1
|
Colman MA, Varela M, MacLeod RS, Hancox JC, Aslanidi OV. Interactions between calcium-induced arrhythmia triggers and the electrophysiological-anatomical substrate underlying the induction of atrial fibrillation. J Physiol 2024; 602:835-853. [PMID: 38372694 DOI: 10.1113/jp285740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and is sustained by spontaneous focal excitations and re-entry. Spontaneous electrical firing in the pulmonary vein (PV) sleeves is implicated in AF generation. The aim of this simulation study was to identify the mechanisms determining the localisation of AF triggers in the PVs and their contribution to the genesis of AF. A novel biophysical model of the canine atria was used that integrates stochastic, spontaneous subcellular Ca2+ release events (SCRE) with regional electrophysiological heterogeneity in ionic properties and a detailed three-dimensional model of atrial anatomy, microarchitecture and patchy fibrosis. Simulations highlighted the importance of the smaller inward rectifier potassium current (IK1 ) in PV cells compared to the surrounding atria, which enabled SCRE more readily to result in delayed-afterdepolarisations that induced triggered activity. There was a leftward shift in the dependence of the probability of triggered activity on sarcoplasmic reticulum Ca2+ load. This feature was accentuated in 3D tissue compared to single cells (Δ half-maximal [Ca2+ ]SR = 58 μM vs. 22 μM). In 3D atria incorporating electrical heterogeneity, excitations preferentially emerged from the PV region. These triggered focal excitations resulted in transient re-entry in the left atrium. Addition of fibrotic patches promoted localised emergence of focal excitations and wavebreaks that had a more substantial impact on generating AF-like patterns than the PVs. Thus, a reduced IK1 , less negative resting membrane potential, and fibrosis-induced changes of the electrotonic load all contribute to the emergence of complex excitation patterns from spontaneous focal triggers. KEY POINTS: Focal excitations in the atria are most commonly associated with the pulmonary veins, but the mechanisms for this localisation are yet to be elucidated. We applied a multi-scale computational modelling approach to elucidate the mechanisms underlying such localisations. Myocytes in the pulmonary vein region of the atria have a less negative resting membrane potential and reduced time-independent potassium current; we demonstrate that both of these factors promote triggered activity in single cells and tissues. The less negative resting membrane potential also contributes to heterogeneous inactivation of the fast sodium current, which can enable re-entrant-like excitation patterns to emerge without traditional conduction block.
Collapse
Affiliation(s)
- Michael A Colman
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Marta Varela
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, UK
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Rob S MacLeod
- The Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Jules C Hancox
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Oleg V Aslanidi
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Remme CA, Heijman J, Gomez AM, Zaza A, Odening KE. 25 years of basic and translational science in EP Europace: novel insights into arrhythmia mechanisms and therapeutic strategies. Europace 2023; 25:euad210. [PMID: 37622575 PMCID: PMC10450791 DOI: 10.1093/europace/euad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 08/26/2023] Open
Abstract
In the last 25 years, EP Europace has published more than 300 basic and translational science articles covering different arrhythmia types (ranging from atrial fibrillation to ventricular tachyarrhythmias), different diseases predisposing to arrhythmia formation (such as genetic arrhythmia disorders and heart failure), and different interventional and pharmacological anti-arrhythmic treatment strategies (ranging from pacing and defibrillation to different ablation approaches and novel drug-therapies). These studies have been conducted in cellular models, small and large animal models, and in the last couple of years increasingly in silico using computational approaches. In sum, these articles have contributed substantially to our pathophysiological understanding of arrhythmia mechanisms and treatment options; many of which have made their way into clinical applications. This review discusses a representative selection of EP Europace manuscripts covering the topics of pacing and ablation, atrial fibrillation, heart failure and pro-arrhythmic ventricular remodelling, ion channel (dys)function and pharmacology, inherited arrhythmia syndromes, and arrhythmogenic cardiomyopathies, highlighting some of the advances of the past 25 years. Given the increasingly recognized complexity and multidisciplinary nature of arrhythmogenesis and continued technological developments, basic and translational electrophysiological research is key advancing the field. EP Europace aims to further increase its contribution to the discovery of arrhythmia mechanisms and the implementation of mechanism-based precision therapy approaches in arrhythmia management.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC location University of Amsterdam, Heart Centre, Academic Medical Center, Room K2-104.2, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ana M Gomez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, 91400 Orsay, France
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, Inselspital University Hospital Bern, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
3
|
Jæger KH, Edwards AG, Giles WR, Tveito A. Arrhythmogenic influence of mutations in a myocyte-based computational model of the pulmonary vein sleeve. Sci Rep 2022; 12:7040. [PMID: 35487957 PMCID: PMC9054808 DOI: 10.1038/s41598-022-11110-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
In the heart, electrophysiological dysregulation arises from defects at many biological levels (from point mutations in ion channel proteins to gross structural abnormalities). These defects disrupt the normal pattern of electrical activation, producing ectopic activity and reentrant arrhythmia. To interrogate mechanisms that link these primary biological defects to macroscopic electrophysiologic dysregulation most prior computational studies have utilized either (i) detailed models of myocyte ion channel dynamics at limited spatial scales, or (ii) homogenized models of action potential conduction that reproduce arrhythmic activity at tissue and organ levels. Here we apply our recent model (EMI), which integrates electrical activation and propagation across these scales, to study human atrial arrhythmias originating in the pulmonary vein (PV) sleeves. These small structures initiate most supraventricular arrhythmias and include pronounced myocyte-to-myocyte heterogeneities in ion channel expression and intercellular coupling. To test EMI's cell-based architecture in this physiological context we asked whether ion channel mutations known to underlie atrial fibrillation are capable of initiating arrhythmogenic behavior via increased excitability or reentry in a schematic PV sleeve geometry. Our results illustrate that EMI's improved spatial resolution can directly interrogate how electrophysiological changes at the individual myocyte level manifest in tissue and as arrhythmia in the PV sleeve.
Collapse
Affiliation(s)
| | | | - Wayne R Giles
- Simula Research Laboratory, Oslo, Norway.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | |
Collapse
|
4
|
Remodeling of Cardiac Gap Junctional Cell-Cell Coupling. Cells 2021; 10:cells10092422. [PMID: 34572071 PMCID: PMC8465208 DOI: 10.3390/cells10092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
The heart works as a functional syncytium, which is realized via cell-cell coupling maintained by gap junction channels. These channels connect two adjacent cells, so that action potentials can be transferred. Each cell contributes a hexameric hemichannel (=connexon), formed by protein subuntis named connexins. These hemichannels dock to each other and form the gap junction channel. This channel works as a low ohmic resistor also allowing the passage of small molecules up to 1000 Dalton. Connexins are a protein family comprising of 21 isoforms in humans. In the heart, the main isoforms are Cx43 (the 43 kDa connexin; ubiquitous), Cx40 (mostly in atrium and specific conduction system), and Cx45 (in early developmental states, in the conduction system, and between fibroblasts and cardiomyocytes). These gap junction channels are mainly located at the polar region of the cardiomyocytes and thus contribute to the anisotropic pattern of cardiac electrical conductivity. While in the beginning the cell–cell coupling was considered to be static, similar to an anatomically defined structure, we have learned in the past decades that gap junctions are also subject to cardiac remodeling processes in cardiac disease such as atrial fibrillation, myocardial infarction, or cardiomyopathy. The underlying remodeling processes include the modulation of connexin expression by e.g., angiotensin, endothelin, or catecholamines, as well as the modulation of the localization of the gap junctions e.g., by the direction and strength of local mechanical forces. A reduction in connexin expression can result in a reduced conduction velocity. The alteration of gap junction localization has been shown to result in altered pathways of conduction and altered anisotropy. In particular, it can produce or contribute to non-uniformity of anisotropy, and thereby can pre-form an arrhythmogenic substrate. Interestingly, these remodeling processes seem to be susceptible to certain pharmacological treatment.
Collapse
|
5
|
ZHU HONGLEI, JIN LIAN, ZHANG JIAYU, WU XIAOMEI. OPTIMIZATION OF RABBIT VENTRICULAR ELECTROPHYSIOLOGICAL MODEL AND SIMULATION OF SYNTHETIC ELECTROCARDIOGRAM. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aimed to use computer simulation method to study the mechanism of cardiac electrical activities. We optimized an electrophysiological rabbit ventricular model, including myocardial segmentation, heterogeneity and a realistic His-Purkinje network. Simulations of normal state, several types of ventricular premature contractions (VPC), conduction system pacing and right ventricular apical pacing were performed and the detailed cardiac electrical activities were studied from cell level to electrocardiogram (ECG) level. A detailed multiscale optimized ventricular model was obtained. The model effectively simulated various types of electrical activities. The synthetic ECG results were very similar to the real clinical ECG. The duration of QRS of typical VPC is 58[Formula: see text]ms, 71% longer than that of a normal-state synthetic QRS and the amplitude of the QRS is 35% larger, while the QRS duration and amplitude of the real clinical ECG of typical VPC are 69% longer and 36% larger than those of the real normal QRS. The duration of QRS of ventricular fusion beat is 31[Formula: see text]ms, 91% of that of a normal-state synthetic QRS and the amplitude of the QRS is 36% larger, while the QRS duration of the real clinical ECG of a ventricular fusion beat is 92% of the real normal QRS and the amplitude is 37% larger. Therefore, the results indicate that this model is effective and reliable in studying the detailed process of cardiac excitation and pacing.
Collapse
Affiliation(s)
- HONGLEI ZHU
- Department of Electronic Engineering, Fudan University, Shanghai 200433, P. R. China
| | - LIAN JIN
- Department of Electronic Engineering, Fudan University, Shanghai 200433, P. R. China
| | - JIAYU ZHANG
- Department of Electronic Engineering, Fudan University, Shanghai 200433, P. R. China
| | - XIAOMEI WU
- Department of Electronic Engineering, Fudan University, Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Research Center of Assistive Devices, Shanghai, P. R. China
| |
Collapse
|
6
|
Bai J, Lo A, Gladding PA, Stiles MK, Fedorov VV, Zhao J. In silico investigation of the mechanisms underlying atrial fibrillation due to impaired Pitx2. PLoS Comput Biol 2020; 16:e1007678. [PMID: 32097431 PMCID: PMC7059955 DOI: 10.1371/journal.pcbi.1007678] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/06/2020] [Accepted: 01/22/2020] [Indexed: 01/04/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is a major cause of stroke and morbidity. Recent genome-wide association studies have shown that paired-like homeodomain transcription factor 2 (Pitx2) to be strongly associated with AF. However, the mechanisms underlying Pitx2 modulated arrhythmogenesis and variable effectiveness of antiarrhythmic drugs (AADs) in patients in the presence or absence of impaired Pitx2 expression remain unclear. We have developed multi-scale computer models, ranging from a single cell to tissue level, to mimic control and Pitx2-knockout atria by incorporating recent experimental data on Pitx2-induced electrical and structural remodeling in humans, as well as the effects of AADs. The key findings of this study are twofold. We have demonstrated that shortened action potential duration, slow conduction and triggered activity occur due to electrical and structural remodelling under Pitx2 deficiency conditions. Notably, the elevated function of calcium transport ATPase increases sarcoplasmic reticulum Ca2+ concentration, thereby enhancing susceptibility to triggered activity. Furthermore, heterogeneity is further elevated due to Pitx2 deficiency: 1) Electrical heterogeneity between left and right atria increases; and 2) Increased fibrosis and decreased cell-cell coupling due to structural remodelling slow electrical propagation and provide obstacles to attract re-entry, facilitating the initiation of re-entrant circuits. Secondly, our study suggests that flecainide has antiarrhythmic effects on AF due to impaired Pitx2 by preventing spontaneous calcium release and increasing wavelength. Furthermore, our study suggests that Na+ channel effects alone are insufficient to explain the efficacy of flecainide. Our study may provide the mechanisms underlying Pitx2-induced AF and possible explanation behind the AAD effects of flecainide in patients with Pitx2 deficiency.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Patrick A. Gladding
- Department of Cardiology, Waitemata District Health Board, Auckland, New Zealand
| | - Martin K. Stiles
- Waikato Clinical School, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Vadim V. Fedorov
- Department of Physiology & Cell Biology and Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Investigation of the Role of Myocyte Orientations in Cardiac Arrhythmia Using Image-Based Models. Biophys J 2019; 117:2396-2408. [PMID: 31679763 PMCID: PMC6990390 DOI: 10.1016/j.bpj.2019.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 11/24/2022] Open
Abstract
Cardiac electrical excitation-propagation is influenced by myocyte orientations (cellular organization). Quantitatively understanding this relationship presents a significant research challenge, especially during arrhythmias in which excitation patterns become complex. Tissue-scale simulations of cardiac electrophysiology, incorporating both dynamic action potential behavior and image-based myocardial architecture, provide an approach to investigate three-dimensional (3D) propagation of excitation waves in the heart. In this study, we aimed to assess the importance of natural variation in myocyte orientations on cardiac arrhythmogenesis using 3D tissue electrophysiology simulations. Three anatomical models (i.e., describing myocyte orientations) of healthy rat ventricles—obtained using diffusion tensor imaging at 100 μm resolution—were registered to a single biventricular geometry (i.e., a single cardiac shape), in which the myocyte orientations could be represented by each of the diffusion tensor imaging data sets or by an idealized rule-based description. The Fenton-Karma cellular excitation model was modified to reproduce rat ventricular action potential duration restitution to create reaction-diffusion cardiac electrophysiology models. Over 250 3D simulations were performed to investigate the effects of myocyte orientations on the following: 1) ventricular activation, 2) location-dependent arrhythmia induction via rapid pacing, and 3) dynamics of re-entry averaged over multiple episodes. It was shown that 1) myocyte orientation differences manifested themselves in local activation times, but the influence on total activation time was small; 2) differences in myocyte orientations could critically affect the inducibility and persistence of arrhythmias for specific stimulus-location/cycle-length combinations; and 3) myocyte orientations alone could be an important determinant of scroll wave break, although no significant differences were observed in averaged arrhythmia dynamics between the four myocyte orientation scenarios considered. Our results show that myocyte orientations are an important determinant of arrhythmia inducibility, persistence, and scroll wave break. These findings suggest that where specificity is desired (for example, when predicting location-dependent, patient-specific arrhythmia inducibility), subject-specific myocyte orientations may be important.
Collapse
|
8
|
Sánchez J, Gomez JF, Martinez-Mateu L, Romero L, Saiz J, Trenor B. Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation. Front Physiol 2019; 10:847. [PMID: 31333496 PMCID: PMC6620707 DOI: 10.3389/fphys.2019.00847] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Atrial fibrillation (AF), the most common cardiac arrhythmia, is characterized by alteration of the action potential (AP) propagation. Under persistent AF, myocytes undergo electrophysiological and structural remodeling, which involves fibroblast proliferation and differentiation, modifying the substrate for AP propagation. The aim of this study was to analyze the effects on the AP of fibroblast-myocyte coupling during AF and its propagation in different regions of the atria. Methods: Isolated myocytes were coupled to different numbers of fibroblasts using the established AP models and tissue simulations were performed by randomly distributing fibroblasts. Fibroblast formulations were updated to match recent experimental data. Major ion current conductances of the myocyte model were modified to simulate AP heterogeneity in four different atrial regions (right atrium posterior wall, crista terminalis, left atrium posterior wall, and pulmonary vein) according to experimental and computational studies. Results: The results of the coupled myocyte-fibroblast simulations suggest that a more depolarized membrane potential and higher fibroblast membrane capacitance have a greater impact on AP duration and myocyte maximum depolarization velocity. The number of coupled fibroblasts and the stimulation frequency are determining factors in altering myocyte AP. Strand simulations show that conduction velocity tends to homogenize in all regions, while the left atrium is more likely to be affected by fibroblast and AP propagation block is more likely to occur. The pulmonary vein is the most affected region, even at low fibroblast densities. In 2D sheets with randomly placed fibroblasts, wavebreaks are observed in the low density (10%) central fibrotic zone and when fibroblast density increases (40%) propagation in the fibrotic region is practically blocked. At densities of 10 and 20% the width of the vulnerable window increases with respect to control but is decreased at 40%. Conclusion: Myocyte-fibroblast coupling characteristics heterogeneously affect AP propagation and features in the different atrial zones, and myocytes from the left atria are more sensitive to fibroblast coupling.
Collapse
Affiliation(s)
- Jorge Sánchez
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Juan F Gomez
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Laura Martinez-Mateu
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Lucia Romero
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Javier Saiz
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
9
|
Filos D, Tachmatzidis D, Maglaveras N, Vassilikos V, Chouvarda I. Understanding the Beat-to-Beat Variations of P-Waves Morphologies in AF Patients During Sinus Rhythm: A Scoping Review of the Atrial Simulation Studies. Front Physiol 2019; 10:742. [PMID: 31275161 PMCID: PMC6591370 DOI: 10.3389/fphys.2019.00742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
The remarkable advances in high-performance computing and the resulting increase of the computational power have the potential to leverage computational cardiology toward improving our understanding of the pathophysiological mechanisms of arrhythmias, such as Atrial Fibrillation (AF). In AF, a complex interaction between various triggers and the atrial substrate is considered to be the leading cause of AF initiation and perpetuation. In electrocardiography (ECG), P-wave is supposed to reflect atrial depolarization. It has been found that even during sinus rhythm (SR), multiple P-wave morphologies are present in AF patients with a history of AF, suggesting a higher dispersion of the conduction route in this population. In this scoping review, we focused on the mechanisms which modify the electrical substrate of the atria in AF patients, while investigating the existence of computational models that simulate the propagation of the electrical signal through different routes. The adopted review methodology is based on a structured analytical framework which includes the extraction of the keywords based on an initial limited bibliographic search, the extensive literature search and finally the identification of relevant articles based on the reference list of the studies. The leading mechanisms identified were classified according to their scale, spanning from mechanisms in the cell, tissue or organ level, and the produced outputs. The computational modeling approaches for each of the factors that influence the initiation and the perpetuation of AF are presented here to provide a clear overview of the existing literature. Several levels of categorization were adopted while the studies which aim to translate their findings to ECG phenotyping are highlighted. The results denote the availability of multiple models, which are appropriate under specific conditions. However, the consideration of complex scenarios taking into account multiple spatiotemporal scales, personalization of electrophysiological and anatomical models and the reproducibility in terms of ECG phenotyping has only partially been tackled so far.
Collapse
Affiliation(s)
- Dimitrios Filos
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nicos Maglaveras
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL, United States
| | - Vassilios Vassilikos
- 3rd Cardiology Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Chouvarda
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Yoo S, Aistrup G, Shiferaw Y, Ng J, Mohler PJ, Hund TJ, Waugh T, Browne S, Gussak G, Gilani M, Knight BP, Passman R, Goldberger JJ, Wasserstrom JA, Arora R. Oxidative stress creates a unique, CaMKII-mediated substrate for atrial fibrillation in heart failure. JCI Insight 2018; 3:120728. [PMID: 30385719 DOI: 10.1172/jci.insight.120728] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/27/2018] [Indexed: 12/31/2022] Open
Abstract
The precise mechanisms by which oxidative stress (OS) causes atrial fibrillation (AF) are not known. Since AF frequently originates in the posterior left atrium (PLA), we hypothesized that OS, via calmodulin-dependent protein kinase II (CaMKII) signaling, creates a fertile substrate in the PLA for triggered activity and reentry. In a canine heart failure (HF) model, OS generation and oxidized-CaMKII-induced (Ox-CaMKII-induced) RyR2 and Nav1.5 signaling were increased preferentially in the PLA (compared with left atrial appendage). Triggered Ca2+ waves (TCWs) in HF PLA myocytes were particularly sensitive to acute ROS inhibition. Computational modeling confirmed a direct relationship between OS/CaMKII signaling and TCW generation. CaMKII phosphorylated Nav1.5 (CaMKII-p-Nav1.5 [S571]) was located preferentially at the intercalated disc (ID), being nearly absent at the lateral membrane. Furthermore, a decrease in ankyrin-G (AnkG) in HF led to patchy dropout of CaMKII-p-Nav1.5 at the ID, causing its distribution to become spatially heterogeneous; this corresponded to preferential slowing and inhomogeneity of conduction noted in the HF PLA. Computational modeling illustrated how conduction slowing (e.g., due to increase in CaMKII-p-Nav1.5) interacts with fibrosis to cause reentry in the PLA. We conclude that OS via CaMKII leads to substrate for triggered activity and reentry in HF PLA by mechanisms independent of but complementary to fibrosis.
Collapse
Affiliation(s)
- Shin Yoo
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gary Aistrup
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yohannes Shiferaw
- Department of Physics, California State University, Northridge, California, USA
| | - Jason Ng
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Trent Waugh
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Suzanne Browne
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Georg Gussak
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mehul Gilani
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley P Knight
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rod Passman
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeffrey J Goldberger
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - J Andrew Wasserstrom
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rishi Arora
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
11
|
Vagos M, van Herck IGM, Sundnes J, Arevalo HJ, Edwards AG, Koivumäki JT. Computational Modeling of Electrophysiology and Pharmacotherapy of Atrial Fibrillation: Recent Advances and Future Challenges. Front Physiol 2018; 9:1221. [PMID: 30233399 PMCID: PMC6131668 DOI: 10.3389/fphys.2018.01221] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
The pathophysiology of atrial fibrillation (AF) is broad, with components related to the unique and diverse cellular electrophysiology of atrial myocytes, structural complexity, and heterogeneity of atrial tissue, and pronounced disease-associated remodeling of both cells and tissue. A major challenge for rational design of AF therapy, particularly pharmacotherapy, is integrating these multiscale characteristics to identify approaches that are both efficacious and independent of ventricular contraindications. Computational modeling has long been touted as a basis for achieving such integration in a rapid, economical, and scalable manner. However, computational pipelines for AF-specific drug screening are in their infancy, and while the field is progressing quite rapidly, major challenges remain before computational approaches can fill the role of workhorse in rational design of AF pharmacotherapies. In this review, we briefly detail the unique aspects of AF pathophysiology that determine requirements for compounds targeting AF rhythm control, with emphasis on delimiting mechanisms that promote AF triggers from those providing substrate or supporting reentry. We then describe modeling approaches that have been used to assess the outcomes of drugs acting on established AF targets, as well as on novel promising targets including the ultra-rapidly activating delayed rectifier potassium current, the acetylcholine-activated potassium current and the small conductance calcium-activated potassium channel. Finally, we describe how heterogeneity and variability are being incorporated into AF-specific models, and how these approaches are yielding novel insights into the basic physiology of disease, as well as aiding identification of the important molecular players in the complex AF etiology.
Collapse
Affiliation(s)
- Márcia Vagos
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ilsbeth G. M. van Herck
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Joakim Sundnes
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Hermenegild J. Arevalo
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Andrew G. Edwards
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Jussi T. Koivumäki
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Roney CH, Bayer JD, Cochet H, Meo M, Dubois R, Jaïs P, Vigmond EJ. Variability in pulmonary vein electrophysiology and fibrosis determines arrhythmia susceptibility and dynamics. PLoS Comput Biol 2018; 14:e1006166. [PMID: 29795549 PMCID: PMC5997352 DOI: 10.1371/journal.pcbi.1006166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/12/2018] [Accepted: 04/30/2018] [Indexed: 11/28/2022] Open
Abstract
Success rates for catheter ablation of persistent atrial fibrillation patients are currently low; however, there is a subset of patients for whom electrical isolation of the pulmonary veins alone is a successful treatment strategy. It is difficult to identify these patients because there are a multitude of factors affecting arrhythmia susceptibility and maintenance, and the individual contributions of these factors are difficult to determine clinically. We hypothesised that the combination of pulmonary vein (PV) electrophysiology and atrial body fibrosis determine driver location and effectiveness of pulmonary vein isolation (PVI). We used bilayer biatrial computer models based on patient geometries to investigate the effects of PV properties and atrial fibrosis on arrhythmia inducibility, maintenance mechanisms, and the outcome of PVI. Short PV action potential duration (APD) increased arrhythmia susceptibility, while longer PV APD was found to be protective. Arrhythmia inducibility increased with slower conduction velocity (CV) at the LA/PV junction, but not for cases with homogeneous CV changes or slower CV at the distal PV. Phase singularity (PS) density in the PV region for cases with PV fibrosis was increased. Arrhythmia dynamics depend on both PV properties and fibrosis distribution, varying from meandering rotors to PV reentry (in cases with baseline or long APD), to stable rotors at regions of high fibrosis density. Measurement of fibrosis and PV properties may indicate patient specific susceptibility to AF initiation and maintenance. PV PS density before PVI was higher for cases in which AF terminated or converted to a macroreentry; thus, high PV PS density may indicate likelihood of PVI success. Atrial fibrillation is the most commonly encountered cardiac arrhythmia, affecting a significant portion of the population. Currently, ablation is the most effective treatment but success rates are less than optimal, being 70% one-year post-treatment. There is a large effort to find better ablation strategies to permanently cure the condition. Pulmonary vein isolation by ablation is more or less the standard of care, but many questions remain since pulmonary vein ectopy by itself does not explain all of the clinical successes or failures. We used computer simulations to investigate how electrophysiological properties of the pulmonary veins can affect rotor formation and maintenance in patients suffering from atrial fibrillation. We used complex, biophysical representations of cellular electrophysiology in highly detailed geometries constructed from patient scans. We heterogeneously varied electrophysiological and structural properties to see their effects on rotor initiation and maintenance. Our study suggests a metric for indicating the likelihood of success of pulmonary vein isolation. Thus either measuring this clinically, or running patient-specific simulations to estimate this metric may suggest whether ablation in addition to pulmonary vein isolation should be performed. Our study provides motivation for a retrospective clinical study or experimental study into this metric.
Collapse
Affiliation(s)
- Caroline H. Roney
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| | - Jason D. Bayer
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Univ. Bordeaux, IMB UMR 5251, CNRS, F-33400 Talence, France
| | - Hubert Cochet
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Hôpital Cardiologique du Haut-L’évêque, Université de Bordeaux, LIRYC Institute: IHU LIRYC ANR-10-IAHU-04 and Equipex MUSIC ANR-11-EQPX-0030, Bordeaux, France
| | - Marianna Meo
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
| | - Rémi Dubois
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
| | - Pierre Jaïs
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Hôpital Cardiologique du Haut-L’évêque, Université de Bordeaux, LIRYC Institute: IHU LIRYC ANR-10-IAHU-04 and Equipex MUSIC ANR-11-EQPX-0030, Bordeaux, France
| | - Edward J. Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Univ. Bordeaux, IMB UMR 5251, CNRS, F-33400 Talence, France
- * E-mail:
| |
Collapse
|
13
|
Atrial arrhythmogenicity of KCNJ2 mutations in short QT syndrome: Insights from virtual human atria. PLoS Comput Biol 2017; 13:e1005593. [PMID: 28609477 PMCID: PMC5487071 DOI: 10.1371/journal.pcbi.1005593] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/27/2017] [Accepted: 05/25/2017] [Indexed: 12/17/2022] Open
Abstract
Gain-of-function mutations in KCNJ2-encoded Kir2.1 channels underlie variant 3 (SQT3) of the short QT syndrome, which is associated with atrial fibrillation (AF). Using biophysically-detailed human atria computer models, this study investigated the mechanistic link between SQT3 mutations and atrial arrhythmogenesis, and potential ion channel targets for treatment of SQT3. A contemporary model of the human atrial action potential (AP) was modified to recapitulate functional changes in IK1 due to heterozygous and homozygous forms of the D172N and E299V Kir2.1 mutations. Wild-type (WT) and mutant formulations were incorporated into multi-scale homogeneous and heterogeneous tissue models. Effects of mutations on AP duration (APD), conduction velocity (CV), effective refractory period (ERP), tissue excitation threshold and their rate-dependence, as well as the wavelength of re-entry (WL) were quantified. The D172N and E299V Kir2.1 mutations produced distinct effects on IK1 and APD shortening. Both mutations decreased WL for re-entry through a reduction in ERP and CV. Stability of re-entrant excitation waves in 2D and 3D tissue models was mediated by changes to tissue excitability and dispersion of APD in mutation conditions. Combined block of IK1 and IKr was effective in terminating re-entry associated with heterozygous D172N conditions, whereas IKr block alone may be a safer alternative for the E299V mutation. Combined inhibition of IKr and IKur produced a synergistic anti-arrhythmic effect in both forms of SQT3. In conclusion, this study provides mechanistic insights into atrial proarrhythmia with SQT3 Kir2.1 mutations and highlights possible pharmacological strategies for management of SQT3-linked AF. Atrial fibrillation (AF) is the most common cardiac arrhythmia, and is characterised by complex and irregular electrical activation of the upper chambers of the heart. One rare, genetic condition associated with increased risk of AF is the short QT syndrome (SQTS), which is caused by mutations in genes involved in normal electrical function of the heart. Underlying mechanisms by which SQTS-related gene mutations facilitate development of arrhythmias in the human atria are not well understood. In this study, sophisticated computer models representing ‘virtual’ human atria, incorporating detailed electrophysiological data at the ‘ion channel’ protein level into both idealised and realistic multi-scale tissue geometries, were used to dissect mechanisms by which two mutations in the KCNJ2 gene responsible for SQTS variant 3 (SQT3) promote initiation and sustenance of arrhythmias. It was found that the D172N and E299V mutations to KCNJ2 accelerated the repolarisation process at the cellular level through distinct mechanisms. This, along with the way the mutations affected heterogeneity in electrical behaviour at the organ level, mediated stability of arrhythmias and response to simulated ion channel block. This study improves understanding of mechanisms underlying increased AF risk associated with D172N and E299V KCNJ2 mutations, and outlines potential therapeutic strategies.
Collapse
|
14
|
Colman MA, Ni H, Liang B, Schmitt N, Zhang H. In silico assessment of genetic variation in KCNA5 reveals multiple mechanisms of human atrial arrhythmogenesis. PLoS Comput Biol 2017; 13:e1005587. [PMID: 28622331 PMCID: PMC5493429 DOI: 10.1371/journal.pcbi.1005587] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/30/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022] Open
Abstract
A recent experimental study investigating patients with lone atrial fibrillation identified six novel mutations in the KCNA5 gene. The mutants exhibited both gain- and loss-of-function of the atrial specific ultra-rapid delayed rectifier K+ current, IKur. The aim of this study is to elucidate and quantify the functional impact of these KCNA5 mutations on atrial electrical activity. A multi-scale model of the human atria was updated to incorporate detailed experimental data on IKur from both wild-type and mutants. The effects of the mutations on human atrial action potential and rate dependence were investigated at the cellular level. In tissue, we assessed the effects of the mutations on the vulnerability to unidirectional conduction patterns and dynamics of re-entrant excitation waves. Gain-of-function mutations shortened the action potential duration in single cells, and stabilised and accelerated re-entrant excitation in tissue. Loss-of-function mutations had heterogeneous effects on action potential duration and promoted early-after-depolarisations following beta-adrenergic stimulation. In the tissue model, loss-of-function mutations facilitated breakdown of excitation waves at more physiological excitation rates than the wild-type, and the generation of early-after-depolarisations promoted unidirectional patterns of excitation. Gain- and loss-of-function IKur mutations produced multiple mechanisms of atrial arrhythmogenesis, with significant differences between the two groups of mutations. This study provides new insights into understanding the mechanisms by which mutant IKur contributes to atrial arrhythmias. In addition, as IKur is an atrial-specific channel and a number of IKur-selective blockers have been developed as anti-AF agents, this study also helps to understand some contradictory results on both pro- and anti-arrhythmic effects of blocking IKur.
Collapse
Affiliation(s)
- Michael A. Colman
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Haibo Ni
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Bo Liang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole Schmitt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
15
|
Varela M, Colman MA, Hancox JC, Aslanidi OV. Atrial Heterogeneity Generates Re-entrant Substrate during Atrial Fibrillation and Anti-arrhythmic Drug Action: Mechanistic Insights from Canine Atrial Models. PLoS Comput Biol 2016; 12:e1005245. [PMID: 27984585 PMCID: PMC5161306 DOI: 10.1371/journal.pcbi.1005245] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/12/2016] [Indexed: 12/31/2022] Open
Abstract
Anti-arrhythmic drug therapy is a frontline treatment for atrial fibrillation (AF), but its success rates are highly variable. This is due to incomplete understanding of the mechanisms of action of specific drugs on the atrial substrate at different stages of AF progression. We aimed to elucidate the role of cellular, tissue and organ level atrial heterogeneities in the generation of a re-entrant substrate during AF progression, and their modulation by the acute action of selected anti-arrhythmic drugs. To explore the complex cell-to-organ mechanisms, a detailed biophysical models of the entire 3D canine atria was developed. The model incorporated atrial geometry and fibre orientation from high-resolution micro-computed tomography, region-specific atrial cell electrophysiology and the effects of progressive AF-induced remodelling. The actions of multi-channel class III anti-arrhythmic agents vernakalant and amiodarone were introduced in the model by inhibiting appropriate ionic channel currents according to experimentally reported concentration-response relationships. AF was initiated by applied ectopic pacing in the pulmonary veins, which led to the generation of localized sustained re-entrant waves (rotors), followed by progressive wave breakdown and rotor multiplication in both atria. The simulated AF scenarios were in agreement with observations in canine models and patients. The 3D atrial simulations revealed that a re-entrant substrate was typically provided by tissue regions of high heterogeneity of action potential duration (APD). Amiodarone increased atrial APD and reduced APD heterogeneity and was more effective in terminating AF than vernakalant, which increased both APD and APD dispersion. In summary, the initiation and sustenance of rotors in AF is linked to atrial APD heterogeneity and APD reduction due to progressive remodelling. Our results suggest that anti-arrhythmic strategies that increase atrial APD without increasing its dispersion are effective in terminating AF. The mechanisms behind the most common arrhythmia, atrial fibrillation (AF), remain unclear and anti-arrhythmic drug therapy is often ineffective. In this paper, we develop and apply a novel comprehensive 3D model of canine atria to investigate the role of atrial heterogeneity in the mechanisms of AF and anti-arrhythmic drug action. We find that regions of high heterogeneity of action potential duration (APD) throughout the atria typically provide substrate for arrhythmogenic re-entrant waves during both AF initiation and progression. These mechanistic insights are directly linked with the efficacy of two clinically used class III anti-arrhythmic drugs: amiodarone is more effective at terminating AF than vernakalant, because it leads to an increase in atrial APD without increasing its dispersion. Our computational results are consistent with clinical observations and can help explain the superior efficacy of amiodarone in the clinical treatment of AF at late stages. This framework can easily be extended to investigate the action of other anti-arrhythmic drugs and translated to the human atria. By incorporating patient-specific anatomical and electrophysiological information, and after undergoing careful validation, the proposed in silico approach can become a useful tool to evaluate and potentially guide anti-arrhythmic therapy in the clinic.
Collapse
Affiliation(s)
- Marta Varela
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| | - Michael A. Colman
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Oleg V. Aslanidi
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Morgan R, Colman MA, Chubb H, Seemann G, Aslanidi OV. Slow Conduction in the Border Zones of Patchy Fibrosis Stabilizes the Drivers for Atrial Fibrillation: Insights from Multi-Scale Human Atrial Modeling. Front Physiol 2016; 7:474. [PMID: 27826248 PMCID: PMC5079097 DOI: 10.3389/fphys.2016.00474] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/03/2016] [Indexed: 01/12/2023] Open
Abstract
Introduction: The genesis of atrial fibrillation (AF) and success of AF ablation therapy have been strongly linked with atrial fibrosis. Increasing evidence suggests that patient-specific distributions of fibrosis may determine the locations of electrical drivers (rotors) sustaining AF, but the underlying mechanisms are incompletely understood. This study aims to elucidate a missing mechanistic link between patient-specific fibrosis distributions and AF drivers. Methods: 3D atrial models integrated human atrial geometry, rule-based fiber orientation, region-specific electrophysiology, and AF-induced ionic remodeling. A novel detailed model for an atrial fibroblast was developed, and effects of myocyte-fibroblast (M-F) coupling were explored at single-cell, 1D tissue and 3D atria levels. Left atrial LGE MRI datasets from 3 chronic AF patients were segmented to provide the patient-specific distributions of fibrosis. The data was non-linearly registered and mapped to the 3D atria model. Six distinctive fibrosis levels (0-healthy tissue, 5-dense fibrosis) were identified based on LGE MRI intensity and modeled as progressively increasing M-F coupling and decreasing atrial tissue coupling. Uniform 3D atrial model with diffuse (level 2) fibrosis was considered for comparison. Results: In single cells and tissue, the largest effect of atrial M-F coupling was on the myocyte resting membrane potential, leading to partial inactivation of sodium current and reduction of conduction velocity (CV). In the 3D atria, further to the M-F coupling, effects of fibrosis on tissue coupling greatly reduce atrial CV. AF was initiated by fast pacing in each 3D model with either uniform or patient-specific fibrosis. High variation in fibrosis distributions between the models resulted in varying complexity of AF, with several drivers emerging. In the diffuse fibrosis models, waves randomly meandered through the atria, whereas in each the patient-specific models, rotors stabilized in fibrotic regions. The rotors propagated slowly around the border zones of patchy fibrosis (levels 3-4), failing to spread into inner areas of dense fibrosis. Conclusion: Rotors stabilize in the border zones of patchy fibrosis in 3D atria, where slow conduction enable the development of circuits within relatively small regions. Our results can provide a mechanistic explanation for the clinical efficacy of ablation around fibrotic regions.
Collapse
Affiliation(s)
- Ross Morgan
- Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical Engineering, King's College LondonLondon, UK
| | | | - Henry Chubb
- Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical Engineering, King's College LondonLondon, UK
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center - Bad Krozingen, Medical Center - University of FreiburgFreiburg, Germany
| | - Oleg V. Aslanidi
- Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical Engineering, King's College LondonLondon, UK
| |
Collapse
|
17
|
Xie F, Zemlin CW. Effect of Twisted Fiber Anisotropy in Cardiac Tissue on Ablation with Pulsed Electric Fields. PLoS One 2016; 11:e0152262. [PMID: 27101250 PMCID: PMC4839574 DOI: 10.1371/journal.pone.0152262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 03/13/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ablation of cardiac tissue with pulsed electric fields is a promising alternative to current thermal ablation methods, and it critically depends on the electric field distribution in the heart. METHODS We developed a model that incorporates the twisted anisotropy of cardiac tissue and computed the electric field distribution in the tissue. We also performed experiments in rabbit ventricles to validate our model. We find that the model agrees well with the experimentally determined ablation volume if we assume that all tissue that is exposed to a field greater than 3 kV/cm is ablated. In our numerical analysis, we considered how tissue thickness, degree of anisotropy, and electrode configuration affect the geometry of the ablated volume. We considered two electrode configurations: two parallel needles inserted into the myocardium ("penetrating needles" configuration) and one circular electrode each on epi- and endocardium, opposing each other ("epi-endo" configuration). RESULTS For thick tissues (10 mm) and moderate anisotropy ratio (a = 2), we find that the geometry of the ablated volume is almost unaffected by twisted anisotropy, i.e. it is approximately translationally symmetric from epi- to endocardium, for both electrode configurations. Higher anisotropy ratio (a = 10) leads to substantial variation in ablation width across the wall; these variations were more pronounced for the penetrating needle configuration than for the epi-endo configuration. For thinner tissues (4 mm, typical for human atria) and higher anisotropy ratio (a = 10), the epi-endo configuration yielded approximately translationally symmetric ablation volumes, while the penetrating electrodes configuration was much more sensitive to fiber twist. CONCLUSIONS These results suggest that the epi-endo configuration will be reliable for ablation of atrial fibrillation, independently of fiber orientation, while the penetrating electrode configuration may experience problems when the fiber orientation is not consistent across the atrial wall.
Collapse
Affiliation(s)
- Fei Xie
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Christian W. Zemlin
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Hancox JC, James AF, Marrion NV, Zhang H, Thomas D. Novel ion channel targets in atrial fibrillation. Expert Opin Ther Targets 2016; 20:947-58. [DOI: 10.1517/14728222.2016.1159300] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University Walk, Bristol, UK
| | - Andrew F. James
- School of Physiology, Pharmacology and Neuroscience, University Walk, Bristol, UK
| | - Neil V. Marrion
- School of Physiology, Pharmacology and Neuroscience, University Walk, Bristol, UK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Dierk Thomas
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Heijman J, Erfanian Abdoust P, Voigt N, Nattel S, Dobrev D. Computational models of atrial cellular electrophysiology and calcium handling, and their role in atrial fibrillation. J Physiol 2015; 594:537-53. [PMID: 26582329 DOI: 10.1113/jp271404] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/08/2015] [Indexed: 11/08/2022] Open
Abstract
The complexity of the heart makes an intuitive understanding of the relative contribution of ion channels, transporters and signalling pathways to cardiac electrophysiology challenging. Computational modelling of cardiac cellular electrophysiology has proven useful to integrate experimental findings, extrapolate results obtained in expression systems or animal models to other systems, test quantitatively ideas based on experimental data and provide novel hypotheses that are experimentally testable. While the bulk of computational modelling has traditionally been directed towards ventricular bioelectricity, increasing recognition of the clinical importance of atrial arrhythmias, particularly atrial fibrillation, has led to widespread efforts to apply computational approaches to understanding atrial electrical function. The increasing availability of detailed, atrial-specific experimental data has stimulated the development of novel computational models of atrial-cellular electrophysiology and Ca(2+) handling. To date, more than 300 studies have employed mathematical simulations to enhance our understanding of atrial electrophysiology, arrhythmogenesis and therapeutic responses. Future modelling studies are likely to move beyond current whole-cell models by incorporating new data on subcellular architecture, macromolecular protein complexes, and localized ion-channel regulation by signalling pathways. At the same time, more integrative multicellular models that take into account regional electrophysiological and Ca(2+) handling properties, mechano-electrical feedback and/or autonomic regulation will be needed to investigate the mechanisms governing atrial arrhythmias. A combined experimental and computational approach is expected to provide the more comprehensive understanding of atrial arrhythmogenesis that is required to develop improved diagnostic and therapeutic options. Here, we review this rapidly expanding area, with a particular focus on Ca(2+) handling, and provide ideas about potential future directions.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Pegah Erfanian Abdoust
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Niels Voigt
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,Department of Medicine, Montreal Heart Institute and Université de Montréal, Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
20
|
Yuan Y, Bai X, Luo C, Wang K, Zhang H. The virtual heart as a platform for screening drug cardiotoxicity. Br J Pharmacol 2015; 172:5531-5547. [PMID: 25363597 PMCID: PMC4667856 DOI: 10.1111/bph.12996] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 01/01/2023] Open
Abstract
To predict the safety of a drug at an early stage in its development is a major challenge as there is a lack of in vitro heart models that correlate data from preclinical toxicity screening assays with clinical results. A biophysically detailed computer model of the heart, the virtual heart, provides a powerful tool for simulating drug-ion channel interactions and cardiac functions during normal and disease conditions and, therefore, provides a powerful platform for drug cardiotoxicity screening. In this article, we first review recent progress in the development of theory on drug-ion channel interactions and mathematical modelling. Then we propose a family of biomarkers that can quantitatively characterize the actions of a drug on the electrical activity of the heart at multi-physical scales including cellular and tissue levels. We also conducted some simulations to demonstrate the application of the virtual heart to assess the pro-arrhythmic effects of cisapride and amiodarone. Using the model we investigated the mechanisms responsible for the differences between the two drugs on pro-arrhythmogenesis, even though both prolong the QT interval of ECGs. Several challenges for further development of a virtual heart as a platform for screening drug cardiotoxicity are discussed.
Collapse
Affiliation(s)
- Yongfeng Yuan
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Xiangyun Bai
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Cunjin Luo
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Kuanquan Wang
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Henggui Zhang
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
- Biological Physics GroupSchool of Physics and AstronomyThe University of ManchesterManchesterUK
| |
Collapse
|
21
|
Kudryashova NN, Kazbanov IV, Panfilov AV, Agladze KI. Conditions for Waveblock Due to Anisotropy in a Model of Human Ventricular Tissue. PLoS One 2015; 10:e0141832. [PMID: 26523734 PMCID: PMC4629901 DOI: 10.1371/journal.pone.0141832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/13/2015] [Indexed: 11/30/2022] Open
Abstract
Waveblock formation is the main cause of reentry. We have performed a comprehensive numerical modeling study of block formation due to anisotropy in Ten Tusscher and Panfilov (2006) ionic model for human ventricular tissue. We have examined the border between different areas of myocardial fiber alignment and have shown that blockage can occur for a wave traveling from a transverse fiber area to a longitudinal one. Such blockage occurs for reasonable values of the anisotropy ratio (AR): from 2.4 to 6.2 with respect to propagation velocities. This critical AR decreases by the suppression of INa and ICa, slightly decreases by the suppression of IKr and IKs, and substantially increases by the suppression of IK1. Hyperkalemia affects the block formation in a complex, biphasic way. We provide examples of reentry formation due to the studied effects and have concluded that the suppression of IK1 should be the most effective way to prevent waveblock at the areas of abrupt change in anisotropy.
Collapse
Affiliation(s)
- Nina N. Kudryashova
- Life Science Center, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Ivan V. Kazbanov
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Alexander V. Panfilov
- Life Science Center, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Konstantin I. Agladze
- Life Science Center, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
22
|
Post-repolarization refractoriness increases vulnerability to block and initiation of reentrant impulses in heterogeneous infarcted myocardium. Comput Biol Med 2015; 65:209-19. [PMID: 25987316 DOI: 10.1016/j.compbiomed.2015.04.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/04/2015] [Accepted: 04/27/2015] [Indexed: 11/23/2022]
Abstract
UNLABELLED Myocardial infarction causes remodeling of the tissue structure and the density and kinetics of several ion channels in the cell membrane. Heterogeneities in refractory period (ERP) have been shown to occur in the infarct border zone and have been proposed to lead to initiation of arrhythmias. The purpose of this study is to quantify the window of vulnerability (WV) to block and initiation of reentrant impulses in myocardium with ERP heterogeneities using computer simulations. We found that ERP transitions at the border between normal ventricular cells (NZ) with different ERPs are smooth, whereas ERP transitions between NZ and infarct border zone cells (IZ) are abrupt. The profile of the ERP transitions is a combination of electrotonic interaction between NZ and IZ cells and the characteristic post-repolarization refractoriness (PRR) of IZ cells. ERP heterogeneities between NZ and IZ cells are more vulnerable to block and initiation of reentrant impulses than ERP heterogeneities between NZ cells. The relationship between coupling intervals of premature impulses (V1V2) and coupling intervals between premature and first reentrant impulses (V2T1) at NZ/NZ and NZ/IZ borders is inverse (i.e. the longer the coupling intervals of premature impulses the shorter the coupling interval between the premature and first reentrant impulses); this is in contrast with the reported V1V2/V2T1 relationship measured during initiation of reentrant impulses in canine infarcted hearts which is direct. IN CONCLUSION (1) ERP transitions at the NZ-IZ border are abrupt as a consequence of PRR; (2) PRR increases the vulnerability to block and initiation of reentrant impulses in heterogeneous myocardium; (3) V1V2/V2T1 relationships measured at ERP heterogeneities in the computer model and in experimental canine infarcts are not consistent. Therefore, it is likely that other mechanisms like micro and/or macro structural heterogeneities also contribute to initiation of reentrant impulses in infarcted hearts.
Collapse
|
23
|
Egorov YV, Kuz'min VS, Glukhov AV, Rosenshtraukh LV. Electrophysiological Characteristics, Rhythm, Disturbances and Conduction Discontinuities Under Autonomic Stimulation in the Rat Pulmonary Vein Myocardium. J Cardiovasc Electrophysiol 2015; 26:1130-9. [PMID: 26086390 DOI: 10.1111/jce.12738] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Despite the importance of neurogenic initiation of rapid firing from pulmonary veins (PVs), the mechanism of autonomic modulation of electrophysiological properties of the PV myocardium to form a substrate for atrial arrhythmia remains poorly understood. METHODS AND RESULTS A 2-microelectrode technique was used to characterize electrophysiological properties of rat PV myocardium and to explore PV arrhythmogenesis, at baseline, during electrical stimulation and/or under autonomic modulation. PV myocardium was characterized by prolonged action potential duration (APD), high degree of APD alternans, and spontaneous depolarizations. Autonomic stimulation resulted in significantly enhanced APD dispersion within the PV, which dynamically changed over time and was associated with intra-PV and atria-PV conduction blocks and could lead to spontaneous fibrillation-like high-frequency activity. In the distal part of the PV we found an unexcitable area that was characterized by depolarized resting potential (-50 ± 4 mV vs. -75 ± 2 mV vs. PV mouth, P < 0.01). This region could be activated during autonomic stimulation or fast pacing that led to multiple conduction discontinuities (uni- and bi-directional conduction blocks, Wenckebach periodicity, electrotonic modulation conduction block, echo phenomenon) in 17/23 preparations, including those occurring under norepinephrine superfusion (14/17) and during pacing frequency changes (3/17). PV echoes (unstable reentrant circuits) were found in 8/23 preparations. In some experiments, several types of conduction abnormalities were observed. CONCLUSION The PV myocardium demonstrates distinct electrophysiological characteristics, which could be considerably exaggerated by electrical stimulation and/or autonomic nervous system to dynamically form a functional substrate to support re-entry as well as focal activity.
Collapse
Affiliation(s)
- Yuriy V Egorov
- Laboratory of Heart Electrophysiology, Cardiology Research Centre, Moscow, Russian Federation, Russia.,Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Vladislav S Kuz'min
- Laboratory of Heart Electrophysiology, Cardiology Research Centre, Moscow, Russian Federation, Russia.,Pirogov Russian National Research Medical University (RNRMU), Moscow, Russian Federation.,Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Alexey V Glukhov
- Laboratory of Heart Electrophysiology, Cardiology Research Centre, Moscow, Russian Federation, Russia.,Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Leonid V Rosenshtraukh
- Laboratory of Heart Electrophysiology, Cardiology Research Centre, Moscow, Russian Federation, Russia.,Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
24
|
Optimization of catheter ablation of atrial fibrillation: insights gained from clinically-derived computer models. Int J Mol Sci 2015; 16:10834-54. [PMID: 25984605 PMCID: PMC4463678 DOI: 10.3390/ijms160510834] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/03/2015] [Accepted: 05/06/2015] [Indexed: 12/04/2022] Open
Abstract
Atrial fibrillation (AF) is the most common heart rhythm disturbance, and its treatment is an increasing economic burden on the health care system. Despite recent intense clinical, experimental and basic research activity, the treatment of AF with current antiarrhythmic drugs and catheter/surgical therapies remains limited. Radiofrequency catheter ablation (RFCA) is widely used to treat patients with AF. Current clinical ablation strategies are largely based on atrial anatomy and/or substrate detected using different approaches, and they vary from one clinical center to another. The nature of clinical ablation leads to ambiguity regarding the optimal patient personalization of the therapy partly due to the fact that each empirical configuration of ablation lines made in a patient is irreversible during one ablation procedure. To investigate optimized ablation lesion line sets, in silico experimentation is an ideal solution. 3D computer models give us a unique advantage to plan and assess the effectiveness of different ablation strategies before and during RFCA. Reliability of in silico assessment is ensured by inclusion of accurate 3D atrial geometry, realistic fiber orientation, accurate fibrosis distribution and cellular kinetics; however, most of this detailed information in the current computer models is extrapolated from animal models and not from the human heart. The predictive power of computer models will increase as they are validated with human experimental and clinical data. To make the most from a computer model, one needs to develop 3D computer models based on the same functionally and structurally mapped intact human atria with high spatial resolution. The purpose of this review paper is to summarize recent developments in clinically-derived computer models and the clinical insights they provide for catheter ablation.
Collapse
|
25
|
McDowell KS, Zahid S, Vadakkumpadan F, Blauer J, MacLeod RS, Trayanova NA. Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling. PLoS One 2015; 10:e0117110. [PMID: 25692857 PMCID: PMC4333565 DOI: 10.1371/journal.pone.0117110] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/18/2014] [Indexed: 12/19/2022] Open
Abstract
Research has indicated that atrial fibrillation (AF) ablation failure is related to the presence of atrial fibrosis. However it remains unclear whether this information can be successfully used in predicting the optimal ablation targets for AF termination. We aimed to provide a proof-of-concept that patient-specific virtual electrophysiological study that combines i) atrial structure and fibrosis distribution from clinical MRI and ii) modeling of atrial electrophysiology, could be used to predict: (1) how fibrosis distribution determines the locations from which paced beats degrade into AF; (2) the dynamic behavior of persistent AF rotors; and (3) the optimal ablation targets in each patient. Four MRI-based patient-specific models of fibrotic left atria were generated, ranging in fibrosis amount. Virtual electrophysiological studies were performed in these models, and where AF was inducible, the dynamics of AF were used to determine the ablation locations that render AF non-inducible. In 2 of the 4 models patient-specific models AF was induced; in these models the distance between a given pacing location and the closest fibrotic region determined whether AF was inducible from that particular location, with only the mid-range distances resulting in arrhythmia. Phase singularities of persistent rotors were found to move within restricted regions of tissue, which were independent of the pacing location from which AF was induced. Electrophysiological sensitivity analysis demonstrated that these regions changed little with variations in electrophysiological parameters. Patient-specific distribution of fibrosis was thus found to be a critical component of AF initiation and maintenance. When the restricted regions encompassing the meander of the persistent phase singularities were modeled as ablation lesions, AF could no longer be induced. The study demonstrates that a patient-specific modeling approach to identify non-invasively AF ablation targets prior to the clinical procedure is feasible.
Collapse
Affiliation(s)
- Kathleen S. McDowell
- The Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States of America
| | - Sohail Zahid
- The Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States of America
| | - Fijoy Vadakkumpadan
- The Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States of America
| | - Joshua Blauer
- University of Utah, Comprehensive Arrhythmia Research and Management Center, School of Medicine, Salt Lake City, Utah, United States of America
| | - Rob S. MacLeod
- University of Utah, Comprehensive Arrhythmia Research and Management Center, School of Medicine, Salt Lake City, Utah, United States of America
| | - Natalia A. Trayanova
- The Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Varela M, Aslanidi OV. Role of atrial tissue substrate and electrical activation pattern in fractionation of atrial electrograms: a computational study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:1587-90. [PMID: 25570275 DOI: 10.1109/embc.2014.6943907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Complex fractionated atrial electrograms (CFAEs) are often used as a clinical marker for re-entrant drivers of atrial fibrillation. However, outcomes of clinical ablation procedures based on CFAEs are controversial and the mechanistic links between fractionation, re-entrant activity and the characteristics of the atrial substrate are not completely understood. We explore such links by simulating electrograms arising from both normal and re-entrant electrical activity in atrial tissue models. 2D and 3D tissue geometries with a range of conditions for intracellular coupling and myofiber orientation fields were studied. Electrograms were fractionated in the presence of complex atrial fiber fields and in 3D irregular geometries, due to far-field excitations. The complexity of the local electrical activity was not a strong determinant of the degree of fractionation. These results suggest that electrogram fractionation is more strongly linked to atrial substrate characteristics (including tissue geometry, fiber orientation and degree of intercelullar coupling) than to the electrical activation pattern sustaining atrial fibrillation.
Collapse
|
27
|
Alday EAP, Colman MA, Langley P, Butters TD, Higham J, Workman AJ, Hancox JC, Zhang H. A new algorithm to diagnose atrial ectopic origin from multi lead ECG systems--insights from 3D virtual human atria and torso. PLoS Comput Biol 2015; 11:e1004026. [PMID: 25611350 PMCID: PMC4303377 DOI: 10.1371/journal.pcbi.1004026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022] Open
Abstract
Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms.
Collapse
Affiliation(s)
- Erick A. Perez Alday
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Michael A. Colman
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Philip Langley
- School of Engineering, University of Hull, Hull, United Kingdom
| | - Timothy D. Butters
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Jonathan Higham
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Antony J. Workman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Physiology and Pharmacology, and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
28
|
|
29
|
Severi S, Rodriguez B, Zaza A. Computational cardiac electrophysiology is ready for prime time. Europace 2014; 16:382-3. [DOI: 10.1093/europace/euu044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|