1
|
Melgaard J, van Dam PM, Sommer A, Fruelund P, Nielsen JC, Riahi S, Graff C. Non-invasive estimation of QLV from the standard 12-lead ECG in patients with left bundle branch block. Front Physiol 2022; 13:939240. [PMID: 36213226 PMCID: PMC9532835 DOI: 10.3389/fphys.2022.939240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Cardiac resynchronization therapy (CRT) is a treatment for patients with heart failure and electrical dyssynchrony, i.e., left bundle branch block (LBBB) ECG pattern. CRT resynchronizes ventricular contraction with a right ventricle (RV) and a left ventricle (LV) pacemaker lead. Positioning the LV lead in the latest electrically activated region (measured from Q wave onset in the ECG to LV sensing by the left pacemaker electrode [QLV]) is associated with favorable outcome. However, optimal LV lead placement is limited by coronary venous anatomy and the inability to measure QLV non-invasively before implantation. We propose a novel non-invasive method for estimating QLV in sinus-rhythm from the standard 12-lead ECG.Methods: We obtained 12-lead ECG, LV electrograms and LV lead position in a standard LV 17-segment model from procedural recordings from 135 standard CRT recipients. QLV duration was measured post-operatively. Using a generic heart geometry and corresponding forward model for ECG computation, the electrical activation pattern of the heart was fitted to best match the 12-lead ECG in an iterative optimization procedure. This procedure initialized six activation sites associated with the His-Purkinje system. The initial timing of each site was based on the directions of the vectorcardiogram (VCG). Timing and position of the sites were then changed iteratively to improve the match between simulated and measured ECG. Noninvasive estimation of QLV was done by calculating the time difference between Q-onset on the computed ECG and the activation time corresponding to centroidal epicardial activation time of the segment where the LV electrode is positioned. The estimated QLV was compared to the measured QLV. Further, the distance between the actual LV position and the estimated LV position was computed from the generic ventricular model.Results: On average there was no difference between QLV measured from procedural recordings and non-invasive estimation of QLV (ΔQLV=−3.0±22.5 ms, p=0.12). Median distance between actual LV pacing site and the estimated pacing site was 18.6 mm (IQR 17.3 mm).Conclusion: Using the standard 12-lead ECG and a generic heart model it is possible to accurately estimate QLV. This method may potentially be used to support patient selection, optimize implant procedures, and to simulate optimal stimulation parameters prior to pacemaker implantation.
Collapse
Affiliation(s)
- Jacob Melgaard
- CardioTech Research Group, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- *Correspondence: Jacob Melgaard,
| | - Peter M. van Dam
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Peacs BV, Nieuwerbrug Aan Den Rijn, Netherlands
| | - Anders Sommer
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Patricia Fruelund
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Sam Riahi
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Claus Graff
- CardioTech Research Group, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Chrispin J, Mazur A, Winterfield J, Nazeri A, Valderrabano M, Tandri H. Non-invasive localization of premature ventricular focus: A prospective multicenter study. J Electrocardiol 2022; 72:6-12. [PMID: 35220047 DOI: 10.1016/j.jelectrocard.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 02/11/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Accurate localization of premature ventricular contractions (PVC) focus is a prerequisite to successful catheter ablation. OBJECTIVE The objective was to evaluate the software View Into Ventricular Onset (VIVO) accuracy at locating the anatomical origins for premature ventricular contractions. The VIVO device noninvasively creates a model of the patient's heart and torso, with exact locations of 12‑lead ECG electrodes, and applies a mathematical algorithm from surface signals to determine the origin of the arrhythmia. We sought to compare the agreement between VIVO-predicted locations to invasive electroanatomical mapping results. METHODS 51 consecutive patients who presented for PVC ablations at the study centers were recruited. VIVO images were collected at baseline preprocedure and all patients underwent invasive electroanatomical activation mapping of the clinical arrhythmia. Pacing was performed in pre-specified locations in the right and/or left ventricle. The successful sites of ablation and the pacing locations were compared to VIVO predicted locations. The results were adjudicated by physician experts in a blinded fashion. RESULTS Seven patients were excluded from analyses. VIVO accurately identified the origin of the clinical premature ventricular contractions in 44/44 patients (100.00%). The accuracy in identifying the paced location for all patients (right and left sides of the heart) was 99.5% using the VIVO system. No adverse events were reported. CONCLUSIONS VIVO is a novel noninvasive system that could be used to help guide ablation procedures with a high degree of accuracy. The VIVO algorithm is easy to use and may be useful in the workflow for ventricular arrhythmia ablation.
Collapse
Affiliation(s)
- Jonathan Chrispin
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | - Harikrishna Tandri
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Jurak P, Bear LR, Nguyên UC, Viscor I, Andrla P, Plesinger F, Halamek J, Vondra V, Abell E, Cluitmans MJM, Dubois R, Curila K, Leinveber P, Prinzen FW. 3-Dimensional ventricular electrical activation pattern assessed from a novel high-frequency electrocardiographic imaging technique: principles and clinical importance. Sci Rep 2021; 11:11469. [PMID: 34075135 PMCID: PMC8169848 DOI: 10.1038/s41598-021-90963-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
The study introduces and validates a novel high-frequency (100–400 Hz bandwidth, 2 kHz sampling frequency) electrocardiographic imaging (HFECGI) technique that measures intramural ventricular electrical activation. Ex-vivo experiments and clinical measurements were employed. Ex-vivo, two pig hearts were suspended in a human-torso shaped tank using surface tank electrodes, epicardial electrode sock, and plunge electrodes. We compared conventional epicardial electrocardiographic imaging (ECGI) with intramural activation by HFECGI and verified with sock and plunge electrodes. Clinical importance of HFECGI measurements was performed on 14 patients with variable conduction abnormalities. From 3 × 4 needle and 108 sock electrodes, 256 torso or 184 body surface electrodes records, transmural activation times, sock epicardial activation times, ECGI-derived activation times, and high-frequency activation times were computed. The ex-vivo transmural measurements showed that HFECGI measures intramural electrical activation, and ECGI-HFECGI activation times differences indicate endo-to-epi or epi-to-endo conduction direction. HFECGI-derived volumetric dyssynchrony was significantly lower than epicardial ECGI dyssynchrony. HFECGI dyssynchrony was able to distinguish between intraventricular conduction disturbance and bundle branch block patients.
Collapse
Affiliation(s)
- Pavel Jurak
- Institute of Scientific Instruments, The Czech Academy of Sciences, Kralovopolska 147, Brno, 635 00, Czech Republic.
| | - Laura R Bear
- IHU Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, CRCTB, U1045, Bordeaux, France.,INSERM, CRCTB, U1045, Bordeaux, France
| | - Uyên Châu Nguyên
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ivo Viscor
- Institute of Scientific Instruments, The Czech Academy of Sciences, Kralovopolska 147, Brno, 635 00, Czech Republic
| | - Petr Andrla
- Institute of Scientific Instruments, The Czech Academy of Sciences, Kralovopolska 147, Brno, 635 00, Czech Republic
| | - Filip Plesinger
- Institute of Scientific Instruments, The Czech Academy of Sciences, Kralovopolska 147, Brno, 635 00, Czech Republic
| | - Josef Halamek
- Institute of Scientific Instruments, The Czech Academy of Sciences, Kralovopolska 147, Brno, 635 00, Czech Republic
| | - Vlastimil Vondra
- Institute of Scientific Instruments, The Czech Academy of Sciences, Kralovopolska 147, Brno, 635 00, Czech Republic
| | - Emma Abell
- IHU Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, CRCTB, U1045, Bordeaux, France.,INSERM, CRCTB, U1045, Bordeaux, France
| | - Matthijs J M Cluitmans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rémi Dubois
- IHU Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, CRCTB, U1045, Bordeaux, France.,INSERM, CRCTB, U1045, Bordeaux, France
| | - Karol Curila
- Cardiocenter, Department of Cardiology, 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Pavel Leinveber
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
4
|
Tarantini G, Mojoli M, Urena M, Vahanian A. Atrial fibrillation in patients undergoing transcatheter aortic valve implantation: epidemiology, timing, predictors, and outcome. Eur Heart J 2018; 38:1285-1293. [PMID: 27744287 DOI: 10.1093/eurheartj/ehw456] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/11/2016] [Indexed: 12/31/2022] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia in patients with aortic stenosis. When these patients are treated medically or by surgical aortic valve replacement, AF is associated with increased risk of adverse events including death. Growing evidence suggests a significant impact of AF on outcomes also in patients with aortic valve stenosis undergoing transcatheter aortic valve implantation (TAVI). Conversely, limited evidence is available regarding the optimal management of this condition. This review aims to summarize prevalence, pathophysiology, prognosis, and treatment of AF in patients undergoing TAVI.
Collapse
Affiliation(s)
- Giuseppe Tarantini
- Department of Cardiac, Thoracic and Vascular Sciences, University Hospital of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Marco Mojoli
- Department of Cardiac, Thoracic and Vascular Sciences, University Hospital of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Marina Urena
- Cardiology Department, Hospital Bichat-Claude Bernard, 46 Rue Henri Huchard, 75018 Paris, France
| | - Alec Vahanian
- Cardiology Department, Hospital Bichat-Claude Bernard, 46 Rue Henri Huchard, 75018 Paris, France
| |
Collapse
|