earth Sciences (ICT), Universidade de Évora, 7000-671 Évora, Portugal
| | - Daniele Bortoli
- Instrumentation and Control Laboratory (ICL), Insititute of Earth Sciences (ICT), Universidade de Évora, 7000-671 Évora, Portugal
- Physics Department, School of Science and Technology (ECT), Universidade de Évora, 7000-671 Évora, Portugal
- Earth Remote Sensing Laboratory (EaRSLab), Institute of Earth Sciences (ICT), Universidade de Évora, 7000-671 Évora, Portugal
| | - Manuel Feliciano
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Elmina Lopes
- Department of Chemistry and Biochemistry, School of Science and Technology (ECT), Universidade de Évora, 7000-671 Evora, Portugal
| |
Collapse
|
4
|
Lupu M, Tudor D, Filip A. Iron metabolism and cardiovascular disease: Basic to translational purviews and therapeutical approach. Rev Port Cardiol 2022; 41:1037-1046. [PMID: 36228833 DOI: 10.1016/j.repc.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022] Open
Abstract
Iron interactions with the cardiovascular system were proposed about half a century ago, yet a clear-cut understanding of this micronutrient and its intricacies with acute and chronic events is still lacking. In chronic heart failure, patients with decreased iron stores appear to benefit from intravenous administration of metallic formulations, whereas acute diseases (e.g., myocardial infarction, stroke) are barely studied in randomized controlled trials in humans. However, proof-of-concept studies have indicated that the dual redox characteristics of iron could be involved in atherosclerosis, necrosis, and ferroptosis. To this end, we sought to review the currently available body of literature pertaining to these temporal profiles of heart diseases, as well as the pathophysiologic mechanism by which iron enacts, underlining key points related to treatment options.
Collapse
Affiliation(s)
- Mihai Lupu
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania.
| | - Diana Tudor
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania
| | - Adriana Filip
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Lüscher TF. Nutrition, obesity, diabetes, and cardiovascular outcomes: a deadly association. Eur Heart J 2021; 41:2603-2607. [PMID: 33216914 DOI: 10.1093/eurheartj/ehaa622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Thomas F Lüscher
- Professor of Cardiology, Imperial College and Director of Research, Education & Development, Royal Brompton and Harefield Hospital London, UK.,Professor and Chairman, Center for Molecular Cardiology, University of Zurich, Switzerland.,Editor-in-Chief, EHJ Editorial Office, Zurich Heart House, Hottingerstreet 14, 8032 Zurich, Switzerland
| |
Collapse
|
6
|
Liu Z, Ma X, Ilyas I, Zheng X, Luo S, Little PJ, Kamato D, Sahebkar A, Wu W, Weng J, Xu S. Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics 2021; 11:4502-4515. [PMID: 33754074 PMCID: PMC7977463 DOI: 10.7150/thno.54498] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are new oral drugs for the therapy of patients with type 2 diabetes mellitus (T2DM). Research in the past decade has shown that drugs of the SGLT2i class, such as empagliflozin, canagliflozin, and dapagliflozin, have pleiotropic effects in preventing cardiovascular diseases beyond their favorable impact on hyperglycemia. Of clinical relevance, recent landmark cardiovascular outcome trials have demonstrated that SGLT2i reduce major adverse cardiovascular events, hospitalization for heart failure, and cardiovascular death in T2DM patients with/without cardiovascular diseases (including atherosclerotic cardiovascular diseases and various types of heart failure). The major pharmacological action of SGLT2i is through inhibiting glucose re-absorption in the kidney and thus promoting glucose excretion. Studies in experimental models of atherosclerosis have shown that SGLT2i ameliorate the progression of atherosclerosis by mechanisms including inhibition of vascular inflammation, reduction in oxidative stress, reversing endothelial dysfunction, reducing foam cell formation and preventing platelet activation. Here, we summarize the anti-atherosclerotic actions and mechanisms of action of SGLT2i, with an aim to emphasize the clinical utility of this class of agents in preventing the insidious cardiovascular complications accompanying diabetes.
Collapse
Affiliation(s)
- Zhenghong Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoxuan Ma
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peter J. Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Weiming Wu
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|