1
|
Rabinovitch A, Braunstein D, Smolik E, Biton Y, Rabinovitch R. What is the best pulse shape for pacing purposes? Front Physiol 2025; 16:1480660. [PMID: 40190412 PMCID: PMC11968743 DOI: 10.3389/fphys.2025.1480660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Cell pacing is a fundamental procedure for generating action potentials (AP) in excitable tissues. Various pulse shapes have been proposed for this purpose, with the aim of either facilitating the achievement of the excitation threshold or minimizing energy delivery to the patient. This study seeks to identify the optimal pulse shape for each of these objectives. Methods To determine the most effective pulse forms, we employed a mathematical model simulating nonlinear tissue responses to a range of pulse shapes. Results Our results demonstrate that the rectangular pulse is optimal for reaching the excitation threshold, while the Gaussian pulse is superior in minimizing energy delivery. Other pulse shapes examined, including ramp-up, ramp-down, half-sine, and triangular (tent-like), fall between these two in terms of performance. Discussion From a clinical perspective, the appropriate pulse shape should be selected based on the specific goal. For minimizing the pulse amplitude required to cross the excitation threshold, the rectangular pulse is recommended. In contrast, if reducing energy delivery to the patient is paramount, the Gaussian pulse is the preferred choice. In other scenarios, a judicious selection can be made based on the outcomes of our model and the clinical requirements.
Collapse
Affiliation(s)
| | - Doron Braunstein
- Physics Department, Sami Shamoon College of Engineering, Beer-Sheva, Israel
| | - Ella Smolik
- Physics Department, Shamoon College of Engineering, Ashdod Campus, Ashdod, Israel
| | - Yaacov Biton
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
2
|
Yi N, Cui H, Zhang LG, Cheng H. Integration of biological systems with electronic-mechanical assemblies. Acta Biomater 2019; 95:91-111. [PMID: 31004844 PMCID: PMC6710161 DOI: 10.1016/j.actbio.2019.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Biological systems continuously interact with the surrounding environment because they are dynamically evolving. The interaction is achieved through mechanical, electrical, chemical, biological, thermal, optical, or a synergistic combination of these cues. To provide a fundamental understanding of the interaction, recent efforts that integrate biological systems with the electronic-mechanical assemblies create unique opportunities for simultaneous monitoring and eliciting the responses to the biological system. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual. In this short review, we will provide a brief overview of the recent development on the integration of the biological systems with electronic-mechanical assemblies across multiple scales, with applications ranging from healthcare monitoring to therapeutic options such as drug delivery and rehabilitation therapies. STATEMENT OF SIGNIFICANCE: An overview of the recent progress on the integration of the biological system with both electronic and mechanical assemblies is discussed. The integration creates the unique opportunity to simultaneously monitor and elicit the responses to the biological system, which provides a fundamental understanding of the interaction between the biological system and the electronic-mechanical assemblies. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual.
Collapse
Affiliation(s)
- Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Departments of Electrical and Computer Engineering, Biomedical Engineering, and Medicine, The George Washington University, Washington DC 20052, USA
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
Bussooa A, Neale S, Mercer JR. Future of Smart Cardiovascular Implants. SENSORS 2018; 18:s18072008. [PMID: 29932154 PMCID: PMC6068883 DOI: 10.3390/s18072008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/06/2018] [Accepted: 06/20/2018] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease remains the leading cause of death in Western society. Recent technological advances have opened the opportunity of developing new and innovative smart stent devices that have advanced electrical properties that can improve diagnosis and even treatment of previously intractable conditions, such as central line access failure, atherosclerosis and reporting on vascular grafts for renal dialysis. Here we review the latest advances in the field of cardiovascular medical implants, providing a broad overview of the application of their use in the context of cardiovascular disease rather than an in-depth analysis of the current state of the art. We cover their powering, communication and the challenges faced in their fabrication. We focus specifically on those devices required to maintain vascular access such as ones used to treat arterial disease, a major source of heart attacks and strokes. We look forward to advances in these technologies in the future and their implementation to improve the human condition.
Collapse
Affiliation(s)
- Anubhav Bussooa
- School of Engineering James Watt South Building, University of Glasgow, Glasgow G12 8QQ, UK.
- BHF Glasgow Cardiovascular Research Centre Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Steven Neale
- School of Engineering James Watt South Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - John R Mercer
- BHF Glasgow Cardiovascular Research Centre Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
4
|
Madhavan M, Mulpuru SK, McLeod CJ, Cha YM, Friedman PA. Advances and Future Directions in Cardiac Pacemakers: Part 2 of a 2-Part Series. J Am Coll Cardiol 2017; 69:211-235. [PMID: 28081830 DOI: 10.1016/j.jacc.2016.10.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/17/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
In the second part of this 2-part series on pacemakers, we present recent advances in pacemakers and preview future developments. Cardiac resynchronization therapy (CRT) is a potent treatment for heart failure in the setting of ventricular dyssynchrony. Successful CRT using coronary venous pacing depends on appropriate patient selection, lead implantation, and device programming. Despite optimization of these factors, nonresponse to CRT may occur in one-third of patients, which has led to a search for alternative techniques such as multisite pacing, His bundle pacing, and endocardial left ventricular pacing. A paradigm shift in pacemaker technology has been the development of leadless pacemaker devices, and on the horizon is the development of batteryless devices. Remote monitoring has ushered in an era of greater safety and the ability to respond to device malfunction in a timely fashion, improving outcomes.
Collapse
Affiliation(s)
- Malini Madhavan
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Siva K Mulpuru
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | | | - Yong-Mei Cha
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Paul A Friedman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
5
|
Seriwala HM, Khan MS, Munir MB, Riaz IB, Riaz H, Saba S, Voigt AH. Leadless pacemakers: A new era in cardiac pacing. J Cardiol 2015; 67:1-5. [PMID: 26458791 DOI: 10.1016/j.jjcc.2015.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 11/30/2022]
Abstract
Cardiac pacemakers are a critical management option for patients with rhythm disorders. Current efforts to develop leadless pacemakers have two primary goals: to reduce lead-associated post-procedural morbidity and to avoid the surgical scar associated with placement. After extensive studies on animal models and technological advancements, these devices are currently under investigation for human use. Herein, we review the evidence from animal studies and the technological advancements that have ushered in the era of use in humans. We also discuss different leadless pacemakers currently under investigation, along with limitations and future developments of this innovative concept.
Collapse
Affiliation(s)
| | | | - Muhammad Bilal Munir
- Cardiovascular Electrophysiology, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Irbaz Bin Riaz
- Department of Internal Medicine, University of Arizona, Tucson, AZ, USA
| | - Haris Riaz
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Samir Saba
- Cardiovascular Electrophysiology, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Andrew H Voigt
- Cardiovascular Electrophysiology, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Miller MA, Neuzil P, Dukkipati SR, Reddy VY. Leadless Cardiac Pacemakers. J Am Coll Cardiol 2015; 66:1179-89. [PMID: 26337997 DOI: 10.1016/j.jacc.2015.06.1081] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 06/10/2015] [Indexed: 11/19/2022]
Affiliation(s)
- Marc A Miller
- Helmsley Electrophysiology Center, Icahn School of Medicine, New York, New York
| | | | | | - Vivek Y Reddy
- Helmsley Electrophysiology Center, Icahn School of Medicine, New York, New York.
| |
Collapse
|
7
|
|
8
|
Affiliation(s)
- Chu-Pak Lau
- Cardiology Division, Department of Medicine, Queen Mary Hospital (C.-P.L., C.-W.S., H.-F.T.) and Research Center of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine (C.-W.S., H.-F.T.), University of Hong Kong, Hong Kong SAR, China
| | | | | |
Collapse
|