1
|
Lv T, Li S, Li Q, Meng L, Yang J, Liu L, Lv C, Zhang P. The Role of RyR2 Mutations in Congenital Heart Diseases: Insights Into Cardiac Electrophysiological Mechanisms. J Cardiovasc Electrophysiol 2025; 36:683-692. [PMID: 39803791 DOI: 10.1111/jce.16569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/10/2024] [Accepted: 01/01/2025] [Indexed: 03/14/2025]
Abstract
Ryanodine receptor 2 (RyR2) protein, a calcium ion release channel in the sarcoplasmic reticulum (SR) of myocardial cells, plays a crucial role in regulating cardiac systolic and diastolic functions. Mutations in RyR2 and its dysfunction are implicated in various congenital heart diseases (CHDs). Studies have shown that mutations in the RYR2 gene, which encodes the RyR2 protein, are linked to several cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS), calcium release deficiency syndrome (CRDS), and atrial fibrillation (AF). Additionally, RyR2 mutations have been associated with multiple genetic cardiomyopathies, such as left ventricular non-compaction cardiomyopathy (LVNC), arrhythmogenic right ventricular cardiomyopathy (ARVC), hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Through various cell and animal models, researchers have developed mutant RyR2 models demonstrated that these mutations often lead to calcium dysregulation, typically resulting in either a gain or loss of function. This comprehensive review delves into the current understanding of RyR2 mutations and their impact on cardiac electrophysiology, focusing on the molecular mechanisms linking these mutations to arrhythmias and cardiomyopathies-an essential step in advancing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Siyuan Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qing Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lingbing Meng
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jing Yang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lianfeng Liu
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Changhua Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Caudal A, Liu Y, Pang PD, Maison DP, Nakasuka K, Feng J, Schwarzer-Sperber HS, Schwarzer R, Moffatt E, Henrich TJ, Padmanabhan A, Connolly AJ, Wu JC, Tseng ZH. Transcriptomic Profiling of Human Myocardium at Sudden Death to Define Vulnerable Substrate for Lethal Arrhythmias. JACC Clin Electrophysiol 2025; 11:143-155. [PMID: 39545913 PMCID: PMC11809765 DOI: 10.1016/j.jacep.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND While some chronic pathological substrates for sudden cardiac death (SCD) are well known (eg, coronary artery disease and left ventricular [LV] dysfunction), the acute vulnerable myocardial state predisposing to fatal arrhythmia remains a critical barrier to near-term SCD prevention. OBJECTIVES This study sought to define the distinct myocardial transcriptomic profile of autopsy-defined arrhythmic sudden deaths, compared to nonarrhythmic sudden deaths and trauma deaths, to determine the acute vulnerable state in the hours to days before SCD. METHODS We used autopsy to adjudicate arrhythmic from nonarrhythmic causes in 1,265 sudden deaths in San Francisco County from 2011 to 2018. We performed a degradation-tolerant transcriptomic evaluation of LVs sampled at the time of SCD from 245 consented cases using a curated panel of 448 gene probes with known or hypothesized association with SCD. RESULTS The targeted transcriptome of arrhythmic (n = 129) vs nonarrhythmic (n = 90 nonarrhythmic sudden deaths + 26 trauma deaths) LV samples revealed 31 differentially up-regulated and 36 down-regulated genes (adjusted P < 0.05) related to the collagen-containing extracellular matrix (up-regulation of FAP, FMOD, and LTBP2), regulation of ion transport (up-regulation of KCNA5 and KCNN3 and down-regulation of KCNJ8, KCNK1, and KCNJ5), and contraction (down-regulation of MYH6). Fibrosis-related genes showed the highest magnitude increased expression in arrhythmic vs nonarrhythmic deaths and vs published transcriptomes from end-stage heart failure. After molecular stratification by known markers for mature (COL1A1, COL1A2, COL3A1) and active (POSTN, MEOX1) fibrosis, cases with the highest expression of both had the largest proportion of arrhythmic cause of death (n = 27 of 36 [75%]) vs cases with low expression of both markers (n = 87 of 181 [38%]) (P = 0.006) or vs mature only (n = 10 of 14 [71%]) or active only (n = 5 of 14 [36%]). Activated fibroblast gene expression signature was enriched in arrhythmic female vs arrhythmic male cases, among other sex-specific differences in ion-channel and myosin (up-regulation of SCN4B, SCN8A, and KCNAB1 in females and KCNJ4 and MYH7B in males) expression. CONCLUSIONS RNA profiling of the myocardium at SCD identifies active fibrosis, undetectable by conventional clinical methods, in the presence of fixed scar and selected ion-channel dysregulation (more pronounced among female cases) as an acute vulnerable substrate for fatal arrhythmias. These findings may represent novel directions to identify patients at elevated near-term risk for SCD and critical pathways for intervention to reduce acute lethal arrhythmias.
Collapse
Affiliation(s)
- Arianne Caudal
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yu Liu
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul D Pang
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - David P Maison
- Division of Experimental Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Kosuke Nakasuka
- Cardiac Electrophysiology, Cardiology Division, School of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Jean Feng
- Department of Epidemiology and Biostatistics, School of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - H S Schwarzer-Sperber
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Roland Schwarzer
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ellen Moffatt
- Office of the Chief Medical Examiner, City and County of San Francisco, San Francisco, California, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Arun Padmanabhan
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA; Gladstone Institute for Cardiovascular Disease, San Francisco, California, USA; Chan Zuckerberg Biohub San Francisco, California, USA
| | - Andrew J Connolly
- Department of Pathology, School of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Zian H Tseng
- Cardiac Electrophysiology, Cardiology Division, School of Medicine, University of California-San Francisco, San Francisco, California, USA; Department of Medicine, University of California-San Francisco, San Francisco, California, USA.
| |
Collapse
|
3
|
Khederlou H, Azimi Pirsaraei V. Torsades de Pointe Associated with Trazodone Consumption. Case Rep Crit Care 2024; 2024:5759229. [PMID: 38680420 PMCID: PMC11055644 DOI: 10.1155/2024/5759229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Trazodone is a serotonin receptor antagonist and reuptake inhibitor commonly used to treat major depression disorder (MDD), anxiety, and sleep disorders. It is considered safe for the heart due to minimal anticholinergic effects. Prolonged QT intervals can cause polymorphic ventricular tachycardia, known as torsades de pointe (TdP). We present a case of a 67-year-old female with a history of MDD who developed trazodone-induced TdP. Case Presentation. The patient was referred to a tertiary hospital with a ten-hour history of nausea and vomiting. Trazodone (50 mg daily) was started for her six days ago due to her past medical history of MDD. The initial electrocardiography (ECG) revealed a prolonged corrected QT interval (QTc = 586 ms) due to a long ST segment and generalized T wave inversion. A few moments after admission to the intensive care unit, she suddenly lost consciousness. ECG monitoring showed a TdP, which terminated immediately with the asynchronous defibrillation. A temporary pacemaker was implanted due to repeated arrhythmias and bradycardia. Arrhythmia did not recur for hours and days later. After four days of stopping trazodone, all abnormal ECG findings were resolved, and she was discharged with a normal ECG. She was followed up six months later; the ECG was normal, and she had no complaints. Conclusion Trazodone may lead to QTc prolongation and TdP, potentially fatal even without risk factors for QTc prolongation. Close monitoring is essential to prevent adverse complications in trazodone users.
Collapse
Affiliation(s)
- Hamid Khederlou
- Department of Cardiology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Vanoushe Azimi Pirsaraei
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Hasegawa H, Tamura S, Nakajima T, Kawabata-Iwakawa R, Kobari T, Matsumoto N, Sano Y, Nishiyama M, Kurabayashi M, Kaneko Y, Nakatani Y, Ishii H. Diverse Phenotypic Manifestations in a Family with a Novel RYR2 E4107A Variant. Int Heart J 2024; 65:580-585. [PMID: 38825499 DOI: 10.1536/ihj.23-652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia (CPVT). Conversely, RyR2 loss-of-function mutations cause a new disease entity, termed calcium release deficiency syndrome (CRDS), which may include RYR2-related long QT syndrome (LQTS). Importantly, unlike CPVT, patients with CRDS do not always exhibit exercise- or epinephrine-induced ventricular arrhythmias, which precludes a diagnosis of CRDS. Here we report a boy and his father, who both experienced exercise-induced cardiac events and harbor the same RYR2 E4107A variant. In the boy, an exercise stress test (EST) and epinephrine provocation test (EPT) did not induce any ventricular arrhythmias. QTc was slightly prolonged (QTc: 474 ms), and an EPT induced QTc prolongation (QTc-baseline: 466 ms, peak: 532 ms, steady-state: 527 ms). In contrast, in his father, QTc was not prolonged (QTc: 417 ms), and neither an EST nor EPT induced QTc prolongation. However, an EST induced multifocal premature ventricular contraction (PVC) bigeminy and bidirectional PVC couplets. Thus, they exhibited distinct clinical phenotypes: the boy exhibited LQTS (or CRDS) phenotype, whereas his father exhibited CPVT phenotype. These findings suggest that, in addition to the altered RyR2 function, other unidentified factors, such as other genetic, epigenetic, and environmental factors, and aging, may be involved in the diverse phenotypic manifestations. Considering that a single RYR2 variant can cause both CPVT and LQTS (or CRDS) phenotypes, in cascade screening of patients with CPVT and CRDS, an EST and EPT are not sufficient and genetic analysis is required to identify individuals who are at increased risk for life-threatening arrhythmias.
Collapse
Affiliation(s)
- Hiroshi Hasegawa
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Shuntaro Tamura
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research
| | - Takashi Kobari
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | | | - Yukie Sano
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | | | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Yosuke Nakatani
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Hideki Ishii
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| |
Collapse
|
5
|
Schulze-Bahr E, Dittmann S. Human Genetics of Cardiac Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:1033-1055. [PMID: 38884768 DOI: 10.1007/978-3-031-44087-8_66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Inherited forms of cardiac arrhythmias mostly are rare diseases (prevalence <1:2000) and considered to be either "primary electrical heart disorders" due to the absence of structural heart abnormalities or "cardiac ion channel disorders" due to the myocellular structures involved. Precise knowledge of the electrocardiographic features of these diseases and their genetic classification will enable early disease recognition and prevention of cardiac events including sudden cardiac death.The genetic background of these diseases is complex and heterogeneous. In addition to the predominant "private character" of a mutation in each family, locus heterogeneity involving many ion channel genes for the same familial arrhythmia syndrome is typical. Founder pathogenic variants or mutational hot spots are uncommon. Moreover, phenotypes may vary and overlap even within the same family and mutation carriers. For the majority of arrhythmias, the clinical phenotype of an ion channel mutation is restricted to cardiac tissue, and therefore, the disease is nonsyndromic.Recent and innovative methods of parallel DNA analysis (so-called next-generation sequencing, NGS) will enhance further mutation and other variant detection as well as arrhythmia gene identification.
Collapse
Affiliation(s)
- Eric Schulze-Bahr
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany.
| | - Sven Dittmann
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany
| |
Collapse
|
6
|
Takenaka M, Kodama M, Murayama T, Ishigami-Yuasa M, Mori S, Ishida R, Suzuki J, Kanemaru K, Sugihara M, Iino M, Miura A, Nishio H, Morimoto S, Kagechika H, Sakurai T, Kurebayashi N. Screening for Novel Type 2 Ryanodine Receptor Inhibitors by Endoplasmic Reticulum Ca 2+ Monitoring. Mol Pharmacol 2023; 104:275-286. [PMID: 37678938 DOI: 10.1124/molpharm.123.000720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic (ER)/sarcoplasmic reticulum that plays a central role in the excitation-contraction coupling in the heart. Hyperactivity of RyR2 has been linked to ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia and heart failure, where spontaneous Ca2+ release via hyperactivated RyR2 depolarizes diastolic membrane potential to induce triggered activity. In such cases, drugs that suppress RyR2 activity are expected to prevent the arrhythmias, but there is no clinically available RyR2 inhibitors at present. In this study, we searched for RyR2 inhibitors from a well-characterized compound library using a recently developed ER Ca2+-based assay, where the inhibition of RyR2 activity was detected by the increase in ER Ca2+ signals from R-CEPIA1er, a genetically encoded ER Ca2+ indicator, in RyR2-expressing HEK293 cells. By screening 1535 compounds in the library, we identified three compounds (chloroxylenol, methyl orsellinate, and riluzole) that greatly increased the ER Ca2+ signal. All of the three compounds suppressed spontaneous Ca2+ oscillations in RyR2-expressing HEK293 cells and correspondingly reduced the Ca2+-dependent [3H]ryanodine binding activity. In cardiomyocytes from RyR2-mutant mice, the three compounds effectively suppressed abnormal Ca2+ waves without substantial effects on the action-potential-induced Ca2+ transients. These results confirm that ER Ca2+-based screening is useful for identifying modulators of ER Ca2+ release channels and suggest that RyR2 inhibitors have potential to be developed as a new category of antiarrhythmic drugs. SIGNIFICANCE STATEMENT: We successfully identified three compounds having RyR2 inhibitory action from a well-characterized compound library using an endoplasmic reticulum Ca2+-based assay, and demonstrated that these compounds suppressed arrhythmogenic Ca2+ wave generation without substantially affecting physiological action-potential induced Ca2+ transients in cardiomyocytes. This study will facilitate the development of RyR2-specific inhibitors as a potential new class of drugs for life-threatening arrhythmias induced by hyperactivation of RyR2.
Collapse
Affiliation(s)
- Mai Takenaka
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Masami Kodama
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Mari Ishigami-Yuasa
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Shuichi Mori
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Ryosuke Ishida
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Junji Suzuki
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Kazunori Kanemaru
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Masami Sugihara
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Masamitsu Iino
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Aya Miura
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Hajime Nishio
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Sachio Morimoto
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Hiroyuki Kagechika
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| |
Collapse
|
7
|
Kallas D, Roberts JD, Sanatani S, Roston TM. Calcium Release Deficiency Syndrome: A New Inherited Arrhythmia Syndrome. Card Electrophysiol Clin 2023; 15:319-329. [PMID: 37558302 DOI: 10.1016/j.ccep.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Calcium release deficiency syndrome (CRDS) is a newly described form of inherited arrhythmia caused by damaging loss-of-function variants in the cardiac ryanodine receptor (RyR2). Unlike the prototypical RyR2 gain-of-function channelopathy, known as catecholaminergic polymorphic ventricular tachycardia, patients with CRDS are predisposed to sudden death usually in the absence of any electrical abnormalities at rest or during stress electrocardiography. This makes diagnosis incredibly challenging, however, an invasive electrophysiologic test appears to be effective in unmasking the phenotype, called the long-burst, long-pause, short-coupled ventricular extra-stimulus protocol. Optimal therapies for patients with CRDS remain unestablished, although flecainide appears to be a promising candidate drug.
Collapse
Affiliation(s)
- Dania Kallas
- Department of Pediatrics, Division of Cardiology, BC Children's Hospital, Heart Center, 4480 Oak Street, Vancouver, British Columbia V6H 3V4, Canada. https://twitter.com/Daniakallas2
| | - Jason D Roberts
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, C3-111, 237 Barton Street East, Hamilton, Ontario L8L 2X2, Canada
| | - Shubhayan Sanatani
- Department of Pediatrics, Division of Cardiology, BC Children's Hospital, Heart Center, 4480 Oak Street, Vancouver, British Columbia V6H 3V4, Canada
| | - Thomas M Roston
- Division of Cardiology and Centre for Cardiovascular Innovation, The University of British Columbia, 1081 Burrard Street, 4th Floor - Burrard Building, Vancouver, British Columbia V6Z 1Y6, Canada.
| |
Collapse
|
8
|
Remme CA, Heijman J, Gomez AM, Zaza A, Odening KE. 25 years of basic and translational science in EP Europace: novel insights into arrhythmia mechanisms and therapeutic strategies. Europace 2023; 25:euad210. [PMID: 37622575 PMCID: PMC10450791 DOI: 10.1093/europace/euad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 08/26/2023] Open
Abstract
In the last 25 years, EP Europace has published more than 300 basic and translational science articles covering different arrhythmia types (ranging from atrial fibrillation to ventricular tachyarrhythmias), different diseases predisposing to arrhythmia formation (such as genetic arrhythmia disorders and heart failure), and different interventional and pharmacological anti-arrhythmic treatment strategies (ranging from pacing and defibrillation to different ablation approaches and novel drug-therapies). These studies have been conducted in cellular models, small and large animal models, and in the last couple of years increasingly in silico using computational approaches. In sum, these articles have contributed substantially to our pathophysiological understanding of arrhythmia mechanisms and treatment options; many of which have made their way into clinical applications. This review discusses a representative selection of EP Europace manuscripts covering the topics of pacing and ablation, atrial fibrillation, heart failure and pro-arrhythmic ventricular remodelling, ion channel (dys)function and pharmacology, inherited arrhythmia syndromes, and arrhythmogenic cardiomyopathies, highlighting some of the advances of the past 25 years. Given the increasingly recognized complexity and multidisciplinary nature of arrhythmogenesis and continued technological developments, basic and translational electrophysiological research is key advancing the field. EP Europace aims to further increase its contribution to the discovery of arrhythmia mechanisms and the implementation of mechanism-based precision therapy approaches in arrhythmia management.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC location University of Amsterdam, Heart Centre, Academic Medical Center, Room K2-104.2, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ana M Gomez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, 91400 Orsay, France
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, Inselspital University Hospital Bern, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
9
|
Qian Y, Zuo D, Xiong J, Yin Y, Qi R, Ma X, Yan A, Yang Y, Liu P, Zhang J, Tang K, Peng W, Xu Y, Liu Z. Arrhythmogenic mechanism of a novel ryanodine receptor mutation underlying sudden cardiac death. Europace 2023; 25:euad220. [PMID: 37466361 PMCID: PMC10374982 DOI: 10.1093/europace/euad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
AIMS The ryanodine receptor 2 (RyR2) is essential for cardiac muscle excitation-contraction coupling; dysfunctional RyR2 participates in the development of inherited arrhythmogenic cardiac disease. In this study, a novel RyR2 mutation A690E is identified from a patient with family inheritance of sudden cardiac death, and we aimed to investigate the pathogenic basis of the mutation. METHODS AND RESULTS We generated a mouse model that carried the A690E mutation. Mice were characterized by adrenergic-induced ventricular arrhythmias similar to clinical manifestation of the patient. Optical mapping studies revealed that isolated A690E hearts were prone to arrhythmogenesis and displayed frequency-dependence calcium transient alternans. Upon β-adrenoceptor challenge, the concordant alternans was shifted towards discordant alternans that favour triggering ectopic beats and Ca2+ re-entry; similar phenomenon was also found in the A690E cardiomyocytes. In addition, we found that A690E cardiomyocytes manifested abnormal Ca2+ release and electrophysiological disorders, including an increased sensitivity to cytosolic Ca2+, an elevated diastolic RyR2-mediated Ca2+ leak, and an imbalance between Ca2+ leak and reuptake. Structural analyses reveal that the mutation directly impacts RyR2-FK506 binding protein interaction. CONCLUSION In this study, we have identified a novel mutation in RyR2 that is associated with sudden cardiac death. By characterizing the function defects of mutant RyR2 in animal, whole heat, and cardiomyocytes, we demonstrated the pathogenic basis of the disease-causing mutation and provided a deeper mechanistic understanding of a life-threatening cardiac arrhythmia.
Collapse
Affiliation(s)
- Yunyun Qian
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Dongchuan Zuo
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, 1 Xianglin Road, Longmatan District, Luzhou 646000, China
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou 646000, China
| | - Jing Xiong
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Yihen Yin
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Ruxi Qi
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Xiaomin Ma
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - An Yan
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Yawen Yang
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, 1 Xianglin Road, Longmatan District, Luzhou 646000, China
| | - Ping Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou 646000, China
| | - Jingying Zhang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
10
|
Steinberg C, Roston TM, van der Werf C, Sanatani S, Chen SRW, Wilde AAM, Krahn AD. RYR2-ryanodinopathies: from calcium overload to calcium deficiency. Europace 2023; 25:euad156. [PMID: 37387319 PMCID: PMC10311407 DOI: 10.1093/europace/euad156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
The sarcoplasmatic reticulum (SR) cardiac ryanodine receptor/calcium release channel RyR2 is an essential regulator of cardiac excitation-contraction coupling and intracellular calcium homeostasis. Mutations of the RYR2 are the cause of rare, potentially lethal inherited arrhythmia disorders. Catecholaminergic polymorphic ventricular tachycardia (CPVT) was first described more than 20 years ago and is the most common and most extensively studied cardiac ryanodinopathy. Over time, other distinct inherited arrhythmia syndromes have been related to abnormal RyR2 function. In addition to CPVT, there are at least two other distinct RYR2-ryanodinopathies that differ mechanistically and phenotypically from CPVT: RYR2 exon-3 deletion syndrome and the recently identified calcium release deficiency syndrome (CRDS). The pathophysiology of the different cardiac ryanodinopathies is characterized by complex mechanisms resulting in excessive spontaneous SR calcium release or SR calcium release deficiency. While the vast majority of CPVT cases are related to gain-of-function variants of the RyR2 protein, the recently identified CRDS is linked to RyR2 loss-of-function variants. The increasing number of these cardiac 'ryanodinopathies' reflects the complexity of RYR2-related cardiogenetic disorders and represents an ongoing challenge for clinicians. This state-of-the-art review summarizes our contemporary understanding of RYR2-related inherited arrhythmia disorders and provides a systematic and comprehensive description of the distinct cardiac ryanodinopathies discussing clinical aspects and molecular insights. Accurate identification of the underlying type of cardiac ryanodinopathy is essential for the clinical management of affected patients and their families.
Collapse
Affiliation(s)
- Christian Steinberg
- Institut universitaire de cardiologie et pneumologie de Québec, Laval University, 2725, Chemin Ste-Foy, Quebec G1V 4G5, Canada
| | - Thomas M Roston
- Centre for Cardiovascular Innovation, Division of Cardiology, St. Paul’s Hospital, University of British Columbia, 211-1033 Davie Street, Vancouver, BC, V6E 1M7, Canada
| | - Christian van der Werf
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, University of Amsterdam, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Shubhayan Sanatani
- Division of Cardiology, Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Arthur A M Wilde
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, University of Amsterdam, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Andrew D Krahn
- Centre for Cardiovascular Innovation, Division of Cardiology, St. Paul’s Hospital, University of British Columbia, 211-1033 Davie Street, Vancouver, BC, V6E 1M7, Canada
| |
Collapse
|
11
|
Gao J, Makiyama T, Yamamoto Y, Kobayashi T, Aoki H, Maurissen TL, Wuriyanghai Y, Kashiwa A, Imamura T, Aizawa T, Huang H, Kohjitani H, Nishikawa M, Chonabayashi K, Fukuyama M, Manabe H, Nakau K, Wada T, Kato K, Toyoda F, Yoshida Y, Makita N, Woltjen K, Ohno S, Kurebayashi N, Murayama T, Sakurai T, Horie M, Kimura T. Novel Calmodulin Variant p.E46K Associated With Severe Catecholaminergic Polymorphic Ventricular Tachycardia Produces Robust Arrhythmogenicity in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Arrhythm Electrophysiol 2023; 16:e011387. [PMID: 36866681 DOI: 10.1161/circep.122.011387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND CaM (calmodulin) is a ubiquitously expressed, multifunctional Ca2+ sensor protein that regulates numerous proteins. Recently, CaM missense variants have been identified in patients with malignant inherited arrhythmias, such as long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the exact mechanism of CaM-related CPVT in human cardiomyocytes remains unclear. In this study, we sought to investigate the arrhythmogenic mechanism of CPVT caused by a novel variant using human induced pluripotent stem cell (iPSC) models and biochemical assays. METHODS We generated iPSCs from a patient with CPVT bearing CALM2 p.E46K. As comparisons, we used 2 control lines including an isogenic line, and another iPSC line from a patient with long QT syndrome bearing CALM2 p.N98S (also reported in CPVT). Electrophysiological properties were investigated using iPSC-cardiomyocytes. We further examined the RyR2 (ryanodine receptor 2) and Ca2+ affinities of CaM using recombinant proteins. RESULTS We identified a novel de novo heterozygous variant, CALM2 p.E46K, in 2 unrelated patients with CPVT accompanied by neurodevelopmental disorders. The E46K-cardiomyocytes exhibited more frequent abnormal electrical excitations and Ca2+ waves than the other lines in association with increased Ca2+ leakage from the sarcoplasmic reticulum via RyR2. Furthermore, the [3H]ryanodine binding assay revealed that E46K-CaM facilitated RyR2 function especially by activating at low [Ca2+] levels. The real-time CaM-RyR2 binding analysis demonstrated that E46K-CaM had a 10-fold increased RyR2 binding affinity compared with wild-type CaM which may account for the dominant effect of the mutant CaM. Additionally, the E46K-CaM did not affect CaM-Ca2+ binding or L-type calcium channel function. Finally, antiarrhythmic agents, nadolol and flecainide, suppressed abnormal Ca2+ waves in E46K-cardiomyocytes. CONCLUSIONS We, for the first time, established a CaM-related CPVT iPSC-CM model which recapitulated severe arrhythmogenic features resulting from E46K-CaM dominantly binding and facilitating RyR2. In addition, the findings in iPSC-based drug testing will contribute to precision medicine.
Collapse
Affiliation(s)
- Jingshan Gao
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Community Medicine Supporting System (T. Makiyama), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuta Yamamoto
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Bioscience & Genetics (Y. Yamamoto, S.O.), National Cerebral & Cardiovascular Center, Suita, Japan
- Now with Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA (Y. Yamamoto)
| | - Takuya Kobayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T. Kobayashi, N.K., T. Murayama, T.S.)
| | - Hisaaki Aoki
- Department of Pediatric Cardiology, Osaka Women's & Children's Hospital, Osaka, Japan (H.A.)
| | - Thomas L Maurissen
- Department of Life Science Frontiers (T.L.M., K.W.), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
- Now with Roche Pharma Research & Early Development, Immunology, Infectious Diseases & Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (T.L.M.)
| | - Yimin Wuriyanghai
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Now with Department of Internal medicine, Peking University Third Hospital, Beijing, China (Y.W.)
| | - Asami Kashiwa
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiko Imamura
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takanori Aizawa
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hai Huang
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohiko Kohjitani
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Misato Nishikawa
- Department of Cell Growth & Differentiation (M.N., K.C., Y. Yoshida), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kazuhisa Chonabayashi
- Department of Hematology & Oncology (K.C.), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Cell Growth & Differentiation (M.N., K.C., Y. Yoshida), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
| | - Megumi Fukuyama
- Department of Cardiovascular Medicine (M.F., K.K., M.H.), Shiga University of Medical Science, Otsu, Japan
| | - Hiromi Manabe
- Department of Pediatrics, Asahikawa Kosei General Hospital (H.M.), Asahikawa Medical University, Asahikawa, Japan
| | - Kouichi Nakau
- Asahikawa, Japan and Department of Pediatrics (K.N.), Asahikawa Medical University, Asahikawa, Japan
| | - Tsutomu Wada
- Department of Pediatrics, Sapporo Medical University Hospital, Sapporo, Japan (T.W.)
| | - Koichi Kato
- Department of Cardiovascular Medicine (M.F., K.K., M.H.), Shiga University of Medical Science, Otsu, Japan
| | - Futoshi Toyoda
- Department of Physiology (F.T.), Shiga University of Medical Science, Otsu, Japan
| | - Yoshinori Yoshida
- Department of Cell Growth & Differentiation (M.N., K.C., Y. Yoshida), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
| | - Naomasa Makita
- Omics Research Center (N.M.), National Cerebral & Cardiovascular Center, Suita, Japan
- Now with Department of Cardiology, Sapporo Teishinkai Hospital, Sapporo, Japan (N.M.)
| | - Knut Woltjen
- Department of Life Science Frontiers (T.L.M., K.W.), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
| | - Seiko Ohno
- Department of Bioscience & Genetics (Y. Yamamoto, S.O.), National Cerebral & Cardiovascular Center, Suita, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T. Kobayashi, N.K., T. Murayama, T.S.)
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T. Kobayashi, N.K., T. Murayama, T.S.)
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T. Kobayashi, N.K., T. Murayama, T.S.)
| | - Minoru Horie
- Department of Cardiovascular Medicine (M.F., K.K., M.H.), Shiga University of Medical Science, Otsu, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Now with Department of Cardiology, Hirakata Kohsai Hospital, Osaka, Japan (T. Kimura)
| |
Collapse
|
12
|
Iyer KA, Barnakov V, Samsó M. Three-dimensional perspective on ryanodine receptor mutations causing skeletal and cardiac muscle-related diseases. Curr Opin Pharmacol 2023; 68:102327. [PMID: 36516687 PMCID: PMC9908851 DOI: 10.1016/j.coph.2022.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
Mutations in RyR alter the cell's Ca2+ homeostasis and can cause serious health problems for which few effective therapies are available. Until recently, there was little structural context for the hundreds of mutations linked to muscular disorders reported for this large channel. Growing knowledge of the three-dimensional structure of RyR starts to illustrate the fine control of Ca2+ release. Current efforts directed towards understanding how disease mutations impinge in such processes will be crucial for future design of novel therapies. In this review article we discuss the up-to-date information about mutations according to their role in the 3D structure, and classified them to provide context from a structural perspective.
Collapse
Affiliation(s)
- Kavita A Iyer
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Vadim Barnakov
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Montserrat Samsó
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
13
|
Li S, Lv T, Yang J, Li K, Yang Y, Zhang P. A gain of function ryanodine receptor 2 mutation (R1760W-RyR2) in catecholaminergic polymorphic ventricular tachycardia. Clin Exp Pharmacol Physiol 2023; 50:39-49. [PMID: 36082968 DOI: 10.1111/1440-1681.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 12/13/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome associated with Ca2+ leak predominantly caused by ryanodine receptor 2 (RyR2) mutations. We identified a R1760W-RyR2 mutation located between the N-terminal domain and the central domain of RyR2 in a CPVT patient by DNA sequencing. Recombinant mutant RyR2-2801mcherry plasmid generated by the overlap extension polymerase chain reaction and seamless cloning was transfected in HEK293 cells for the cell model. Single-cell luminal and cytosolic Ca2+ imaging was measured by endoplasmic reticulum (ER) luminal Ca2+ -sensitive protein D1ER and Fura-2 AM on a confocal laser scanning microscope, respectively. We found that in RyR2 mutant cells, the propensity for store-overload-induced Ca2+ release (SOICR) was enhanced representing increased Ca2+ oscillations, reduced activation and termination thresholds of spontaneous Ca2+ release; and the sensitivity to cytosolic Ca2+ activation was increased manifesting reduced steady state ER Ca2+ levels. Our results indicated that R1760W-RyR2 mutation induced calcium leak, representing a gain of function. Further, antiarrhythmic drugs propafenone and flecainide significantly suppressed SOICR caused by the R1760W-RyR2 mutation at a concentration of 20 μM, which was lower than the concentration at which carvedilol suppressed SOICR.
Collapse
Affiliation(s)
- Siyuan Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Tingting Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jing Yang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Kun Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ying Yang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Nagata Y, Watanabe R, Eichhorn C, Ohno S, Aiba T, Ishikawa T, Nakano Y, Aizawa Y, Hayashi K, Murakoshi N, Nakajima T, Yagihara N, Mishima H, Sudo T, Higuchi C, Takahashi A, Sekine A, Makiyama T, Tanaka Y, Watanabe A, Tachibana M, Morita H, Yoshiura KI, Tsunoda T, Watanabe H, Kurabayashi M, Nogami A, Kihara Y, Horie M, Shimizu W, Makita N, Tanaka T. Targeted deep sequencing analyses of long QT syndrome in a Japanese population. PLoS One 2022; 17:e0277242. [PMID: 36480497 PMCID: PMC9731492 DOI: 10.1371/journal.pone.0277242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Long QT syndrome (LQTS) is one of the most common inherited arrhythmias and multiple genes have been reported as causative. Presently, genetic diagnosis for LQTS patients is becoming widespread and contributing to implementation of therapies. However, causative genetic mutations cannot be detected in about 20% of patients. To elucidate additional genetic mutations in LQTS, we performed deep-sequencing of previously reported 15 causative and 85 candidate genes for this disorder in 556 Japanese LQTS patients. We performed in-silico filtering of the sequencing data and found 48 novel variants in 33 genes of 53 cases. These variants were predicted to be damaging to coding proteins or to alter the binding affinity of several transcription factors. Notably, we found that most of the LQTS-related variants in the RYR2 gene were in the large cytoplasmic domain of the N-terminus side. They might be useful for screening of LQTS patients who had no known genetic factors. In addition, when the mechanisms of these variants in the development of LQTS are revealed, it will be useful for early diagnosis, risk stratification, and selection of treatment.
Collapse
Affiliation(s)
- Yuki Nagata
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryo Watanabe
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Christian Eichhorn
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takeshi Aiba
- Devision of Arrhythmia, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiyasu Aizawa
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nobue Yagihara
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Takeaki Sudo
- Institute of Education, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chihiro Higuchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Atsushi Takahashi
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akihiro Sekine
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiro Tanaka
- Center for Arrhythmia Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Atsuyuki Watanabe
- Department of Cardiology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Motomi Tachibana
- Department of Cardiology, Sakakibara heart institute of Okayama, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koh-ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Division of Advanced Preventive Medical Sciences and Leading Medical Research Core Unit, Nagasaki Univerisity Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Watanabe
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshihiro Tanaka
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
15
|
Abstract
Flecainide, a cardiac class 1C blocker of the surface membrane sodium channel (NaV1.5), has also been reported to reduce cardiac ryanodine receptor (RyR2)-mediated sarcoplasmic reticulum (SR) Ca2+ release. It has been introduced as a clinical antiarrhythmic agent for catecholaminergic polymorphic ventricular tachycardia (CPVT), a condition most commonly associated with gain-of-function RyR2 mutations. Current debate concerns both cellular mechanisms of its antiarrhythmic action and molecular mechanisms of its RyR2 actions. At the cellular level, it targets NaV1.5, RyR2, Na+/Ca2+ exchange (NCX), and additional proteins involved in excitation-contraction (EC) coupling and potentially contribute to the CPVT phenotype. This Viewpoint primarily addresses the various direct molecular actions of flecainide on isolated RyR2 channels in artificial lipid bilayers. Such studies demonstrate different, multifarious, flecainide binding sites on RyR2, with voltage-dependent binding in the channel pore or voltage-independent binding at distant peripheral sites. In contrast to its single NaV1.5 pore binding site, flecainide may bind to at least four separate inhibitory sites on RyR2 and one activation site. None of these binding sites have been specifically located in the linear RyR2 sequence or high-resolution structure. Furthermore, it is not clear which of the inhibitory sites contribute to flecainide's reduction of spontaneous Ca2+ release in cellular studies. A confounding observation is that flecainide binding to voltage-dependent inhibition sites reduces cation fluxes in a direction opposite to physiological Ca2+ flow from SR lumen to cytosol. This may suggest that, rather than directly blocking Ca2+ efflux, flecainide can reduce Ca2+ efflux by blocking counter currents through the pore which otherwise limit SR membrane potential change during systolic Ca2+ efflux. In summary, the antiarrhythmic effects of flecainide in CPVT seem to involve multiple components of EC coupling and multiple actions on RyR2. Their clarification may identify novel specific drug targets and facilitate flecainide's clinical utilization in CPVT.
Collapse
Affiliation(s)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - James A. Fraser
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| |
Collapse
|
16
|
Molecular, Subcellular, and Arrhythmogenic Mechanisms in Genetic RyR2 Disease. Biomolecules 2022; 12:biom12081030. [PMID: 35892340 PMCID: PMC9394283 DOI: 10.3390/biom12081030] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The ryanodine receptor (RyR2) has a critical role in controlling Ca2+ release from the sarcoplasmic reticulum (SR) throughout the cardiac cycle. RyR2 protein has multiple functional domains with specific roles, and four of these RyR2 protomers are required to form the quaternary structure that comprises the functional channel. Numerous mutations in the gene encoding RyR2 protein have been identified and many are linked to a wide spectrum of arrhythmic heart disease. Gain of function mutations (GoF) result in a hyperactive channel that causes excessive spontaneous SR Ca2+ release. This is the predominant cause of the inherited syndrome catecholaminergic polymorphic ventricular tachycardia (CPVT). Recently, rare hypoactive loss of function (LoF) mutations have been identified that produce atypical effects on cardiac Ca2+ handling that has been termed calcium release deficiency syndrome (CRDS). Aberrant Ca2+ release resulting from both GoF and LoF mutations can result in arrhythmias through the Na+/Ca2+ exchange mechanism. This mini-review discusses recent findings regarding the role of RyR2 domains and endogenous regulators that influence RyR2 gating normally and with GoF/LoF mutations. The arrhythmogenic consequences of GoF/LoF mutations will then be discussed at the macromolecular and cellular level.
Collapse
|
17
|
Wang M, Tu X. The Genetics and Epigenetics of Ventricular Arrhythmias in Patients Without Structural Heart Disease. Front Cardiovasc Med 2022; 9:891399. [PMID: 35783865 PMCID: PMC9240357 DOI: 10.3389/fcvm.2022.891399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmia without structural heart disease is an arrhythmic disorder that occurs in structurally normal heart and no transient or reversible arrhythmia factors, such as electrolyte disorders and myocardial ischemia. Ventricular arrhythmias without structural heart disease can be induced by multiple factors, including genetics and environment, which involve different genetic and epigenetic regulation. Familial genetic analysis reveals that cardiac ion-channel disorder and dysfunctional calcium handling are two major causes of this type of heart disease. Genome-wide association studies have identified some genetic susceptibility loci associated with ventricular tachycardia and ventricular fibrillation, yet relatively few loci associated with no structural heart disease. The effects of epigenetics on the ventricular arrhythmias susceptibility genes, involving non-coding RNAs, DNA methylation and other regulatory mechanisms, are gradually being revealed. This article aims to review the knowledge of ventricular arrhythmia without structural heart disease in genetics, and summarizes the current state of epigenetic regulation.
Collapse
|
18
|
Sarcoplasmic Reticulum Ca2+ Dysregulation in the Pathophysiology of Inherited Arrhythmia: An Update. Biochem Pharmacol 2022; 200:115059. [DOI: 10.1016/j.bcp.2022.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
|
19
|
Kobayashi T, Tsutsumi A, Kurebayashi N, Saito K, Kodama M, Sakurai T, Kikkawa M, Murayama T, Ogawa H. Molecular basis for gating of cardiac ryanodine receptor explains the mechanisms for gain- and loss-of function mutations. Nat Commun 2022; 13:2821. [PMID: 35595836 PMCID: PMC9123176 DOI: 10.1038/s41467-022-30429-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiac ryanodine receptor (RyR2) is a large Ca2+ release channel in the sarcoplasmic reticulum and indispensable for excitation-contraction coupling in the heart. RyR2 is activated by Ca2+ and RyR2 mutations are implicated in severe arrhythmogenic diseases. Yet, the structural basis underlying channel opening and how mutations affect the channel remains unknown. Here, we address the gating mechanism of RyR2 by combining high-resolution structures determined by cryo-electron microscopy with quantitative functional analysis of channels carrying various mutations in specific residues. We demonstrated two fundamental mechanisms for channel gating: interactions close to the channel pore stabilize the channel to prevent hyperactivity and a series of interactions in the surrounding regions is necessary for channel opening upon Ca2+ binding. Mutations at the residues involved in the former and the latter mechanisms cause gain-of-function and loss-of-function, respectively. Our results reveal gating mechanisms of the RyR2 channel and alterations by pathogenic mutations at the atomic level. Ryanodine receptor 2 (RyR2) is a Ca2+ release channel essential for cardiac excitation-contraction coupling. Here, the authors use structural and functional analysis to reveal RyR2 gating mechanism and its alterations by pathogenic mutations.
Collapse
Affiliation(s)
- Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kei Saito
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masami Kodama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Haruo Ogawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
20
|
Kurebayashi N, Murayama T, Ota R, Suzuki J, Kanemaru K, Kobayashi T, Ohno S, Horie M, Iino M, Yamashita F, Sakurai T. Cytosolic Ca2+-dependent Ca2+ release activity primarily determines the ER Ca2+ level in cells expressing the CPVT-linked mutant RYR2. J Gen Physiol 2022; 154:213175. [PMID: 35446340 PMCID: PMC9037340 DOI: 10.1085/jgp.202112869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 11/28/2021] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
Type 2 ryanodine receptor (RYR2) is a cardiac Ca2+ release channel in the ER. Mutations in RYR2 are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT is associated with enhanced spontaneous Ca2+ release, which tends to occur when [Ca2+]ER reaches a threshold. Mutations lower the threshold [Ca2+]ER by increasing luminal Ca2+ sensitivity or enhancing cytosolic [Ca2+] ([Ca2+]cyt)-dependent activity. Here, to establish the mechanism relating the change in [Ca2+]cyt-dependent activity of RYR2 and the threshold [Ca2+]ER, we carried out cell-based experiments and in silico simulations. We expressed WT and CPVT-linked mutant RYR2s in HEK293 cells and measured [Ca2+]cyt and [Ca2+]ER using fluorescent Ca2+ indicators. CPVT RYR2 cells showed higher oscillation frequency and lower threshold [Ca2+]ER than WT cells. The [Ca2+]cyt-dependent activity at resting [Ca2+]cyt, Arest, was greater in CPVT mutants than in WT, and we found an inverse correlation between threshold [Ca2+]ER and Arest. In addition, lowering RYR2 expression increased the threshold [Ca2+]ER and a product of Arest, and the relative expression level for each mutant correlated with threshold [Ca2+]ER, suggesting that the threshold [Ca2+]ER depends on the net Ca2+ release rate via RYR2. Modeling reproduced Ca2+ oscillations with [Ca2+]cyt and [Ca2+]ER changes in WT and CPVT cells. Interestingly, the [Ca2+]cyt-dependent activity of specific mutations correlated with the age of disease onset in patients carrying them. Our data suggest that the reduction in threshold [Ca2+]ER for spontaneous Ca2+ release by CPVT mutation is explained by enhanced [Ca2+]cyt-dependent activity without requiring modulation of the [Ca2+]ER sensitivity of RYR2.
Collapse
Affiliation(s)
- Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan,Correspondence to Nagomi Kurebayashi:
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryosaku Ota
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Junji Suzuki
- Department of Physiology, University of California San Francisco, San Francisco, CA
| | - Kazunori Kanemaru
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Masamitsu Iino
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan,Fumiyoshi Yamashita:
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Wang G, Chen G, Huang X, Hu J, Yu X. Deep Learning-Based Electrocardiograph in Evaluating Radiofrequency Ablation for Rapid Arrhythmia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6491084. [PMID: 35371280 PMCID: PMC8967513 DOI: 10.1155/2022/6491084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/02/2022]
Abstract
This study is aimed at analyzing the important role of deep learning-based electrocardiograph (ECG) in the efficacy evaluation of radiofrequency ablation in the treatment of tachyarrhythmia. In this study, 158 patients with rapid arrhythmia treated by radiofrequency ablation were divided into effective treatment group (142 cases) and ineffective treatment group (16 cases). ECG examination was performed on all patients, and the indicators of ECG examination were quantified by the deep learning-based convolutional neural network model. The indicators of ECG examination of the effective treatment group and the ineffective treatment group were compared. The results showed that compared with the ineffective treatment group, the end-systolic volume (ESV), end-diastolic volume (EDV), end-systolic volume index (ESVI), and end-diastolic volume index (EDVI) of the effective treatment group were significantly decreased, and the left ventricular ejection fraction (LVEF) was significantly increased (P < 0.05). After radiofrequency ablation, the ventricular rate of patients in the effective treatment group was significantly lower than that of the ineffective treatment group at 12 h and 24 h after treatment (P < 0.05). In addition, compared with patients in the ineffective treatment group, the QT dispersion of the ECG in the effective treatment group was significantly higher (P < 0.05). The accuracy, specificity, and sensitivity of ECG in evaluating the therapeutic effect of patients with tachyarrhythmia were 86.81%, 84.29%, and 77.27%, respectively. The area under the curve was determined as 0.798 according to the receiver operating characteristic (ROC) curve of the subjects. In summary, indicators of ECG examination based on deep learning can provide auxiliary reference information for the efficacy evaluation of radiofrequency ablation in the treatment of tachyarrhythmia.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of Cardiology, Chongqing Kanghua Zhonglian Cardiovascular Hospital, 163 Haier Road, Jiangbei District, Chongqing City 400000, China
| | - Guocai Chen
- Department of Cardiology, Chongqing Kanghua Zhonglian Cardiovascular Hospital, 163 Haier Road, Jiangbei District, Chongqing City 400000, China
| | - Xueqin Huang
- Department of Cardiology, Chongqing Kanghua Zhonglian Cardiovascular Hospital, 163 Haier Road, Jiangbei District, Chongqing City 400000, China
| | - Jianbo Hu
- Department of Cardiology, Chongqing Kanghua Zhonglian Cardiovascular Hospital, 163 Haier Road, Jiangbei District, Chongqing City 400000, China
| | - Xuejun Yu
- Department of Cardiology, Chongqing Kanghua Zhonglian Cardiovascular Hospital, 163 Haier Road, Jiangbei District, Chongqing City 400000, China
| |
Collapse
|
22
|
Martínez-Barrios E, Cesar S, Cruzalegui J, Hernandez C, Arbelo E, Fiol V, Brugada J, Brugada R, Campuzano O, Sarquella-Brugada G. Clinical Genetics of Inherited Arrhythmogenic Disease in the Pediatric Population. Biomedicines 2022; 10:106. [PMID: 35052786 PMCID: PMC8773373 DOI: 10.3390/biomedicines10010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022] Open
Abstract
Sudden death is a rare event in the pediatric population but with a social shock due to its presentation as the first symptom in previously healthy children. Comprehensive autopsy in pediatric cases identify an inconclusive cause in 40-50% of cases. In such cases, a diagnosis of sudden arrhythmic death syndrome is suggested as the main potential cause of death. Molecular autopsy identifies nearly 30% of cases under 16 years of age carrying a pathogenic/potentially pathogenic alteration in genes associated with any inherited arrhythmogenic disease. In the last few years, despite the increasing rate of post-mortem genetic diagnosis, many families still remain without a conclusive genetic cause of the unexpected death. Current challenges in genetic diagnosis are the establishment of a correct genotype-phenotype association between genes and inherited arrhythmogenic disease, as well as the classification of variants of uncertain significance. In this review, we provide an update on the state of the art in the genetic diagnosis of inherited arrhythmogenic disease in the pediatric population. We focus on emerging publications on gene curation for genotype-phenotype associations, cases of genetic overlap and advances in the classification of variants of uncertain significance. Our goal is to facilitate the translation of genetic diagnosis to the clinical area, helping risk stratification, treatment and the genetic counselling of families.
Collapse
Affiliation(s)
- Estefanía Martínez-Barrios
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Sergi Cesar
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - José Cruzalegui
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Clara Hernandez
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Elena Arbelo
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Victoria Fiol
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Josep Brugada
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
| | - Oscar Campuzano
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
| | - Georgia Sarquella-Brugada
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
| |
Collapse
|
23
|
Santiago DJ, Priori SG. Cardiac ryanodine receptors: is a severe loss-of-function not so severe after all? Europace 2021; 24:494-496. [PMID: 34850886 DOI: 10.1093/europace/euab283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Demetrio Julián Santiago
- Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Silvia G Priori
- Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, 28029 Madrid, Spain.,Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|