1
|
Nair RK, Parikh MA, Frishman WH, Peterson SJ. Efficacy of Beta-Blockers in Acute Management and Prevention of Recurrence in Takotsubo Syndrome. Cardiol Rev 2025:00045415-990000000-00487. [PMID: 40327812 DOI: 10.1097/crd.0000000000000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Takotsubo cardiomyopathy is a nonischemic cardiomyopathy characterized by a transient ballooning of the apical cardiac wall secondary to stress. Since its discovery and diagnosis in Japan in 1990, Takotsubo cardiomyopathy has been known as a disease with a generally favorable prognosis due to the transient nature of its apical wall abnormalities. However, complications, including arrhythmia, hemodynamic instability, heart failure, intracardiac thrombus, and rupture, have all been reported in the literature, requiring flexible management of this unique pathology. Although therapy is guided by inciting factors and complication management, beta-blockers are a widely accepted acute and long-term treatment modality. We review the current literature describing the pathogenesis, medical evaluation, and treatment options for Takotsubo cardiomyopathy. This article aims to provide a greater understanding of the pathophysiology and further evaluate the efficacy of beta-blocker therapy when considering acute and long-term treatment and prevention of Takotsubo cardiomyopathy.
Collapse
Affiliation(s)
- Ranjit K Nair
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Manish A Parikh
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Division of Cardiology Brooklyn, Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| | | | - Stephen J Peterson
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Division of Cardiology Brooklyn, Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
2
|
Madias JE. Electrocardiogram repolarization markers and ventricular arrhythmias in patients with takotsubo syndrome. Curr Probl Cardiol 2024; 49:102757. [PMID: 39059781 DOI: 10.1016/j.cpcardiol.2024.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The predictive value of various ECG repolarization markers for the emergence of VA in patients with TTS was reviewed. The literature reports on QT, more recently on Tpe, and rarely on some more QT-derived metrics, revealing a contribution of these variables for the prediction of VA, complicating the acute, subacute, and follow-up clinical trajectory of patients with TTS. More recent literature reveals that Tpe and some other QT-based metrics, have outperformed the traditionally employed QT marker, although certainty about this awaits confirmation by future carefully designed and implemented studies.
Collapse
Affiliation(s)
- John E Madias
- Icahn School of Medicine at Mount Sinai, New York, NY, United States; Division of Cardiology, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, United States.
| |
Collapse
|
3
|
Madias JE. Human cardiac microvascular endothelial cells/α 1-agonists/endothelial dysfunction: pathophysiologic connotations for takotsubo syndrome. Microvasc Res 2024; 155:104717. [PMID: 39019107 DOI: 10.1016/j.mvr.2024.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Affiliation(s)
- John E Madias
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Division of Cardiology, Elmhurst Hospital Center, Elmhurst, NY, United States of America.
| |
Collapse
|
4
|
Zhang M, Wang Y, Jiang J, Jiang Y, Song D. The Role of Catecholamines in the Pathogenesis of Diseases and the Modified Electrodes for Electrochemical Detection of Catecholamines: A Review. Crit Rev Anal Chem 2024:1-22. [PMID: 38462811 DOI: 10.1080/10408347.2024.2324460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Catecholamines (CAs), which include adrenaline, noradrenaline, and dopamine, are neurotransmitters and hormones that critically regulate the cardiovascular system, metabolism, and stress response in the human body. The abnormal levels of these molecules can lead to the development of various diseases, including pheochromocytoma and paragangliomas, Alzheimer's disease, and Takotsubo cardiomyopathy. Due to their low cost, high sensitivity, flexible detection strategies, ease of integration, and miniaturization, electrochemical techniques have been extensively employed in the detection of CAs, surpassing traditional analytical methods. Electrochemical detection of CAs in real samples is challenging due to the tendency of poisoning electrode. Chemically modified electrodes have been widely used to solve the problems of poor sensitivity and selectivity faced by bare electrodes. There are a few articles that provide an overview of electrochemical detection and efficient enrichment of CAs, but there is a dearth of updates on the role of CAs in the pathogenesis of diseases. Additionally, there is still a lack of systematic synthesis with a focus on modified electrodes for electrochemical detection. Thus, this review provides a summary of the recent clinical pathogenesis of CAs and the modified electrodes for electrochemical detection of CAs published between 2017 and 2022. Moreover, challenges and future perspectives are also highlighted. This work is expected to provide useful guidance to researchers entering this interdisciplinary field, promoting further development of CAs pathogenesis, and developing more novel chemically modified electrodes for the detection of CAs.
Collapse
Affiliation(s)
- Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yimeng Wang
- Elite Engineer School, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
| | - Daqian Song
- College of Chemistry, Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Fan X, Yang G, Duru F, Grilli M, Akin I, Zhou X, Saguner AM, Ei-Battrawy I. Arrhythmogenic Cardiomyopathy: from Preclinical Models to Genotype-phenotype Correlation and Pathophysiology. Stem Cell Rev Rep 2023; 19:2683-2708. [PMID: 37731079 PMCID: PMC10661732 DOI: 10.1007/s12015-023-10615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a hereditary myocardial disease characterized by the replacement of the ventricular myocardium with fibrous fatty deposits. ACM is usually inherited in an autosomal dominant pattern with variable penetrance and expressivity, which is mainly related to ventricular tachyarrhythmia and sudden cardiac death (SCD). Importantly, significant progress has been made in determining the genetic background of ACM due to the development of new techniques for genetic analysis. The exact molecular pathomechanism of ACM, however, is not completely clear and the genotype-phenotype correlations have not been fully elucidated, which are useful to predict the prognosis and treatment of ACM patients. Different gene-targeted and transgenic animal models, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) models, and heterologous expression systems have been developed. Here, this review aims to summarize preclinical ACM models and platforms promoting our understanding of the pathogenesis of ACM and assess their value in elucidating the ACM genotype-phenotype relationship.
Collapse
Affiliation(s)
- Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany
| | - Guoqiang Yang
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Acupuncture and Rehabilitation, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Firat Duru
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Maurizio Grilli
- Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany
| | - Xiaobo Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany.
- First Department of Medicine, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Ardan Muammer Saguner
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Ibrahim Ei-Battrawy
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany.
- Department of Cardiology and Angiology, Ruhr University, Bochum, Germany; Institute of Physiology, Department of Cellular and Translational Physiology and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr- University Bochum, Bochum, Germany.
| |
Collapse
|
6
|
Ramos-Mondragón R, Lozhkin A, Vendrov AE, Runge MS, Isom LL, Madamanchi NR. NADPH Oxidases and Oxidative Stress in the Pathogenesis of Atrial Fibrillation. Antioxidants (Basel) 2023; 12:1833. [PMID: 37891912 PMCID: PMC10604902 DOI: 10.3390/antiox12101833] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and its prevalence increases with age. The irregular and rapid contraction of the atria can lead to ineffective blood pumping, local blood stasis, blood clots, ischemic stroke, and heart failure. NADPH oxidases (NOX) and mitochondria are the main sources of reactive oxygen species in the heart, and dysregulated activation of NOX and mitochondrial dysfunction are associated with AF pathogenesis. NOX- and mitochondria-derived oxidative stress contribute to the onset of paroxysmal AF by inducing electrophysiological changes in atrial myocytes and structural remodeling in the atria. Because high atrial activity causes cardiac myocytes to expend extremely high energy to maintain excitation-contraction coupling during persistent AF, mitochondria, the primary energy source, undergo metabolic stress, affecting their morphology, Ca2+ handling, and ATP generation. In this review, we discuss the role of oxidative stress in activating AF-triggered activities, regulating intracellular Ca2+ handling, and functional and anatomical reentry mechanisms, all of which are associated with AF initiation, perpetuation, and progression. Changes in the extracellular matrix, inflammation, ion channel expression and function, myofibril structure, and mitochondrial function occur during the early transitional stages of AF, opening a window of opportunity to target NOX and mitochondria-derived oxidative stress using isoform-specific NOX inhibitors and mitochondrial ROS scavengers, as well as drugs that improve mitochondrial dynamics and metabolism to treat persistent AF and its transition to permanent AF.
Collapse
Affiliation(s)
- Roberto Ramos-Mondragón
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
| | - Andrey Lozhkin
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Marschall S. Runge
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| |
Collapse
|
7
|
Remme CA, Heijman J, Gomez AM, Zaza A, Odening KE. 25 years of basic and translational science in EP Europace: novel insights into arrhythmia mechanisms and therapeutic strategies. Europace 2023; 25:euad210. [PMID: 37622575 PMCID: PMC10450791 DOI: 10.1093/europace/euad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 08/26/2023] Open
Abstract
In the last 25 years, EP Europace has published more than 300 basic and translational science articles covering different arrhythmia types (ranging from atrial fibrillation to ventricular tachyarrhythmias), different diseases predisposing to arrhythmia formation (such as genetic arrhythmia disorders and heart failure), and different interventional and pharmacological anti-arrhythmic treatment strategies (ranging from pacing and defibrillation to different ablation approaches and novel drug-therapies). These studies have been conducted in cellular models, small and large animal models, and in the last couple of years increasingly in silico using computational approaches. In sum, these articles have contributed substantially to our pathophysiological understanding of arrhythmia mechanisms and treatment options; many of which have made their way into clinical applications. This review discusses a representative selection of EP Europace manuscripts covering the topics of pacing and ablation, atrial fibrillation, heart failure and pro-arrhythmic ventricular remodelling, ion channel (dys)function and pharmacology, inherited arrhythmia syndromes, and arrhythmogenic cardiomyopathies, highlighting some of the advances of the past 25 years. Given the increasingly recognized complexity and multidisciplinary nature of arrhythmogenesis and continued technological developments, basic and translational electrophysiological research is key advancing the field. EP Europace aims to further increase its contribution to the discovery of arrhythmia mechanisms and the implementation of mechanism-based precision therapy approaches in arrhythmia management.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC location University of Amsterdam, Heart Centre, Academic Medical Center, Room K2-104.2, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ana M Gomez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, 91400 Orsay, France
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, Inselspital University Hospital Bern, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
8
|
Popa-Fotea NM, Micheu MM, Mihai C, State R, Tincu R, Scafa-Udriste A. Takotsubo Cardiomyopathy and β-Blocker Poisoning: A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1777. [PMID: 36556979 PMCID: PMC9785198 DOI: 10.3390/medicina58121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
β-blocker poisoning is frequently observed because of its primary use for the treatment of cardiovascular diseases. The management of β-blocker toxicity is dependent on the cardiovascular response and the severity of presentation. The present study describes the case of a patient with combined drug intoxication, β-blocker, digoxin, benzodiazepines, acetaminophen and opiates in a suicidal attempt. A 63-year-old female was found somnolent and in a confused state at her residence following intentional poly-drug ingestion. Upon presentation, she was found to be hemodynamically unstable and was thus treated with vasopressors. The toxicological screening performed upon presentation was positive for polydrug ingestion. On day 3, the patient developed chest pain and ST-segment elevation in anterior leads, while transthoracic echocardiographic assessment disclosed a non-dilated left ventricle with moderate dysfunction and akinesia of the apex. Coronary angiogram revealed normal coronary arteries and, subsequently, the diagnosis of Takotsubo cardiomyopathy (TTC) was suspected. Supportive treatment was initiated with favorable evolution and left ventricular ejection fraction normalization. The management of hemodynamic instability with vasopressors should be judiciously administered in the treatment of β-blocker poisoning, in view of the adverse effects on cardiac functions, including stress cardiomyopathy.
Collapse
Affiliation(s)
- Nicoleta-Monica Popa-Fotea
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Cardiology, Emergency Clinical Hospital, 014461 Bucharest, Romania
| | | | - Cosmin Mihai
- Department of Cardiology, Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Ruxandra State
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Cardiology, Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Radu Tincu
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Cardiology, Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Alexandru Scafa-Udriste
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Cardiology, Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
9
|
Tranter MH, Redfors B, Wright PT, Couch LS, Lyon AR, Omerovic E, Harding SE. Hyperthermia as a trigger for Takotsubo syndrome in a rat model. Front Cardiovasc Med 2022; 9:869585. [PMID: 35958426 PMCID: PMC9360576 DOI: 10.3389/fcvm.2022.869585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 12/23/2022] Open
Abstract
Takotsubo syndrome is a well-characterized cause of acute yet reversible heart failure associated with periods of intense emotional stress, often mimicking on presentation an acute coronary syndrome. Animal models of Takotsubo syndrome have been developed, either through the application of a stressor, or administration of exogenous catecholamine. We found that in a model of isoproterenol-induced Takotsubo syndrome in anesthetized rats hyperthermia (40-41°C) would occur after the administration of isoproterenol. Maintenance of this hyperthermia would result in an apical hypocontractility typical of the syndrome, whereas prevention of hyperthermia with active cooling to maintain a euthermic core body temperature prevented (but did not subsequently reverse) apical hypocontractility. In vitro experimentation with isolated cardiomyocytes showed no effect of hyperthermia on either baseline contractility or contractility change after beta-adrenoceptor stimulation. We suggest that the rise in body temperature that is characteristic of catecholamine storm may be a component in the development of Takotsubo syndrome.
Collapse
Affiliation(s)
- Matthew H. Tranter
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
- Oriel College, University of Oxford, Oxford, United Kingdom
| | - Bjorn Redfors
- Department of Molecular and Clinical Medicine/Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter T. Wright
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Liam S. Couch
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
| | - Alexander R. Lyon
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine/Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sian E. Harding
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
| |
Collapse
|
10
|
Kidney Failure among Patients with Takotsubo Syndrome or Myocardial Infarction: A Retrospective Analysis. J Cardiovasc Dev Dis 2022; 9:jcdd9060186. [PMID: 35735815 PMCID: PMC9224747 DOI: 10.3390/jcdd9060186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/07/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Takotsubo syndrome (TTS) is a syndrome with ambiguous pathophysiology. Impaired kidney function (KF) seems to impact the outcome of patients with TTS. We hypothesized that KF worsens the outcome among TTS patients and furthermore, TTS patients with concomitant KF experience more adverse events compared to myocardial infarction (MI) patients with concomitant KF. Methods and Results: This retrospective single-center study comprised two groups (cohorts) of patients including patients with TTS and concomitant KF (n = 61, 27.1%) and patients with MI and concomitant KF (n = 164, 72.9%). The clinical outcomes were delineated as short-term outcomes defined as in-hospital adverse events during index hospitalization and long-term outcomes defined as adverse events over five-year clinical follow-ups. All-cause mortality, stroke, cardiopulmonary resuscitation (CPR), life-threatening arrhythmias, need for respiratory support, and cardiogenic shock with subsequent use of inotropic agents during index hospitalization were denoted as in-hospital adverse events. All-cause mortality, rehospitalization due to heart failure, stroke, thromboembolic events, and the recurrence of primary pathology (TTS and MI) were analyzed during five-year follow-ups after index hospitalization. A higher mortality rate was noted among TTS patients with KF compared to TTS without KF. In addition, in-hospital event rates in patients with TTS and concomitant KF compared to MI and concomitant KF were comparable with the exception of a higher rate of respiratory support in TTS patients. The mortality rate was significantly higher among patients with TTS and KF at 4 years (29.5% vs. 15.9%, p = 0.02) and 5 years (34.4% vs. 20.7%, p = 0.03) in comparison to patients with MI and concomitant KF. In contrast, the rate of re-hospitalization related to heart failure was higher at 30 days, and at one-, four-, and five-year follow-ups in patients suffering from MI and KF compared to TTS and concomitant KF. Additionally, the recurrence of MI after 4 and 5 years was higher than the recurrence of TTS (4.9% vs. 15.2%; 4.9% vs. 16.5%). There were no differences in life-threatening arrhythmias and stroke in both groups. Conclusions: Patients with TTS and concomitant KF have higher all-cause mortality when compared to MI and concomitant KF. The mechanisms responsible remain to be determined.
Collapse
|
11
|
Fan X, Yang G, Kowitz J, Akin I, Zhou X, El-Battrawy I. Takotsubo Syndrome: Translational Implications and Pathomechanisms. Int J Mol Sci 2022; 23:ijms23041951. [PMID: 35216067 PMCID: PMC8875072 DOI: 10.3390/ijms23041951] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Takotsubo syndrome (TTS) is identified as an acute severe ventricular systolic dysfunction, which is usually characterized by reversible and transient akinesia of walls of the ventricle in the absence of a significant obstructive coronary artery disease (CAD). Patients present with chest pain, ST-segment elevation or ischemia signs on ECG and increased troponin, similar to myocardial infarction. Currently, the known mechanisms associated with the development of TTS include elevated levels of circulating plasma catecholamines and their metabolites, coronary microvascular dysfunction, sympathetic hyperexcitability, inflammation, estrogen deficiency, spasm of the epicardial coronary vessels, genetic predisposition and thyroidal dysfunction. However, the real etiologic link remains unclear and seems to be multifactorial. Currently, the elusive pathogenesis of TTS and the lack of optimal treatment leads to the necessity of the application of experimental models or platforms for studying TTS. Excessive catecholamines can cause weakened ventricular wall motion at the apex and increased basal motion due to the apicobasal adrenoceptor gradient. The use of beta-blockers does not seem to impact the outcome of TTS patients, suggesting that signaling other than the beta-adrenoceptor-associated pathway is also involved and that the pathogenesis may be more complex than it was expected. Herein, we review the pathophysiological mechanisms related to TTS; preclinical TTS models and platforms such as animal models, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) models and their usefulness for TTS studies, including exploring and improving the understanding of the pathomechanism of the disease. This might be helpful to provide novel insights on the exact pathophysiological mechanisms and may offer more information for experimental and clinical research on TTS.
Collapse
Affiliation(s)
- Xuehui Fan
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (X.F.); (J.K.); (I.A.)
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, 68167 Mannheim, Germany
| | - Guoqiang Yang
- Department of Acupuncture and Rehabilitation, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China;
- Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jacqueline Kowitz
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (X.F.); (J.K.); (I.A.)
| | - Ibrahim Akin
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (X.F.); (J.K.); (I.A.)
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, 68167 Mannheim, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (X.F.); (J.K.); (I.A.)
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, 68167 Mannheim, Germany
- Correspondence: (X.Z.); (I.E.-B.)
| | - Ibrahim El-Battrawy
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (X.F.); (J.K.); (I.A.)
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, 68167 Mannheim, Germany
- Correspondence: (X.Z.); (I.E.-B.)
| |
Collapse
|
12
|
Huang M, Yang Z, Li Y, Lan H, Cyganek L, Yuecel G, Lang S, Bieback K, El-Battrawy I, Zhou X, Borggrefe M, Akin I. Dopamine D1/D5 Receptor Signaling Is Involved in Arrhythmogenesis in the Setting of Takotsubo Cardiomyopathy. Front Cardiovasc Med 2022; 8:777463. [PMID: 35187102 PMCID: PMC8855058 DOI: 10.3389/fcvm.2021.777463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/29/2021] [Indexed: 01/11/2023] Open
Abstract
Background Previous studies suggested involvement of non-ß-adrenoceptors in the pathogenesis of Takotsubo cardiomyopathy (TTC). This study was designed to explore possible roles and underlying mechanisms of dopamine D1/D5 receptor coupled signaling in arrhythmogenesis of TTC. Methods Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were challenged by toxic concentration of epinephrine (Epi, 0.5 mM for 1 h) for mimicking the catecholamine excess in setting of TTC. Specific receptor blockers and activators were used to unveil roles of D1/D5 receptors. Patch clamp, qPCR, and FACS analyses were performed in the study. Results High concentration Epi and two dopamine D1/D5 receptor agonists [(±)-SKF 38393 and fenoldopam] reduced the depolarization velocity and prolonged the duration of action potentials (APs) and caused arrhythmic events in iPSC-CMs, suggesting involvement of dopamine D1/D5 receptor signaling in arrhythmogenesis associated with QT interval prolongation in the setting of TTC. (±)-SKF 38393 and fenoldopam enhanced the reactive oxygen species (ROS)-production. H2O2 (100 μM) recapitulated the effects of (±)-SKF 38393 and fenoldopam on APs and a ROS-blocker N-acetylcysteine (NAC, 1 mM) abolished the effects, suggesting that the ROS-signaling is involved in the dopamine D1/D5 receptor actions. A NADPH oxidases blocker and a PKA- or PKC-blocker suppressed the effects of the dopamine receptor agonist, implying that PKA, NADPH oxidases and PKC participated in dopamine D1/D5 receptor signaling. The abnormal APs resulted from dopamine D1/D5 receptor activation-induced dysfunctions of ion channels including the Na+ and L-type Ca2+ and IKr channels. Conclusions Dopamine D1/D5 receptor signaling plays important roles for arrhythmogenesis of TTC. Dopamine D1/D5 receptor signaling in cardiomyocytes might be a potential target for treating arrhythmias in patients with TTC.
Collapse
Affiliation(s)
- Mengying Huang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Zhen Yang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Yingrui Li
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Huan Lan
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Goekhan Yuecel
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Siegfried Lang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
- *Correspondence: Xiaobo Zhou
| | - Martin Borggrefe
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Ibrahim Akin
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| |
Collapse
|
13
|
Madias JE. α1-adrenoceptors and takotsubo syndrome: pathophysiologic connotations. Europace 2021; 23:1151-1152. [PMID: 34189573 DOI: 10.1093/europace/euab119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/13/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
- John E Madias
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Cardiology, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, USA
| |
Collapse
|
14
|
Huang M, El-Battrawy I, Zhou X, Akin I. α1-adrenoceptors and takotsubo syndrome: pathophysiologic connotations-Authors' reply. Europace 2021; 23:1152. [PMID: 34189578 DOI: 10.1093/europace/euab120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mengying Huang
- First Department of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim and Göttingen, Mannheim, Germany
| | - Xiaobo Zhou
- First Department of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim and Göttingen, Mannheim, Germany.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ibrahim Akin
- First Department of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim and Göttingen, Mannheim, Germany
| |
Collapse
|