1
|
Zavvari Oskuye Z, Mehri K, Khalilpour J, Nemati S, Hosseini L, Bafadam S, Abdollahzade N, Badalzadeh R. Klotho in age-related cardiovascular diseases: Insights into mitochondrial dysfunction and cell death. IJC HEART & VASCULATURE 2025; 57:101629. [PMID: 40129656 PMCID: PMC11930703 DOI: 10.1016/j.ijcha.2025.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/26/2025] [Accepted: 02/08/2025] [Indexed: 03/26/2025]
Abstract
Aging is a major risk factor for the development of cardiovascular diseases (CVD), leading to specific alterations in the heart and vasculature. Besides, the mechanisms and intracellular pathways of aging and the factors affecting it are still not completely clear. Age-related complications such as oxidative stress, decreased autophagy, mitochondrial dysfunction, inflammatory responses, and cardiac dysfunction are associated with relative Klotho deficiency. Klotho, an anti-aging protein, with anti-oxidative and anti-inflammatory properties, has been shown to modulate calcium regulation and autophagy. It also protects against endothelial dysfunction by increasing nitric oxide production. Furthermore, emerging research has revealed that klotho significantly impacts vascular smooth muscle cells (VSMC) energetics and survival. This article has focused on recent advances in using Klotho in age-related CVD and summarizes the pre-clinical evidence supporting this approach. Based on the research, Klotho could provide more therapeutic options for ameliorating aging-related CVD.
Collapse
Affiliation(s)
- Zohreh Zavvari Oskuye
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keyvan Mehri
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soleyman Bafadam
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naseh Abdollahzade
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Remme CA, Heijman J, Gomez AM, Zaza A, Odening KE. 25 years of basic and translational science in EP Europace: novel insights into arrhythmia mechanisms and therapeutic strategies. Europace 2023; 25:euad210. [PMID: 37622575 PMCID: PMC10450791 DOI: 10.1093/europace/euad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 08/26/2023] Open
Abstract
In the last 25 years, EP Europace has published more than 300 basic and translational science articles covering different arrhythmia types (ranging from atrial fibrillation to ventricular tachyarrhythmias), different diseases predisposing to arrhythmia formation (such as genetic arrhythmia disorders and heart failure), and different interventional and pharmacological anti-arrhythmic treatment strategies (ranging from pacing and defibrillation to different ablation approaches and novel drug-therapies). These studies have been conducted in cellular models, small and large animal models, and in the last couple of years increasingly in silico using computational approaches. In sum, these articles have contributed substantially to our pathophysiological understanding of arrhythmia mechanisms and treatment options; many of which have made their way into clinical applications. This review discusses a representative selection of EP Europace manuscripts covering the topics of pacing and ablation, atrial fibrillation, heart failure and pro-arrhythmic ventricular remodelling, ion channel (dys)function and pharmacology, inherited arrhythmia syndromes, and arrhythmogenic cardiomyopathies, highlighting some of the advances of the past 25 years. Given the increasingly recognized complexity and multidisciplinary nature of arrhythmogenesis and continued technological developments, basic and translational electrophysiological research is key advancing the field. EP Europace aims to further increase its contribution to the discovery of arrhythmia mechanisms and the implementation of mechanism-based precision therapy approaches in arrhythmia management.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC location University of Amsterdam, Heart Centre, Academic Medical Center, Room K2-104.2, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ana M Gomez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, 91400 Orsay, France
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, Inselspital University Hospital Bern, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
3
|
Chin CG, Chen YC, Lin YK, Lu YY, Cheng WL, Chung CC, Chen SA, Chen YJ. Effect of macrophage migration inhibitory factor on pulmonary vein arrhythmogenesis through late sodium current. Europace 2023; 25:698-706. [PMID: 36056883 PMCID: PMC10103572 DOI: 10.1093/europace/euac152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Macrophage migration inhibitory factor (MIF), a pleiotropic inflammatory cytokine, is highly expressed in patients with atrial fibrillation (AF). Inflammation increases the risk of AF and is primarily triggered by pulmonary vein (PV) arrhythmogenesis. This study investigated whether MIF can modulate the electrical activity of the PV and examined the underlying mechanisms of MIF. METHODS AND RESULTS A conventional microelectrode, a whole-cell patch clamp, western blotting, and immunofluorescent confocal microscopy were used to investigate electrical activity, calcium (Ca2+) regulation, protein expression, ionic currents, and cytosolic reactive oxygen species (ROS) in rabbit PV tissue and isolated single cardiomyocytes with and without MIF incubation (100 ng/mL, treated for 6 h). The MIF (100 ng/mL)-treated PV tissue (n = 8) demonstrated a faster beating rate (1.8 ± 0.2 vs. 2.6 ± 0.1 Hz, P < 0.05), higher incidence of triggered activity (12.5 vs. 100%, P < 0.05), and premature atrial beat (0 vs. 100%, P < 0.05) than the control PV tissue (n = 8). Compared with the control PV cardiomyocytes, MIF-treated single PV cardiomyocytes had larger Ca2+ transients (0.6 ± 0.1 vs. 1.0 ± 0.1, ΔF/F0, P < 0.05), sarcoplasmic reticulum Ca2+ content (0.9 ± 0.20 vs. 1.7 ± 0.3 mM of cytosol, P < 0.05), and cytosolic ROS (146.8 ± 5.3 vs. 163.7 ± 3.8, ΔF/F0, P < 0.05). Moreover, MIF-treated PV cardiomyocytes exhibited larger late sodium currents (INa-Late), L-type Ca2+ currents, and Na+/Ca2+ exchanger currents than the control PV cardiomyocytes. KN93 [a selective calcium/calmodulin-dependent protein kinase II (CaMKII) blocker, 1 μM], ranolazine (an INa-Late inhibitor, 10 μM), and N-(mercaptopropionyl) glycine (ROS inhibitor, 10 mM) reduced the beating rates and the incidence of triggered activity and premature captures in the MIF-treated PV tissue. CONCLUSION Macrophage migration inhibitory factor increased PV arrhythmogenesis through Na+ and Ca2+ dysregulation through the ROS activation of CaMKII signalling, which may contribute to the genesis of AF during inflammation. Anti-CaMKII treatment may reverse PV arrhythmogenesis. Our results clearly reveal a key link between MIF and AF and offer a viable therapeutic target for AF treatment.
Collapse
Affiliation(s)
- Chye-Gen Chin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Wan-Li Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Cardiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Chin CG, Elimam AM, Lin FJ, Chen YC, Lin YK, Lu YY, Higa S, Chen SA, Hsieh MH, Chen YJ. Effects of Adrenomedullin on Atrial Electrophysiology and Pulmonary Vein Arrhythmogenesis. Int J Mol Sci 2022; 23:ijms232214064. [PMID: 36430541 PMCID: PMC9696567 DOI: 10.3390/ijms232214064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
Adrenomedullin, a peptide with vasodilatory, natriuretic, and diuretic effects, may be a novel agent for treating heart failure. Heart failure is associated with an increased risk of atrial fibrillation (AF), but the effects of adrenomedullin on atrial arrhythmogenesis remain unclear. This study investigated whether adrenomedullin modulates the electrophysiology of the atria (AF substrate) or pulmonary vein (PV; AF trigger) arrhythmogenesis. Conventional microelectrode or whole-cell patch clamps were used to study the effects of adrenomedullin (10, 30, and 100 pg/mL) on the electrical activity, mechanical response, and ionic currents of isolated rabbit PV and sinoatrial node tissue preparations and single PV cardiomyocytes. At 30 and 100 pg/mL, adrenomedullin significantly reduced the spontaneous beating rate of the PVs from 2.0 ± 0.4 to 1.3 ± 0.5 and 1.1 ± 0.5 Hz (reductions of 32.9% ± 7.1% and 44.9 ± 8.4%), respectively, and reduced PV diastolic tension by 12.8% ± 4.1% and 14.5% ± 4.1%, respectively. By contrast, adrenomedullin did not affect sinoatrial node beating. In the presence of L-NAME (a nitric oxide synthesis inhibitor, 100 μM), adrenomedullin (30 pg/mL) did not affect the spontaneous beating rate or diastolic tension of the PVs. In the single-cell experiments, adrenomedullin (30 pg/mL) significantly reduced the L-type calcium current (ICa-L) and reverse-mode current of the sodium-calcium exchanger (NCX). Adrenomedullin reduces spontaneous PV activity and PV diastolic tension by reducing ICa-L and NCX current and thus may be useful for treating atrial tachyarrhythmia.
Collapse
Affiliation(s)
- Chye-Gen Chin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
| | - Ahmed Moustafa Elimam
- Division of Cardiovascular Medicine, Department of Internal Medicine, Mansoura International Hospital, Mansoura 35511, Egypt
| | - Fong-Jhih Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa 901-2131, Japan
| | - Shih-Ann Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Ming-Hsiung Hsieh
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Correspondence: (M.-H.H.); (Y.-J.C.); Tel.: +886-0970746502 (Y.-J.C.); Fax: +886-2-2933-9378 (Y.-J.C.)
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
- Correspondence: (M.-H.H.); (Y.-J.C.); Tel.: +886-0970746502 (Y.-J.C.); Fax: +886-2-2933-9378 (Y.-J.C.)
| |
Collapse
|
5
|
Klotho Modulates Pro-Fibrotic Activities in Human Atrial Fibroblasts through Inhibition of Phospholipase C Signaling and Suppression of Store-Operated Calcium Entry. Biomedicines 2022; 10:biomedicines10071574. [PMID: 35884879 PMCID: PMC9312905 DOI: 10.3390/biomedicines10071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Atrial fibroblasts activation causes atrial fibrosis, which is one major pathophysiological contributor to atrial fibrillation (AF) genesis. Klotho is a pleiotropic protein with remarkable cardiovascular effects, including anti-inflammatory, anti-oxidative, and anti-apoptotic effects. This study investigated whether Klotho can modulate the activity of human atrial fibroblasts and provides an anti-fibrotic effect. Methods: Cell migration assay and proliferation assay were used to investigate fibrogenesis activities in single human atrial fibroblasts with or without treatment of Klotho (10 and 100 pM, 48 h). Calcium fluorescence imaging, the whole-cell patch-clamp, and Western blotting were performed in human atrial fibroblasts treated with and without Klotho (100 pM, 48 h) to evaluate the store-operated calcium entry (SOCE), transient receptor potential (TRP) currents, and downstream signaling. Results: High dose of Klotho (100 pM, 48 h) significantly reduced the migration of human atrial fibroblasts without alternating their proliferation; in addition, treatment of Klotho (100 pM, 48 h) also decreased SOCE and TRP currents. In the presence of BI-749327 (a selective canonical TRP 6 channel inhibitor, 1 μM, 48 h), Klotho (100 pM, 48 h) could not inhibit fibroblast migration nor suppress the TRP currents. Klotho-treated fibroblasts (100 pM, 48 h) had lower phosphorylated phospholipase C (PLC) (p-PLCβ3 Ser537) expression than the control. The PLC inhibitor, U73122 (1 μM, 48 h), reduced the migration, decreased SOCE and TRP currents, and lowered p-PLCβ3 in atrial fibroblasts, similar to Klotho. In the presence of the U73122 (1 μM, 48 h), Klotho (100 pM, 48 h) could not further modulate the migration and collagen synthesis nor suppress the TRP currents in human atrial fibroblasts. Conclusions: Klotho inhibited pro-fibrotic activities and SOCE by inhibiting the PLC signaling and suppressing the TRP currents, which may provide a novel insight into atrial fibrosis and arrhythmogenesis.
Collapse
|
6
|
Sun X, Chen L, He Y, Zheng L. Circulating α-Klotho Levels in Relation to Cardiovascular Diseases: A Mendelian Randomization Study. Front Endocrinol (Lausanne) 2022; 13:842846. [PMID: 35197934 PMCID: PMC8859151 DOI: 10.3389/fendo.2022.842846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Several studies have reported a protective role of circulating α-Klotho on cardiovascular diseases (CVD); however, the causality remains unclear. We aim to elucidate whether genetically predicted circulating α-Klotho levels were causally associated with the risk of coronary artery disease (CAD), atrial fibrillation (AF), heart failure (HF), stroke, ischemic stroke (IS), and IS subtypes. METHODS A two-sample Mendelian randomization (MR) study was designed, with 5 single-nucleotide polymorphisms associated with circulating α-Klotho levels utilized as instrumental variables. MR estimates on each CVD outcome derived from the fixed-effects inverse-variance weighted (IVW) approach in different data sources were combined by the fixed-effects meta-analysis approach, complemented by several sensitivity analyses including the simple median, the weighed median, MR-Egger regression, and MR-pleiotropy residual sum and outlier. RESULTS In the meta-analysis combining different data sources, suggestive inverse causal association of circulating α-Klotho concentrations with CAD [Odds ratio (OR), 0.97; 95% confidence interval (CI), 0.94, 1.00; P = 0.044] and significant inverse association of circulating α-Klotho concentrations with AF (OR, 0.96; 95% CI, 0.93, 0.99; P = 0.005) was observed. However, there was no causal association of α-Klotho with HF, any stroke, IS, or IS subtypes neither in different data sources nor in the meta-analysis. Complementary sensitivity analyses showed consistent and robust results in general. CONCLUSION Evidence was found for a protective effect of circulating α-Klotho on the prevention of AF risk. However, no significant causal association between genetically predicted circulating α-Klotho levels and risk of CAD, HF, stroke, IS, or IS subtypes was found.
Collapse
|
7
|
Chang JH, Cheng CC, Lu YY, Chung CC, Yeh YH, Chen YC, Higa S, Chen SA, Chen YJ. Vascular endothelial growth factor modulates pulmonary vein arrhythmogenesis via vascular endothelial growth factor receptor 1/NOS pathway. Eur J Pharmacol 2021; 911:174547. [PMID: 34624234 DOI: 10.1016/j.ejphar.2021.174547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Atrial fibrillation (AF) is a common form of arrhythmia with serious public health impacts, but its underlying mechanisms are not yet fully understood. Vascular endothelial growth factor (VEGF) is highly expressed in the atrium of patients with AF, but whether VEGF affects AF pathogenesis remains unclear. Pulmonary veins (PVs) are important sources for the genesis of atrial tachycardia or AF. Therefore, this study assessed the effects of VEGF on PV electrophysiological properties and evaluated its underlying mechanisms. Conventional microelectrodes and whole-cell patch clamps were performed using isolated rabbit PV preparations or single isolated PV cardiomyocytes before and after VEGF or VEGF receptor (VEGFR), Akt, NOS inhibitor administration. We found that VEGF (0.1, 1, and 10 ng/mL) reduced the PV beating rate in a dose-dependent manner. Furthermore, VEGF (10 ng/mL) reduced late diastolic depolarization and diastolic tension. Isoproterenol increased PV beating and burst firing, which was attenuated by VEGF (1 ng/mL). In the presence of VEGFR-1 inhibition (ZM306416 at 10 μM) and L-NAME (100 μM), VEGF (1 ng/mL) did not alter PV spontaneous activity. In isolated PV cardiomyocytes, VEGF (1 ng/mL) decreased L-type calcium, sodium/calcium exchanger, and late sodium currents. In conclusion, we found that VEGF reduces PV arrhythmogenesis by modulating sodium/calcium homeostasis through VEGFR-1/NOS signaling pathway.
Collapse
Affiliation(s)
- Jun-Hei Chang
- Department of Medicine, Country Hospital, Taipei, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Chuan Cheng
- Department of Cardiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan; School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa, Japan
| | - Shih-Ann Chen
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Jen Chen
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Yugo D, Chen YC, Lin YK, Liu CM, Huang JH, Chen SA, Chen YJ. Effects of phosphodiesterase-1 inhibitor on pulmonary vein electrophysiology and arrhythmogenesis. Eur J Clin Invest 2021; 51:e13585. [PMID: 34002387 DOI: 10.1111/eci.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Phosphodiesterase (PDE) isoform inhibitors have mechanical and electrical effects on the heart. Inhibition of PDE-1 enzymes is a novel strategy for treating heart failure. However, the electrophysiological effects of PDE-1 inhibition on the heart remain unclear. This study explored the effects of PDE-1 inhibition using ITI-214 on electrical activity in the pulmonary vein (PV), the most common trigger of atrial fibrillation, and investigated the underlying ionic mechanisms. METHODS Conventional microelectrodes or whole-cell patch clamps were employed to study the effects of ITI-214 (0.1-10 μM) on PV electrical activity, mechanical responses and ionic currents in isolated rabbit PV tissue specimens and isolated single PV cardiomyocytes. RESULTS ITI-214 at 1 μM and 10 μM (but not 0.1 μM) significantly reduced PV spontaneous beating rate (10 ± 2% and 10 ± 3%, respectively) and PV diastolic tension (11 ± 3% and 17 ± 3%, respectively). ITI-24 (1 μM) significantly reduced late sodium current (INa-Late ), L-type calcium current (ICa-L ) and the reverse mode of the sodium-calcium exchanger (NCX), but it did not affect peak sodium currents. CONCLUSIONS ITI-214 reduces PV spontaneous activity and PV diastolic tension by reducing INa-Late , ICa-L and NCX current. Considering its therapeutic potential in heart failure, targeting PDE-1 inhibition may provide a novel strategy for managing atrial arrhythmogenesis.
Collapse
Affiliation(s)
- Dony Yugo
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Cardiology and Vascular Medicine, Faculty of Medicine, National Cardiovascular Center Harapan Kita, University of Indonesia, Jakarta, Indonesia
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense-Medical Center, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Chih Min Liu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jen Hung Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Jen Chen
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Hanson K, Fisher K, Hooper N. Exploiting the neuroprotective effects of α-klotho to tackle ageing- and neurodegeneration-related cognitive dysfunction. Neuronal Signal 2021; 5:NS20200101. [PMID: 34194816 PMCID: PMC8204227 DOI: 10.1042/ns20200101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
Cognitive dysfunction is a key symptom of ageing and neurodegenerative disorders, such as Alzheimer's disease (AD). Strategies to enhance cognition would impact the quality of life for a significant proportion of the ageing population. The α-klotho protein may protect against cognitive decline through multiple mechanisms: such as promoting optimal synaptic function via activation of N-methyl-d-aspartate (NMDA) receptor signalling; stimulating the antioxidant defence system; reducing inflammation; promoting autophagy and enhancing clearance of amyloid-β. However, the molecular and cellular pathways by which α-klotho mediates these neuroprotective functions have yet to be fully elucidated. Key questions remain unanswered: which form of α-klotho (transmembrane, soluble or secreted) mediates its cognitive enhancing properties; what is the neuronal receptor for α-klotho and which signalling pathways are activated by α-klotho in the brain to enhance cognition; how does peripherally administered α-klotho mediate neuroprotection; and what is the molecular basis for the beneficial effect of the VS variant of α-klotho? In this review, we summarise the recent research on neuronal α-klotho and discuss how the neuroprotective properties of α-klotho could be exploited to tackle age- and neurodegeneration-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Kelsey Hanson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Kate Fisher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, U.K
| |
Collapse
|
10
|
Chen B, Wu P, Liang L, Zhao C, Wang Z, He L, Zhang R, Xu N. Inhibited effect of an RGD peptide hydrogel on the expression of β1-integrin, FAK, and Akt in Tenon's capsule fibroblasts. J Biomed Mater Res B Appl Biomater 2021; 109:1857-1865. [PMID: 33847460 DOI: 10.1002/jbm.b.34847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Tenon's capsule fibroblasts are the main cellular components of filtration tract scar that limit the success rate of glaucoma filtration surgery. Scar formation results from infiltration and proliferation of fibroblasts into damaged areas, meanwhile synthesis of extracellular matrix glycoproteins. Integrins are cell surface receptors for extracellular molecules that mediate cell adhesion, spreading, migration, and invasion. They bind their ligands often through recognition of short amino-acid sequences-arginine-glycine-aspartic acid (RGD). Peptides that contain RGD sequence can compete with RGD containing insoluble matrix proteins for binding to the integrin receptor and thus prevent the downstream signaling pathway. Increasing evidence supports that β1-integrin/focal adhesion kinase (FAK)/Akt signal pathway plays an important role in fibrogenesis and scar formation in different tissues. In consideration of advantages of peptide hydrogel, that is well biocompatibility, gel state, degradability, good drug loading, we designed and fabricated an RGD peptide hydrogel, and hypothesized that it could inhibit the expression of β1-integrin, FAK, and Akt in Tenon's capsule fibroblasts. Rheology results showed that 1% wt Fmoc-FFGGRGD peptide solution could self-assemble into hydrogel. Western blot analysis revealed that there were statistical differences between control group and 1% wt group in β1-integrin/β-actin, FAK/β-actin, Akt/β-actin respectively (*p < .05). The relative mRNA expression of β1-integrin, FAK, Akt in control group and 1% wt group were also statistically different respectively (*p < .05). We proved that 1% wt Fmoc-FFGGRGD self-assembly peptide hydrogel could inhibit the expression of β1-integrin, FAK and Akt in Tenon's capsule fibroblasts. It is a promising way to solve scar formation of glaucoma filter channel.
Collapse
Affiliation(s)
- Baoji Chen
- Department of Ophthalmology, Yichang Central People's Hospital, The first college of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Ping Wu
- Department of Ophthalmology, Yichang Central People's Hospital, The first college of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Liang Liang
- Department of Ophthalmology, Yichang Central People's Hospital, The first college of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Chenchen Zhao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zheng Wang
- Department of Ophthalmology, Yichang Central People's Hospital, The first college of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Liye He
- Department of Ophthalmology, Yichang Central People's Hospital, The first college of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Ran Zhang
- Department of Ophthalmology, Yichang Central People's Hospital, The first college of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Na Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|