1
|
Baragetti A, Alieva AS, Grigore L, Pellegatta F, Lupi A, Scrimali C, Cefalù AB, Hutten BA, Wiegman A, Knaapen P, Bom MJ, Nurmohamed NS, Reutova O, Konradi A, Shlyakhto E, Stroes ESG, Averna M, Catapano AL. Fibroblast growth factor 5: a novel biomarker for familial hypercholesterolaemia. Eur Heart J 2025:ehaf045. [PMID: 39928422 DOI: 10.1093/eurheartj/ehaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 01/21/2025] [Indexed: 02/12/2025] Open
Abstract
BACKGROUND AND AIMS Identification of individuals affected by familial hypercholesterolaemia (FH) is suboptimal when genetic tests are unavailable. Relying only on low-density lipoprotein cholesterol (LDL-C) is challenging as it may not allow distinguishing individuals with FH from hypercholesterolaemic (HC) individuals from the general population. The aim of this study was to determine whether biomarkers associated with cardiovascular disease and/or inflammation identify FH individuals and distinguish them from HC individuals. METHODS A panel of 264 proteins in plasma was measured and machine learning was used to search for those that can distinguish FH individuals, either genetically proven (genFH) or clinically diagnosed (clinFH) from HC and control individuals. RESULTS Both genFH and clinFH had elevated plasma levels of fibroblast growth factor 5 (FGF-5) compared with controls (mean area under the curve [AUC] > .990 for both, P < .001) or HC individuals (mean AUC >.990, P < .001), even after matching for LDL-C levels. An immunoenzymatic assay confirmed that FGF-5 was elevated in genFH and clinFH in all cohorts analysed. CONCLUSIONS This analysis suggests that FGF-5 could be a biomarker to discriminate individuals living with FH from HC individuals.
Collapse
Affiliation(s)
- Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzarett 9, 20133 Milan, Italy
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Asiiat S Alieva
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Liliana Grigore
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Fabio Pellegatta
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Andrea Lupi
- S.I.S.A. Centre for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Chiara Scrimali
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Angelo B Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Barbara A Hutten
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Research Institute, Diabetes and Metabolism, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Wiegman
- Department of Pediatrics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Knaapen
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michiel J Bom
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nick S Nurmohamed
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Olga Reutova
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Alexandra Konradi
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Evgeny Shlyakhto
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzarett 9, 20133 Milan, Italy
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| |
Collapse
|
2
|
Huang H, Li L, Yang A, Chen T, Shi G, Li F, Wang L, Cai G. Cardiovascular disease risk in patients with elevated LDL-C levels: FH vs. non-FH. Front Cardiovasc Med 2024; 11:1434392. [PMID: 39512369 PMCID: PMC11540629 DOI: 10.3389/fcvm.2024.1434392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Coronary artery disease (CAD) remains the primary cause of death worldwide, and familial hypercholesterolemia (FH) is a common disease that leads to CAD. This study aimed to explore the difference in CAD risk between FH and non-FH patients with high low-density lipoprotein cholesterol (LDL-C) levels. Methods Individuals (≥18 years) who underwent coronary angiography (CAG) from June 2016 to September 2020 were consecutively enrolled. Participants with LDL-C levels ≥4.0 mmol/L were ultimately included in this study. For all participants, next-generation sequencing was performed with expanded gene panels including 11 genes (LDLR, APOB, PCSK9, LDLRAP1, ABCG5, ABCG8, LIPA, LPA, APOBR, LRPAP1, and STAP1). Results A total of 223 individuals were included in this study. According to the CAG findings, 199 CAD patients and 24 non-CAD patients were included. The proportions of FH genes, regardless of whether 3 major genes or all 11 genes were sequenced, were not significantly different between the CAD and non-CAD groups (P > 0.05). In addition, all CAD patients were divided into a triple vessel disease (TVD) group and a non-TVD group. The TVD group had a greater proportion of patients with mutations in 3 FH major genes (P < 0.05). In addition, TC, LDL-C and modified LDL-C (MLDL-C) levels were higher and the estimated glomerular filtration rate (eGFR) was lower in the TVD group than in the non-TVD group (all P < 0.05). However, multivariate logistic regression analyses revealed that only the eGFR was an independent risk factor for TVD (OR 0.99; 95% CI: 0.98-1.00, P < 0.05). To eliminate the impact of the eGFR, subgroup analysis was conducted, and the results indicated that among CAD patients in the high-eGFR group, having FH mutations in 3 major genes was an independent risk factor for TVD (OR 3.00; 95% CI: 1.16-7.79, P < 0.05). In total, 104 FH-related mutations were detected in this study. Conclusions FH mutation did not increase the rate of CAD in individuals with an MLDL-C level ≥4.0 mmol/L. However, among CAD patients (MLDL-C level ≥4.0 mmol/L) with almost normal renal function (≥87.4 ml/min/1.73 m2), the probability of enduring TVD in those with FH mutations in 3 major genes was 3.00 times greater than that in those without FH mutations.
Collapse
Affiliation(s)
- Haomin Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lamei Li
- Department of Cardiology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Anni Yang
- Department of Cardiology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Tao Chen
- Department of Cardiology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Ganwei Shi
- Department of Cardiology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Feng Li
- Department of Cardiology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Luya Wang
- Departmentof Atherosclerosis, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Gaojun Cai
- Department of Cardiology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
3
|
Mănescu IB, Gabor MR, Moldovan GV, Hadadi L, Huțanu A, Bănescu C, Dobreanu M. An 8-SNP LDL Cholesterol Polygenic Score: Associations with Cardiovascular Risk Traits, Familial Hypercholesterolemia Phenotype, and Premature Coronary Heart Disease in Central Romania. Int J Mol Sci 2024; 25:10038. [PMID: 39337524 PMCID: PMC11432653 DOI: 10.3390/ijms251810038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Familial hypercholesterolemia (FH) is the most significant inherited risk factor for coronary heart disease (CHD). Current guidelines focus on monogenic FH, but the polygenic form is more common and less understood. This study aimed to assess the clinical utility of an 8-SNP LDLC polygenic score in a central Romanian cohort. The cohort included 97 healthy controls and 125 patients with premature (P)CHD. The weighted LDLC polygenic risk score (wPRS) was analyzed for associations with relevant phenotypic traits, PCHD risk, and clinical FH diagnosis. The wPRS positively correlated with LDLC and DLCN scores, and LDLC concentrations could be predicted by wPRS. A trend of increasing LDLC and DLCN scores with wPRS deciles was observed. A +1 SD increase in wPRS was associated with a 36% higher likelihood of having LDLC > 190 mg/dL and increases in LDLC (+0.20 SD), DLCN score (+0.16 SD), and BMI (+0.15 SD), as well as a decrease in HDLC (-0.14 SD). Although wPRS did not predict PCHD across the entire spectrum of values, individuals above the 90th percentile were three times more likely to have PCHD compared to those within the 10th or 20th percentiles. Additionally, wPRS > 45th percentile identified "definite" clinical FH (DLCN score > 8) with 100% sensitivity and 45% specificity. The LDLC polygenic score correlates with key phenotypic traits, and individuals with high scores are more likely to have PCHD. Implementing this genetic tool may enhance risk prediction and patient stratification. These findings, the first of their kind in Romania, are consistent with the existing literature.
Collapse
Affiliation(s)
- Ion Bogdan Mănescu
- Department of Laboratory Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.H.); (M.D.)
| | - Manuela Rozalia Gabor
- Department of Economic Science, Faculty of Economics and Law, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540566 Targu Mures, Romania;
- Department of Economic Research, Centre for Law, Economics and Business Studies, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540566 Targu Mures, Romania
| | - George Valeriu Moldovan
- Clinical Laboratory, Emergency County Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
| | - László Hadadi
- Emergency Institute for Cardiovascular Diseases and Transplantation, 540136 Targu Mures, Romania;
| | - Adina Huțanu
- Department of Laboratory Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.H.); (M.D.)
- Clinical Laboratory, Emergency County Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
| | - Claudia Bănescu
- Department of Genetics, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Minodora Dobreanu
- Department of Laboratory Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.H.); (M.D.)
- Clinical Laboratory, Emergency County Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
- Immunology Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
4
|
Tani R, Matsunaga K, Toda Y, Inoue T, Fu HY, Minamino T. Phenotypic homozygous familial hypercholesterolemia successfully treated with proprotein convertase subtilisin/kexin type 9 inhibitors. Clin Case Rep 2024; 12:e8537. [PMID: 38380379 PMCID: PMC10876917 DOI: 10.1002/ccr3.8537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Recent data reveal phenotypic HoFH patients may be responsive to PCSK9 inhibitors, challenging prior assumptions. Genetic testing advancements now more accurately forecast patient responses to these therapies, improving treatment strategies.
Collapse
Affiliation(s)
- Ryosuke Tani
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of MedicineKagawa UniversityKagawaJapan
| | - Keiji Matsunaga
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of MedicineKagawa UniversityKagawaJapan
| | - Yuta Toda
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of MedicineKagawa UniversityKagawaJapan
| | - Tomoko Inoue
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of MedicineKagawa UniversityKagawaJapan
| | - Hai Ying Fu
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of MedicineKagawa UniversityKagawaJapan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of MedicineKagawa UniversityKagawaJapan
| |
Collapse
|
5
|
Darabi M, Lhomme M, Ponnaiah M, Pučić-Baković M, Guillas I, Frisdal E, Bittar R, Croyal M, Matheron-Duriez L, Poupel L, Bonnefont-Rousselot D, Frere C, Varret M, Krempf M, Cariou B, Lauc G, Guerin M, Carrie A, Bruckert E, Giral P, Le Goff W, Kontush A. Integrated omics approach for the identification of HDL structure-function relationships in PCSK9-related familial hypercholesterolemia. J Clin Lipidol 2023; 17:643-658. [PMID: 37550151 DOI: 10.1016/j.jacl.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND The role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in dyslipidemia may go beyond its immediate effects on low-density lipoprotein receptor (LDL-R) activity. OBJECTIVE This study aimed to assess PCSK9-derived alterations of high-density lipoprotein (HDL) physiology, which bear a potential to contribute to cardiovascular risk profile. METHODS HDL was isolated from 33 patients with familial autosomal dominant hypercholesterolemia (FH), including those carrying PCSK9 gain-of-function (GOF) genetic variants (FH-PCSK9, n = 11), together with two groups of dyslipidemic patients employed as controls and carrying genetic variants in the LDL-R not treated (ntFH-LDLR, n = 11) and treated (tFH-LDLR, n = 11) with statins, and 11 normolipidemic controls. Biological evaluations paralleled by proteomic, lipidomic and glycomic analyses were applied to characterize functional and compositional properties of HDL. RESULTS Multiple deficiencies in the HDL function were identified in the FH-PCSK9 group relative to dyslipidemic FH-LDLR patients and normolipidemic controls, which involved reduced antioxidative, antiapoptotic, anti-thrombotic and anti-inflammatory activities. By contrast, cellular cholesterol efflux capacity of HDL was unchanged. In addition, multiple alterations of the proteomic, lipidomic and glycomic composition of HDL were found in the FH-PCSK9 group. Remarkably, HDLs from FH-PCSK9 patients were systematically enriched in several lysophospholipids as well as in A2G2S2 (GP13) glycan and apolipoprotein A-IV. Based on network analysis of functional and compositional data, a novel mosaic structure-function model of HDL biology involving FH was developed. CONCLUSION Several metrics of anti-atherogenic HDL functionality are altered in FH-PCSK9 patients paralleled by distinct compositional alterations. These data provide a first-ever overview of the impact of GOF PCSK9 genetic variants on structure-function relationships in HDL.
Collapse
Affiliation(s)
- Maryam Darabi
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France; LPS-BioSciences (Current affiliation of Dr Darabi), Université de Paris-Saclay, Orsay, France
| | - Marie Lhomme
- ICAN Analytics (Dr Lhomme), Lipidomics Core, Foundation for Innovation in Cardiometabolism and Nutrition (IHU-ICAN, ANR-10-IAHU-05), Paris, France
| | - Maharajah Ponnaiah
- ICAN I/O (Dr Ponnaiah), Foundation for Innovation in Cardiometabolism and Nutrition (IHU-ICAN, ANR-10-IAHU-05), Paris, France
| | - Maja Pučić-Baković
- Genos Glycoscience Research Laboratory (Drs Pučić-Baković and Lauc), Borongajska cesta 83H, HR-10 000 Zagreb, Croatia
| | - Isabelle Guillas
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Eric Frisdal
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Randa Bittar
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France; Department of Metabolic Biochemistry (Drs Bittar and Bonnefont-Rousselot), Pitié-Salpêtrière-Charles Foix Hospital, AP-HP, Paris, France
| | - Mikaël Croyal
- Université de Nantes (Drs Cariou et Croyal), CHU Nantes, CNRS, INSERM, l'Institut du Thorax, F-44000 Nantes, France; Université de Nantes (Dr Croyal), CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France; CRNH-Ouest Mass Spectrometry Core Facility (Drs Croyal and Krempf), F-44000 Nantes, France
| | - Lucrèce Matheron-Duriez
- Platform MS3U (Dr Matheron), Institut de Biologie Paris Seine FR 3631, Sorbonne Université, Paris, France
| | - Lucie Poupel
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Dominique Bonnefont-Rousselot
- Department of Metabolic Biochemistry (Drs Bittar and Bonnefont-Rousselot), Pitié-Salpêtrière-Charles Foix Hospital, AP-HP, Paris, France; Université de Paris (Dr Bonnefont-Rousselot), CNRS, INSERM, UTCBS, F-75006 Paris, France
| | - Corinne Frere
- Department of Haematology (Dr Frere), Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Mathilde Varret
- Paris University and Sorbonne Paris Nord University (Dr Varret), National Institute for Health and Medical Research (INSERM, LVTS), F-75018 Paris, France
| | - Michel Krempf
- CRNH-Ouest Mass Spectrometry Core Facility (Drs Croyal and Krempf), F-44000 Nantes, France; Clinique Bretéché (Dr Krempf), Groupe Elsan, Nantes, France
| | - Bertrand Cariou
- Université de Nantes (Drs Cariou et Croyal), CHU Nantes, CNRS, INSERM, l'Institut du Thorax, F-44000 Nantes, France
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory (Drs Pučić-Baković and Lauc), Borongajska cesta 83H, HR-10 000 Zagreb, Croatia
| | - Maryse Guerin
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Alain Carrie
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Eric Bruckert
- Endocrinologie Métabolisme et Prévention Cardiovasculaire (Drs Bruckert and Giral), Institut E3M et IHU Cardiométabolique (ICAN), Hôpital Pitié Salpêtrière, Paris, France
| | - Philippe Giral
- Endocrinologie Métabolisme et Prévention Cardiovasculaire (Drs Bruckert and Giral), Institut E3M et IHU Cardiométabolique (ICAN), Hôpital Pitié Salpêtrière, Paris, France
| | - Wilfried Le Goff
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Anatol Kontush
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France.
| |
Collapse
|
6
|
Athar M, Toonsi M, Abduljaleel Z, Bouazzaoui A, Bogari NM, Dannoun A, Al-Allaf FA. Novel LDLR Variant in Familial Hypercholesterolemia: NGS-Based Identification, In Silico Characterization, and Pharmacogenetic Insights. Life (Basel) 2023; 13:1542. [PMID: 37511917 PMCID: PMC10381584 DOI: 10.3390/life13071542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Familial Hypercholesterolemia (FH) is a hereditary condition that causes a rise in blood cholesterol throughout a person's life. FH can result in myocardial infarction and even sudden death if not treated. FH is thought to be caused mainly by variants in the gene for the low-density lipoprotein receptor (LDLR). This study aimed to investigate the genetic variants in FH patients, verify their pathogenicity, and comprehend the relationships between genotype and phenotype. Also, review studies assessed the relationship between the LDLR null variants and the reaction to lipid-lowering therapy. METHODS The study utilised high-throughput next-generation sequencing for genetic screening of FH-associated genes and capillary sequencing for cascade screening. Furthermore, bioinformatic analysis was employed to describe the pathogenic effects of the revealed novel variant on the structural features of the corresponding RNA molecule. RESULTS We studied the clinical signs of hypercholesterolemia in a Saudi family with three generations of FH. We discovered a novel frameshift variant (c.666_670dup, p.(Asp224Alafs*43) in the LDLR and a known single nucleotide variant (c.9835A > G, p.(Ser3279Gly) in the APOB gene. It is thought that the LDLR variant causes a protein to be prematurely truncated, likely through nonsense-mediated protein decay. The LDLR variant is strongly predicted to be pathogenic in accordance with ACMG guidelines and co-segregated with the FH clinical characteristics of the family. This LDLR variant exhibited severe clinical FH phenotypes and was restricted to the LDLR protein's ligand-binding domain. According to computational functional characterization, this LDLR variant was predicted to change the free energy dynamics of the RNA molecule, thereby affecting its stability. This frameshift variant is thought to eliminate important functional domains in LDLR that are required for receptor recycling and LDL particle binding. We provide insight into how FH patients with a null variant in the LDLR gene respond to lipid-lowering therapy. CONCLUSIONS The findings expand the range of FH variants and assist coronary artery disease preventive efforts by improving diagnosis, understanding the genotype-phenotype relationship, prognosis, and personalised therapy for patients with FH.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mawaddah Toonsi
- Department of Pediatrics, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Neda M Bogari
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Anas Dannoun
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
7
|
Ramli AS, Qureshi N, Abdul-Hamid H, Kamal A, Kanchau JD, Shahuri NS, Akyea RK, Silva L, Condon L, Abdul-Razak S, Al-Khateeb A, Chua YA, Mohamed-Yassin MS, Baharudin N, Badlishah-Sham SF, Abdul Aziz AF, Mohd Kasim NA, Sheikh Abdul Kadir SH, Kai J, Leonardi-Bee J, Nawawi H. Reducing Premature Coronary Artery Disease in Malaysia by Early Identification of Familial Hypercholesterolemia Using the Familial Hypercholesterolemia Case Ascertainment Tool (FAMCAT): Protocol for a Mixed Methods Evaluation Study. JMIR Res Protoc 2023; 12:e47911. [PMID: 37137823 PMCID: PMC10276320 DOI: 10.2196/47911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is predominantly caused by mutations in the 4 FH candidate genes (FHCGs), namely, low-density lipoprotein receptor (LDLR), apolipoprotein B-100 (APOB-100), proprotein convertase subtilisin/kexin type 9 (PCSK9), and the LDL receptor adaptor protein 1 (LDLRAP1). It is characterized by elevated low-density lipoprotein cholesterol (LDL-c) levels leading to premature coronary artery disease. FH can be clinically diagnosed using established clinical criteria, namely, Simon Broome (SB) and Dutch Lipid Clinic Criteria (DLCC), and can be identified using the Familial Hypercholesterolemia Case Ascertainment Tool (FAMCAT), a primary care screening tool. OBJECTIVE This study aims to (1) compare the detection rate of genetically confirmed FH and diagnostic accuracy between the FAMCAT, SB, and DLCC in the Malaysian primary care setting; (2) identify the genetic mutation profiles, including novel variants, in individuals with suspected FH in primary care; (3) explore the experience, concern, and expectation of individuals with suspected FH who have undergone genetic testing in primary care; and (4) evaluate the clinical utility of a web-based FH Identification Tool that includes the FAMCAT, SB, and DLCC in the Malaysian primary care setting. METHODS This is a mixed methods evaluation study conducted in 11 Ministry of Health primary care clinics located at the central administrative region of Malaysia. In Work stream 1, the diagnostic accuracy study design is used to compare the detection rate and diagnostic accuracy of the FAMCAT, SB, and DLCC against molecular diagnosis as the gold standard. In Work stream 2, the targeted next-generation sequencing of the 4 FHCGs is used to identify the genetic mutation profiles among individuals with suspected FH. In Work stream 3a, a qualitative semistructured interview methodology is used to explore the experience, concern, and expectation of individuals with suspected FH who have undergone genetic testing. Lastly, in Work stream 3b, a qualitative real-time observation of primary care physicians using the "think-aloud" methodology is applied to evaluate the clinical utility of a web-based FH Identification Tool. RESULTS The recruitment for Work stream 1, and blood sampling and genetic analysis for Work stream 2 were completed in February 2023. Data collection for Work stream 3 was completed in March 2023. Data analysis for Work streams 1, 2, 3a, and 3b is projected to be completed by June 2023, with the results of this study anticipated to be published by December 2023. CONCLUSIONS This study will provide evidence on which clinical diagnostic criterion is the best to detect FH in the Malaysian primary care setting. The full spectrum of genetic mutations in the FHCGs including novel pathogenic variants will be identified. Patients' perspectives while undergoing genetic testing and the primary care physicians experience in utilizing the web-based tool will be established. These findings will have tremendous impact on the management of patients with FH in primary care and subsequently reduce their risk of premature coronary artery disease. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/47911.
Collapse
Affiliation(s)
- Anis Safura Ramli
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Nadeem Qureshi
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Hasidah Abdul-Hamid
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Aisyah Kamal
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Johanes Dedi Kanchau
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Nur Syahirah Shahuri
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Ralph Kwame Akyea
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Luisa Silva
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Laura Condon
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Suraya Abdul-Razak
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Cardio Vascular and Lungs Research Institute (CaVaLRI), Hospital Al-Sultan Abdullah, Universiti Teknologi MARA, Bandar Puncak Alam, Selangor, Malaysia
| | - Alyaa Al-Khateeb
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Yung-An Chua
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Mohamed-Syarif Mohamed-Yassin
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Noorhida Baharudin
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Siti Fatimah Badlishah-Sham
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | | | - Noor Alicezah Mohd Kasim
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Joe Kai
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jo Leonardi-Bee
- Centre of Academic Primary Care, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Hapizah Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
8
|
Medeiros AM, Bourbon M. Genetic Testing in Familial Hypercholesterolemia: Is It for Everyone? Curr Atheroscler Rep 2023; 25:127-132. [PMID: 36862327 PMCID: PMC10027780 DOI: 10.1007/s11883-023-01091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW Lipid measurements and genetic testing are the main diagnostic tools for FH screening that are available in many countries. A lipid profile is widely accessible, and genetic testing, although available worldwide, in some countries is only performed in a research context. Still FH is diagnosed late, showing lack of early screening programs worldwide. RECENT FINDINGS Pediatric screening of FH was recently recognized by the European Commission Public Health Best Practice Portal as one on the best practices in non-communicable disease prevention. The early diagnosis of FH and the lowering of LDL-C values over lifespan can reduce the risk of coronary artery disease and offer health and socioeconomic gains. Current knowledge about FH shows that early detection through appropriate screening needs to become a priority in healthcare systems worldwide. Governmental programs for FH identification should be implemented to unify the diagnosis and increase patient identification.
Collapse
Affiliation(s)
- A M Medeiros
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde E Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - M Bourbon
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde E Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal.
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
9
|
Severe Dyslipidemia Mimicking Familial Hypercholesterolemia Induced by High-Fat, Low-Carbohydrate Diets: A Critical Review. Nutrients 2023; 15:nu15040962. [PMID: 36839320 PMCID: PMC9964047 DOI: 10.3390/nu15040962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Emerging studies in the literature describe an association between high-fat, low-carbohydrate diets and severe hypercholesterolemia consistent with the levels observed in patients with (homozygous) familial hypercholesterolemia (FH). High levels of low-density lipoprotein cholesterol (LDL-C) may result from the reduced clearance of LDL particles from the circulation, the increased production of their precursor, or a combination of both. The increased intake of (saturated) fat and cholesterol, combined with limited to no intake of carbohydrates and fiber, are the main features of diets linked to hypercholesterolemia. However, several observations in previous studies, together with our observations from our lipid clinic, do not provide a definitive pathophysiological explanation for severe hypercholesterolemia. Therefore, we review these findings and possible pathophysiological explanations as well as opportunities for future research. Altogether, clinicians should rule out high-fat, low-carbohydrate diets as a possible cause for hypercholesterolemia in patients presenting with clinical FH in whom no mutation is found and discuss dietary modifications to durably reduce LDL-C levels and cardiovascular disease risk.
Collapse
|
10
|
Ganjali S, Hosseini S, Rizzo M, Kontush A, Sahebkar A. Capacity of HDL to Efflux Cellular Cholesterol from Lipid-Loaded Macrophages Is Reduced in Patients with Familial Hypercholesterolemia. Metabolites 2023; 13:metabo13020197. [PMID: 36837816 PMCID: PMC9961594 DOI: 10.3390/metabo13020197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
This study aimed to evaluate the high-density lipoprotein (HDL) capacity to efflux cellular cholesterol from lipid-loaded macrophages to find a reliable and low-cost biomarker with the purpose of better evaluating the risk of premature cardiovascular (CV) events in FH patients. This case-controlled study comprised 16 homozygous (HOFH) and 18 heterozygous (HEFH) FH patients, as well as 20 healthy subjects recruited as controls. Two main subfractions of HDL (HDL2 (d = 1.063-1.125 g/mL) and HDL3 (d = 1.125-1.210 g/mL)) were isolated from the patients' serum samples using sequential ultracentrifugation. After compositional characterization, the capacity of HDL to efflux cholesterol (CEC%) from lipid-laden macrophages was measured. The HDL2 and HDL3 subfractions showed some differences in lipid and protein composition between the studied groups. In addition, both HDL subfractions (p < 0.001) revealed significantly reduced CEC% in HOFH patients (HDL2: 2.5 ± 0.1 and HDL3: 3.2 ± 0.2) in comparison with the HEFH (HDL2: 3.2 ± 0.1% and HDL3: 4.1 ± 0.2%) and healthy (HDL2: 3.3 ± 0.2% and HDL3: 4.5 ± 0.3%) subjects. Additionally, multinomial logistic regression results indicated that the CEC% of both HDL2 (OR: 0.091; 95% CI: 0.018-0.452, p < 0.01) and HDL3 (OR: 0.118; 95% CI: 0.035-0.399, p < 0.01) subfractions are strongly and inversely associated with the homozygous form of FH. A decreased capacity of HDL particles to efflux cholesterol from macrophages might identify homozygous FH patients who are at elevated risk for premature CVDs. Prospective studies with a large sample size are warranted to evaluate this hypothesis.
Collapse
Affiliation(s)
- Shiva Ganjali
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Hosseini
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Anatol Kontush
- Cardiovascular Diseases Research Unit, National Institute of Health and Medical Research (INSERM), Metabolism and Nutrition, ICAN, Sorbonne University, F-75013 Paris, France
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Correspondence:
| |
Collapse
|
11
|
Gersey ZC, Zenonos GA, Gardner PA. Malignant Brain and Spinal Tumors Originating from Bone or Cartilage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:477-506. [PMID: 37452950 DOI: 10.1007/978-3-031-23705-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Malignant bone tumors affecting the brain and spine are a rare and exceedingly difficult-to-treat group of diseases. Most commonly consisting of chordoma and chondrosarcoma, these tumors also include giant-cell tumors and osteosarcomas. This chapter will cover the background, epidemiology, genetics, molecular biology, histopathology, radiographic features, clinical manifestations, therapeutic approaches, and clinical management of each entity.
Collapse
Affiliation(s)
- Zachary C Gersey
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Georgios A Zenonos
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Paul A Gardner
- UPMC Center for Cranial Base Surgery, 200 Lothrop Street, PUH B-400, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
12
|
Lysosomal Acid Lipase Deficiency: Genetics, Screening, and Preclinical Study. Int J Mol Sci 2022; 23:ijms232415549. [PMID: 36555187 PMCID: PMC9779616 DOI: 10.3390/ijms232415549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Lysosomal acid lipase (LAL) is a lysosomal enzyme essential for the degradation of cholesteryl esters through the endocytic pathway. Deficiency of the LAL enzyme encoded by the LIPA gene leads to LAL deficiency (LAL-D) (OMIM 278000), one of the lysosomal storage disorders involving 50-60 genes. Among the two disease subtypes, the severe disease subtype of LAL-D is known as Wolman disease, with typical manifestations involving hepatomegaly, splenomegaly, vomiting, diarrhea, and hematopoietic abnormalities, such as anemia. In contrast, the mild disease subtype of this disorder is known as cholesteryl ester storage disease, with hypercholesterolemia, hypertriglyceridemia, and high-density lipoprotein disappearance. The prevalence of LAL-D is rare, but several treatment options, including enzyme replacement therapy, are available. Accordingly, a number of screening methodologies have been developed for this disorder. This review summarizes the current discussion on LAL-D, covering genetics, screening, and the tertiary structure of human LAL enzyme and preclinical study for the future development of a novel therapy.
Collapse
|
13
|
Tada H, Takamura M, Kawashiri MA. Individualized Treatment for Patients With Familial Hypercholesterolemia. J Lipid Atheroscler 2022; 11:39-54. [PMID: 35118021 PMCID: PMC8792816 DOI: 10.12997/jla.2022.11.1.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
Familial hypercholesterolemia (FH) is one of the most common and, therefore, important inherited disorders in preventive cardiology. This disease is mainly caused by a single pathogenic mutation in the low-density lipoprotein receptor or its associated genes. Moreover, it is correlated with a high risk of cardiovascular disease. However, the phenotype severity even in this monogenic disease significantly varies. Thus, the current study aimed to describe FH and its importance and the factors (inherited and acquired) contributing to differences in phenotype severity. Different lipid-modification therapies according to these factors can lead to individualized treatments, which are also essential in the general populations.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masa-aki Kawashiri
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
14
|
Hu H, Shu T, Ma J, Chen R, Wang J, Wang S, Lin S, Chen X. Two Novel Disease-Causing Mutations in the LDLR of Familial Hypercholesterolemia. Front Genet 2022; 12:762587. [PMID: 34970301 PMCID: PMC8712701 DOI: 10.3389/fgene.2021.762587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022] Open
Abstract
As an autosomal dominant disorder, familial hypercholesterolemia (FH) is mainly caused by pathogenic mutations in lipid metabolism-related genes. The aim of this study is to investigate the genetic mutations in FH patients and verify their pathogenicity. First of all, a pedigree investigation was conducted in one family diagnosed with FH using the Dutch Lipid Clinic Network criteria. The high-throughput sequencing was performed on three family members to explore genetic mutations. The effects of low-density lipoprotein receptor (LDLR) variants on their expression levels and activity were further validated by silico analysis and functional studies. The results revealed that LDLC levels of the proband and his daughter were abnormally elevated. The whole-exome sequencing and Sanger sequencing were used to confirm that there were two LDLR missense mutations (LDLR c.226 G > C, c.1003 G > T) in this family. Bioinformatic analysis (Mutationtaster) indicated that these two mutations might be disease-causing variants. In vitro experiments suggested that LDLR c.226 G > C and c.1003 G > T could attenuate the uptake of Dil-LDL by LDLR. In conclusion, the LDLR c.226 G > C and c.1003 G > T variants might be pathogenic for FH by causing uptake dysfunction of the LDLR.
Collapse
Affiliation(s)
- Haochang Hu
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Tian Shu
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Jun Ma
- Department of Medical Ultrasonics, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruoyu Chen
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Jian Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | | | - Shaoyi Lin
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| | - Xiaomin Chen
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
15
|
Tromp TR, Hovingh GK, Reeskamp LF. Letter by Tromp et al Regarding Article, "Large-Scale Screening for Monogenic and Clinically Defined Familial Hypercholesterolemia in Iceland". Arterioscler Thromb Vasc Biol 2021; 42:e44-e45. [PMID: 34936472 DOI: 10.1161/atvbaha.121.317188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Tycho R Tromp
- Department of Vascular Medicine, Amsterdam UMC, location AMC, the Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, location AMC, the Netherlands
| | - Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam UMC, location AMC, the Netherlands
| |
Collapse
|
16
|
Hu H, Chen R, Hu Y, Wang J, Lin S, Chen X. The LDLR c.501C>A is a disease-causing variant in familial hypercholesterolemia. Lipids Health Dis 2021; 20:101. [PMID: 34511120 PMCID: PMC8436568 DOI: 10.1186/s12944-021-01536-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
Background As an autosomal dominant disorder, familial hypercholesterolemia (FH) is mainly attributed to disease-causing variants in the low-density lipoprotein receptor (LDLR) gene. The aim of this study was to explore the molecular mechanism of LDLR c.501C>A variant in FH and assess the efficacy of proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitor treatment for FH patients. Methods The whole-exome sequencing was performed on two families to identify disease-causing variants, which were verified by Sanger sequencing. The function of LDLR variant was further explored in HEK293 cells by Western Blot and confocal microscopy. Besides, the therapeutic effects of PCSK9 inhibitor treatment for two probands were assessed for 3 months. Results All members of the two families with the LDLR c.501C>A variant showed high levels of LDLC. The relationship between the clinical phenotype and LDLR variants was confirmed in the current study. Both in silico and in vitro analyses showed that LDLR c.501C>A variant decreased LDLR expression and LDL uptake. PCSK9 inhibitor treatment lowered the lipid level in proband 1 by 24.91%. However, the treatment was ineffective for proband 2. A follow-up study revealed that the PCSK9 inhibitor treatment had low ability of lipid-lowering effect in the patients. Conclusions LDLR c.501C>A variant might be pathogenic for FH. The PCSK9 inhibitor therapy is not a highly effective option for treatment of FH patients with LDLR c.501C>A variant. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01536-3.
Collapse
Affiliation(s)
- Haochang Hu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Ruoyu Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yingchu Hu
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Jian Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Shaoyi Lin
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China. .,Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang, China.
| | - Xiaomin Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China. .,Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
17
|
Affiliation(s)
- Geza Halasz
- Cardiac Unit, G. da Saliceto Hospital, AUSL Piacenza and University of Parma, Italy
| | - Massimo F Piepoli
- Cardiac Unit, G. da Saliceto Hospital, AUSL Piacenza and University of Parma, Italy.,Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
18
|
Lazarte J, Hegele RA. DNA sequencing in familial hypercholesterolaemia: the next generation. Eur J Prev Cardiol 2020; 28:873-874. [PMID: 33623969 DOI: 10.1093/eurjpc/zwaa044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Julieta Lazarte
- Departments of Medicine and Biochemistry, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| | - Robert A Hegele
- Departments of Medicine and Biochemistry, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|