1
|
Eerenberg F, Luermans J, Lumens J, Nguyên UC, Vernooy K, van Stipdonk A. Exploring QRS Area beyond Patient Selection in CRT-Can It Guide Left Ventricular Lead Placement? J Cardiovasc Dev Dis 2024; 11:18. [PMID: 38248888 PMCID: PMC10816025 DOI: 10.3390/jcdd11010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Vectorcardiographic QRS area is a promising tool for patient selection and implantation guidance in cardiac resynchronization therapy (CRT). Research has mainly focused on the role of QRS area in patient selection for CRT. Recently, QRS area has been proposed as a tool to guide left ventricular lead placement in CRT. Theoretically, vector-based electrical information of ventricular fusion pacing, calculated from the basic 12-lead ECG, can give real-time insight into the extent of resynchronization at any LV lead position, as well as any selected electrode on the LV lead. The objective of this review is to provide an overview of the background of vectorcardiographic QRS area and its potential in optimizing LV lead location in order to optimize the benefits of CRT.
Collapse
Affiliation(s)
- Frederieke Eerenberg
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.); (U.C.N.); (K.V.); (A.v.S.)
| | - Justin Luermans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.); (U.C.N.); (K.V.); (A.v.S.)
| | - Joost Lumens
- Cardiovascular Research Institute Maastricht (CARIM), University Maastricht (UM), 6229 ER Maastricht, The Netherlands;
| | - Uyên Châu Nguyên
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.); (U.C.N.); (K.V.); (A.v.S.)
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.); (U.C.N.); (K.V.); (A.v.S.)
| | - Antonius van Stipdonk
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.); (U.C.N.); (K.V.); (A.v.S.)
| |
Collapse
|
2
|
Koopsen T, Gerrits W, van Osta N, van Loon T, Wouters P, Prinzen FW, Vernooy K, Delhaas T, Teske AJ, Meine M, Cramer MJ, Lumens J. Virtual pacing of a patient's digital twin to predict left ventricular reverse remodelling after cardiac resynchronization therapy. Europace 2023; 26:euae009. [PMID: 38288616 PMCID: PMC10825733 DOI: 10.1093/europace/euae009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
AIMS Identifying heart failure (HF) patients who will benefit from cardiac resynchronization therapy (CRT) remains challenging. We evaluated whether virtual pacing in a digital twin (DT) of the patient's heart could be used to predict the degree of left ventricular (LV) reverse remodelling post-CRT. METHODS AND RESULTS Forty-five HF patients with wide QRS complex (≥130 ms) and reduced LV ejection fraction (≤35%) receiving CRT were retrospectively enrolled. Echocardiography was performed before (baseline) and 6 months after CRT implantation to obtain LV volumes and 18-segment longitudinal strain. A previously developed algorithm was used to generate 45 DTs by personalizing the CircAdapt model to each patient's baseline measurements. From each DT, baseline septal-to-lateral myocardial work difference (MWLW-S,DT) and maximum rate of LV systolic pressure rise (dP/dtmax,DT) were derived. Biventricular pacing was then simulated using patient-specific atrioventricular delay and lead location. Virtual pacing-induced changes ΔMWLW-S,DT and ΔdP/dtmax,DT were correlated with real-world LV end-systolic volume change at 6-month follow-up (ΔLVESV). The DT's baseline MWLW-S,DT and virtual pacing-induced ΔMWLW-S,DT were both significantly associated with the real patient's reverse remodelling ΔLVESV (r = -0.60, P < 0.001 and r = 0.62, P < 0.001, respectively), while correlation between ΔdP/dtmax,DT and ΔLVESV was considerably weaker (r = -0.34, P = 0.02). CONCLUSION Our results suggest that the reduction of septal-to-lateral work imbalance by virtual pacing in the DT can predict real-world post-CRT LV reverse remodelling. This DT approach could prove to be an additional tool in selecting HF patients for CRT and has the potential to provide valuable insights in optimization of CRT delivery.
Collapse
Affiliation(s)
- Tijmen Koopsen
- Department of Biomedical Engineering, CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 40, 6200 MD, The Netherlands
| | - Willem Gerrits
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Nick van Osta
- Department of Biomedical Engineering, CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 40, 6200 MD, The Netherlands
| | - Tim van Loon
- Department of Biomedical Engineering, CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 40, 6200 MD, The Netherlands
| | - Philippe Wouters
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Frits W Prinzen
- Department of Physiology, CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 40, 6200 MD, The Netherlands
| | - Arco J Teske
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Mathias Meine
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Maarten J Cramer
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 40, 6200 MD, The Netherlands
| |
Collapse
|
3
|
Remme CA, Heijman J, Gomez AM, Zaza A, Odening KE. 25 years of basic and translational science in EP Europace: novel insights into arrhythmia mechanisms and therapeutic strategies. Europace 2023; 25:euad210. [PMID: 37622575 PMCID: PMC10450791 DOI: 10.1093/europace/euad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 08/26/2023] Open
Abstract
In the last 25 years, EP Europace has published more than 300 basic and translational science articles covering different arrhythmia types (ranging from atrial fibrillation to ventricular tachyarrhythmias), different diseases predisposing to arrhythmia formation (such as genetic arrhythmia disorders and heart failure), and different interventional and pharmacological anti-arrhythmic treatment strategies (ranging from pacing and defibrillation to different ablation approaches and novel drug-therapies). These studies have been conducted in cellular models, small and large animal models, and in the last couple of years increasingly in silico using computational approaches. In sum, these articles have contributed substantially to our pathophysiological understanding of arrhythmia mechanisms and treatment options; many of which have made their way into clinical applications. This review discusses a representative selection of EP Europace manuscripts covering the topics of pacing and ablation, atrial fibrillation, heart failure and pro-arrhythmic ventricular remodelling, ion channel (dys)function and pharmacology, inherited arrhythmia syndromes, and arrhythmogenic cardiomyopathies, highlighting some of the advances of the past 25 years. Given the increasingly recognized complexity and multidisciplinary nature of arrhythmogenesis and continued technological developments, basic and translational electrophysiological research is key advancing the field. EP Europace aims to further increase its contribution to the discovery of arrhythmia mechanisms and the implementation of mechanism-based precision therapy approaches in arrhythmia management.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC location University of Amsterdam, Heart Centre, Academic Medical Center, Room K2-104.2, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ana M Gomez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, 91400 Orsay, France
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, Inselspital University Hospital Bern, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
4
|
Meiburg R, Rijks JHJ, Beela AS, Bressi E, Grieco D, Delhaas T, Luermans JGLM, Prinzen FW, Vernooy K, Lumens J. Comparison of novel ventricular pacing strategies using an electro-mechanical simulation platform. Europace 2023; 25:euad144. [PMID: 37306315 PMCID: PMC10259067 DOI: 10.1093/europace/euad144] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/06/2023] [Indexed: 06/13/2023] Open
Abstract
AIMS Focus of pacemaker therapy is shifting from right ventricular (RV) apex pacing (RVAP) and biventricular pacing (BiVP) to conduction system pacing. Direct comparison between the different pacing modalities and their consequences to cardiac pump function is difficult, due to the practical implications and confounding variables. Computational modelling and simulation provide the opportunity to compare electrical, mechanical, and haemodynamic consequences in the same virtual heart. METHODS AND RESULTS Using the same single cardiac geometry, electrical activation maps following the different pacing strategies were calculated using an Eikonal model on a three-dimensional geometry, which were then used as input for a lumped mechanical and haemodynamic model (CircAdapt). We then compared simulated strain, regional myocardial work, and haemodynamic function for each pacing strategy. Selective His-bundle pacing (HBP) best replicated physiological electrical activation and led to the most homogeneous mechanical behaviour. Selective left bundle branch (LBB) pacing led to good left ventricular (LV) function but significantly increased RV load. RV activation times were reduced in non-selective LBB pacing (nsLBBP), reducing RV load but increasing heterogeneity in LV contraction. LV septal pacing led to a slower LV and more heterogeneous LV activation than nsLBBP, while RV activation was similar. BiVP led to a synchronous LV-RV, but resulted in a heterogeneous contraction. RVAP led to the slowest and most heterogeneous contraction. Haemodynamic differences were small compared to differences in local wall behaviour. CONCLUSION Using a computational modelling framework, we investigated the mechanical and haemodynamic outcome of the prevailing pacing strategies in hearts with normal electrical and mechanical function. For this class of patients, nsLBBP was the best compromise between LV and RV function if HBP is not possible.
Collapse
Affiliation(s)
- Roel Meiburg
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 40, 6200 MD, Maastricht, The Netherlands
| | - Jesse H J Rijks
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Ahmed S Beela
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 40, 6200 MD, Maastricht, The Netherlands
- Department of Cardiovascular Diseases, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Edoardo Bressi
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
- Department of Cardiovascular Sciences, Policlinico Casilino of Rome, Rome, Italy
| | - Domenico Grieco
- Department of Cardiovascular Sciences, Policlinico Casilino of Rome, Rome, Italy
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 40, 6200 MD, Maastricht, The Netherlands
| | - Justin G LM Luermans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
- Department of Cardiology, Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 40, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
5
|
Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the finite element method (FEM). The generation of patient-specific cardiac meshes has traditionally been a tedious task requiring manual intervention and hindering the modeling of a large number of cases. Meshless models can be a valid alternative due to their mesh quality independence. The organization of challenges such as the CRT-EPiggy19, providing unique experimental data as open access, enables benchmarking analysis of different cardiac computational modeling solutions with quantitative metrics. We present a benchmark analysis of a meshless-based method with finite-element methods for the prediction of cardiac electrical patterns in CRT, based on a subset of the CRT-EPiggy19 dataset. A data assimilation strategy was designed to personalize the most relevant parameters of the electrophysiological simulations and identify the optimal CRT lead configuration. The simulation results obtained with the meshless model were equivalent to FEM, with the most relevant aspect for accurate CRT predictions being the parameter personalization strategy (e.g., regional conduction velocity distribution, including the Purkinje system and CRT lead distribution).
Collapse
|
6
|
Munneke AG, Lumens J, Arts T, Delhaas T. A Closed-Loop Modeling Framework for Cardiac-to-Coronary Coupling. Front Physiol 2022; 13:830925. [PMID: 35295571 PMCID: PMC8919076 DOI: 10.3389/fphys.2022.830925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 01/09/2023] Open
Abstract
The mechanisms by which cardiac mechanics effect coronary perfusion (cardiac-to-coronary coupling) remain incompletely understood. Several coronary models have been proposed to deepen our understanding of coronary hemodynamics, but possibilities for in-depth studies on cardiac-to-coronary coupling are limited as mechanical properties like myocardial stress and strain are most often neglected. To overcome this limitation, a mathematical model of coronary mechanics and hemodynamics was implemented in the previously published multi-scale CircAdapt model of the closed-loop cardiovascular system. The coronary model consisted of a relatively simple one-dimensional network of the major conduit arteries and veins as well as a lumped parameter model with three transmural layers for the microcirculation. Intramyocardial pressure was assumed to arise from transmission of ventricular cavity pressure into the myocardial wall as well as myocardial stiffness, based on global pump mechanics and local myofiber mechanics. Model-predicted waveforms of global epicardial flow velocity, as well as of intramyocardial flow and diameter were qualitatively and quantitatively compared with reported data. Versatility of the model was demonstrated in a case study of aortic valve stenosis. The reference simulation correctly described the phasic pattern of coronary flow velocity, arterial flow impediment, and intramyocardial differences in coronary flow and diameter. Predicted retrograde flow during early systole in aortic valve stenosis was in agreement with measurements obtained in patients. In conclusion, we presented a powerful multi-scale modeling framework that enables realistic simulation of coronary mechanics and hemodynamics. This modeling framework can be used as a research platform for in-depth studies of cardiac-to-coronary coupling, enabling study of the effect of abnormal myocardial tissue properties on coronary hemodynamics.
Collapse
Affiliation(s)
- Anneloes G. Munneke
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | | | | | |
Collapse
|
7
|
Fan L, Choy JS, Raissi F, Kassab GS, Lee LC. Optimization of cardiac resynchronization therapy based on a cardiac electromechanics-perfusion computational model. Comput Biol Med 2022; 141:105050. [PMID: 34823858 PMCID: PMC8810745 DOI: 10.1016/j.compbiomed.2021.105050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
Cardiac resynchronization therapy (CRT) is an established treatment for left bundle branch block (LBBB) resulting in mechanical dyssynchrony. Approximately 1/3 of patients with CRT, however, are non-responders. To understand factors affecting CRT response, an electromechanics-perfusion computational model based on animal-specific left ventricular (LV) geometry and coronary vascular networks located in the septum and LV free wall is developed. The model considers contractility-flow and preload-activation time relationships, and is calibrated to simultaneously match the experimental measurements in terms of the LV pressure, volume waveforms and total coronary flow in the left anterior descending and left circumflex territories from 2 swine models under right atrium and right ventricular pacing. The model is then applied to investigate the responses of CRT indexed by peak LV pressure and (dP/dt)max at multiple pacing sites with different degrees of perfusion in the LV free wall. Without the presence of ischemia, the model predicts that basal-lateral endocardial region is the optimal pacing site that can best improve (dP/dt)max by 20%, and is associated with the shortest activation time. In the presence of ischemia, a non-ischemic region becomes the optimal pacing site when coronary flow in the ischemic region fell below 30% of its original value. Pacing at the ischemic region produces little response at that perfusion level. The optimal pacing site is associated with one that optimizes the LV activation time. These findings suggest that CRT response is affected by both pacing site and coronary perfusion, which may have clinical implication in improving CRT responder rates.
Collapse
Affiliation(s)
- Lei Fan
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jenny S Choy
- California Medical Innovations Institute, San Diego, CA, USA
| | - Farshad Raissi
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Oomen PJA, Phung TKN, Weinberg SH, Bilchick KC, Holmes JW. A rapid electromechanical model to predict reverse remodeling following cardiac resynchronization therapy. Biomech Model Mechanobiol 2022; 21:231-247. [PMID: 34816336 PMCID: PMC9241386 DOI: 10.1007/s10237-021-01532-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Cardiac resynchronization therapy (CRT) is an effective therapy for patients who suffer from heart failure and ventricular dyssynchrony such as left bundle branch block (LBBB). When it works, it reverses adverse left ventricular (LV) remodeling and the progression of heart failure. However, CRT response rate is currently as low as 50-65%. In theory, CRT outcome could be improved by allowing clinicians to tailor the therapy through patient-specific lead locations, timing, and/or pacing protocol. However, this also presents a dilemma: there are far too many possible strategies to test during the implantation surgery. Computational models could address this dilemma by predicting remodeling outcomes for each patient before the surgery takes place. Therefore, the goal of this study was to develop a rapid computational model to predict reverse LV remodeling following CRT. We adapted our recently developed computational model of LV remodeling to simulate the mechanics of ventricular dyssynchrony and added a rapid electrical model to predict electrical activation timing. The model was calibrated to quantitatively match changes in hemodynamics and global and local LV wall mass from a canine study of LBBB and CRT. The calibrated model was used to investigate the influence of LV lead location and ischemia on CRT remodeling outcome. Our model results suggest that remodeling outcome varies with both lead location and ischemia location, and does not always correlate with short-term improvement in QRS duration. The results and time frame required to customize and run this model suggest promise for this approach in a clinical setting.
Collapse
Affiliation(s)
- Pim J. A. Oomen
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22903, USA
- Department of Medicine, University of Virginia, Box 800158, Health System, Charlottesville, VA 22903, USA
| | - Thien-Khoi N. Phung
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, 140 W 19th Ave Columbus, Columbus, OH 43210, USA
| | - Kenneth C. Bilchick
- Department of Medicine, University of Virginia, Box 800158, Health System, Charlottesville, VA 22903, USA
| | - Jeffrey W. Holmes
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22903, USA
- School of Engineering, University of Alabama at Birmingham, 1075 13th St S, Birmingham, AL 35233, USA
| |
Collapse
|
9
|
Sidhu BS, Gould J, Elliott MK, Mehta V, Niederer S, Rinaldi CA. Leadless Left Ventricular Endocardial Pacing and Left Bundle Branch Area Pacing for Cardiac Resynchronisation Therapy. Arrhythm Electrophysiol Rev 2021; 10:45-50. [PMID: 33936743 PMCID: PMC8076968 DOI: 10.15420/aer.2020.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/31/2020] [Indexed: 12/02/2022] Open
Abstract
Cardiac resynchronisation therapy is an important intervention to reduce mortality and morbidity, but even in carefully selected patients approximately 30% fail to improve. This has led to alternative pacing approaches to improve patient outcomes. Left ventricular (LV) endocardial pacing allows pacing at site-specific locations that enable the operator to avoid myocardial scar and target areas of latest activation. Left bundle branch area pacing (LBBAP) provides a more physiological activation pattern and may allow effective cardiac resynchronisation. This article discusses LV endocardial pacing in detail, including the indications, techniques and outcomes. It discusses LBBAP, its potential benefits over His bundle pacing and procedural outcomes. Finally, it concludes with the future role of endocardial pacing and LBBAP in heart failure patients.
Collapse
Affiliation(s)
- Baldeep S Sidhu
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' Hospital, London, UK
| | - Justin Gould
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' Hospital, London, UK
| | - Mark K Elliott
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' Hospital, London, UK
| | - Vishal Mehta
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' Hospital, London, UK
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Christopher A Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' Hospital, London, UK
| |
Collapse
|
10
|
Albatat M, Arevalo H, Bergsland J, Strøm V, Balasingham I, Odland HH. Optimal pacing sites in cardiac resynchronization by left ventricular activation front analysis. Comput Biol Med 2020; 128:104159. [PMID: 33301952 DOI: 10.1016/j.compbiomed.2020.104159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/14/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Cardiac resynchronization therapy (CRT) can substantially improve dyssynchronous heart failure and reduce mortality. However, about one-third of patients who are implanted, derive no measurable benefit from CRT. Non-response may partly be due to suboptimal activation of the left ventricle (LV) caused by electrophysiological heterogeneities. The goal of this study is to investigate the performance of a newly developed method used to analyze electrical wavefront propagation in a heart model including myocardial scar and compare this to clinical benchmark studies. We used computational models to measure the maximum activation front (MAF) in the LV during different pacing scenarios. Different heart geometries and scars were created based on cardiac MR images of three patients. The right ventricle (RV) was paced from the apex and the LV was paced from 12 different sites, single site, dual-site and triple site. Our results showed that for single LV site pacing, the pacing site with the largest MAF corresponded with the latest activated regions of the LV demonstrated during RV pacing, which also agrees with previous markers used for predicting optimal single-site pacing location. We then demonstrated the utility of MAF in predicting optimal electrode placements in more complex scenarios including scar and multi-site LV pacing. This study demonstrates the potential value of computational simulations in understanding and planning CRT.
Collapse
Affiliation(s)
- Mohammad Albatat
- Intervention Centre, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Hermenegild Arevalo
- Department of Computational Physiology, Simula Research Laboratory, Fornebu, Norway
| | | | - Vilde Strøm
- Department of Computational Physiology, Simula Research Laboratory, Fornebu, Norway
| | - Ilangko Balasingham
- Intervention Centre, Oslo University Hospital, Oslo, Norway; Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
11
|
Isotani A, Yoneda K, Iwamura T, Watanabe M, Okada JI, Washio T, Sugiura S, Hisada T, Ando K. Patient-specific heart simulation can identify non-responders to cardiac resynchronization therapy. Heart Vessels 2020; 35:1135-1147. [PMID: 32166443 PMCID: PMC7332486 DOI: 10.1007/s00380-020-01577-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/28/2020] [Indexed: 11/30/2022]
Abstract
To identify non-responders to cardiac resynchronization therapy (CRT), various biomarkers have been proposed, but these attempts have not been successful to date. We tested the clinical applicability of computer simulation of CRT for the identification of non-responders. We used the multi-scale heart simulator “UT-Heart,” which can reproduce the electrophysiology and mechanics of the heart based on a molecular model of the excitation–contraction mechanism. Patient-specific heart models were created for eight heart failure patients who were treated with CRT, based on the clinical data recorded before treatment. Using these heart models, bi-ventricular pacing simulations were performed at multiple pacing sites adopted in clinical practice. Improvement in pumping function measured by the relative change of maximum positive derivative of left ventricular pressure (%ΔdP/dtmax) was compared with the clinical outcome. The operators of the simulation were blinded to the clinical outcome. In six patients, the relative reduction in end-systolic volume exceeded 15% in the follow-up echocardiogram at 3 months (responders) and the remaining two patients were judged as non-responders. The simulated %ΔdP/dtmax at the best lead position could identify responders and non-responders successfully. With further refinement of the model, patient-specific simulation could be a useful tool for identifying non-responders to CRT.
Collapse
Affiliation(s)
- Akihiro Isotani
- Department of Cardiovascular Medicine, Kokura Memorial Hospital, Asano 3-2-1, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8555, Japan
| | - Kazunori Yoneda
- Healthcare System Unit, Fujitsu Ltd, Ota-ku, Kamata, 144-8588, Japan
| | - Takashi Iwamura
- Healthcare System Unit, Fujitsu Ltd, Ota-ku, Kamata, 144-8588, Japan
| | - Masahiro Watanabe
- Healthcare System Unit, Fujitsu Ltd, Ota-ku, Kamata, 144-8588, Japan
| | - Jun-Ichi Okada
- Future Center Initiative, The University of Tokyo, Wakashiba 178-4-4, Kashiwa, Chiba, 277-0871, Japan
- UT-Heart Inc. Nozawa, 3-25-8, Setagaya, Tokyo, 154-0003, Japan
| | - Takumi Washio
- Future Center Initiative, The University of Tokyo, Wakashiba 178-4-4, Kashiwa, Chiba, 277-0871, Japan
- UT-Heart Inc. Nozawa, 3-25-8, Setagaya, Tokyo, 154-0003, Japan
| | - Seiryo Sugiura
- UT-Heart Inc. Nozawa, 3-25-8, Setagaya, Tokyo, 154-0003, Japan.
- Future Center #304, Wakashiba 178-4-4, Kashiwa, Chiba, 277-0871, Japan.
| | - Toshiaki Hisada
- UT-Heart Inc. Nozawa, 3-25-8, Setagaya, Tokyo, 154-0003, Japan
| | - Kenji Ando
- Department of Cardiovascular Medicine, Kokura Memorial Hospital, Asano 3-2-1, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8555, Japan
| |
Collapse
|
12
|
Albatat M, Bergsland J, Arevalo H, Odland HH, Wall S, Sundnes J, Balasingham I. Multisite pacing and myocardial scars: a computational study. Comput Methods Biomech Biomed Engin 2020; 23:248-260. [PMID: 31958019 DOI: 10.1080/10255842.2020.1711885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cardiac resynchronization therapy (CRT) is a frequently effective treatment modality for dyssynchronous heart failure, however, 30% of patients do not respond, usually due to suboptimal activation of the left ventricle (LV). Multisite pacing (MSP) may increase the response rate, but its effect in the presence of myocardial scars is not fully understood. We use a computational model to study the outcome of MSP in an LV with scars in two different locations and of two different sizes. The LV was stimulated from anterior, posterior and lateral locations individually and in pairs, while a septal stimulation site represented right ventricular (RV) pacing. Intraventricular pressures were measured, and outcomes evaluated in terms of maximum LV pressure gradient (dP/dtmax)- change compared to isolated RV pacing. The best result obtained using various LV pacing locations included a combination of sites remote from scars and the septum. The highest dP/dtmax increase was achieved, regardless of scar size, using MSP with one pacing site located on the LV free wall opposite to the scar and one site opposite to the septum. These in silico modelling results suggest that making placement of pacing electrodes dependent on location of scarring, may alter acute haemodynamics and that such modelling may contribute to future CRT optimization.
Collapse
Affiliation(s)
| | | | - Hermenegild Arevalo
- Department of Computational Physiology, Simula Research Laboratory, Fornebu, Norway
| | | | - Samuel Wall
- Department of Computational Physiology, Simula Research Laboratory, Fornebu, Norway
| | - Joakim Sundnes
- Department of Computational Physiology, Simula Research Laboratory, Fornebu, Norway
| | - Ilangko Balasingham
- Intervention Centre, Oslo University Hospital, Oslo, Norway.,Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
13
|
Aalen JM, Remme EW, Larsen CK, Andersen OS, Krogh M, Duchenne J, Hopp E, Ross S, Beela AS, Kongsgaard E, Bergsland J, Odland HH, Skulstad H, Opdahl A, Voigt JU, Smiseth OA. Mechanism of Abnormal Septal Motion in Left Bundle Branch Block. JACC Cardiovasc Imaging 2019; 12:2402-2413. [DOI: 10.1016/j.jcmg.2018.11.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/05/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022]
|
14
|
Technological and Clinical Challenges in Lead Placement for Cardiac Rhythm Management Devices. Ann Biomed Eng 2019; 48:26-46. [DOI: 10.1007/s10439-019-02376-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/25/2019] [Indexed: 01/29/2023]
|
15
|
Abstract
The treatment of individual patients in cardiology practice increasingly relies on advanced imaging, genetic screening and devices. As the amount of imaging and other diagnostic data increases, paralleled by the greater capacity to personalize treatment, the difficulty of using the full array of measurements of a patient to determine an optimal treatment seems also to be paradoxically increasing. Computational models are progressively addressing this issue by providing a common framework for integrating multiple data sets from individual patients. These models, which are based on physiology and physics rather than on population statistics, enable computational simulations to reveal diagnostic information that would have otherwise remained concealed and to predict treatment outcomes for individual patients. The inherent need for patient-specific models in cardiology is clear and is driving the rapid development of tools and techniques for creating personalized methods to guide pharmaceutical therapy, deployment of devices and surgical interventions.
Collapse
Affiliation(s)
- Steven A Niederer
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac, France
| | - Natalia A Trayanova
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
16
|
Willemen E, Schreurs R, Huntjens PR, Strik M, Plank G, Vigmond E, Walmsley J, Vernooy K, Delhaas T, Prinzen FW, Lumens J. The Left and Right Ventricles Respond Differently to Variation of Pacing Delays in Cardiac Resynchronization Therapy: A Combined Experimental- Computational Approach. Front Physiol 2019; 10:17. [PMID: 30774598 PMCID: PMC6367498 DOI: 10.3389/fphys.2019.00017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/10/2019] [Indexed: 12/02/2022] Open
Abstract
Introduction: Timing of atrial, right (RV), and left ventricular (LV) stimulation in cardiac resynchronization therapy (CRT) is known to affect electrical activation and pump function of the LV. In this study, we used computer simulations, with input from animal experiments, to investigate the effect of varying pacing delays on both LV and RV electrical dyssynchrony and contractile function. Methods: A pacing protocol was performed in dogs with atrioventricular block (N = 6), using 100 different combinations of atrial (A)-LV and A-RV pacing delays. Regional LV and RV electrical activation times were measured using 112 electrodes and LV and RV pressures were measured with catheter-tip micromanometers. Contractile response to a pacing delay was defined as relative change of the maximum rate of LV and RV pressure rise (dP/dtmax) compared to RV pacing with an A-RV delay of 125 ms. The pacing protocol was simulated in the CircAdapt model of cardiovascular system dynamics, using the experimentally acquired electrical mapping data as input. Results: Ventricular electrical activation changed with changes in the amount of LV or RV pre-excitation. The resulting changes in dP/dtmax differed markedly between the LV and RV. Pacing the LV 10–50 ms before the RV led to the largest increases in LV dP/dtmax. In contrast, RV dP/dtmax was highest with RV pre-excitation and decreased up to 33% with LV pre-excitation. These opposite patterns of changes in RV and LV dP/dtmax were reproduced by the simulations. The simulations extended these observations by showing that changes in steady-state biventricular cardiac output differed from changes in both LV and RV dP/dtmax. The model allowed to explain the discrepant changes in dP/dtmax and cardiac output by coupling between atria and ventricles as well as between the ventricles. Conclusion: The LV and the RV respond in a opposite manner to variation in the amount of LV or RV pre-excitation. Computer simulations capture LV and RV behavior during pacing delay variation and may be used in the design of new CRT optimization studies.
Collapse
Affiliation(s)
- Erik Willemen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Rick Schreurs
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Peter R Huntjens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.,IHU-LIRYC Electrophysiology and Heart Modeling Institute, Pessac, France
| | - Marc Strik
- Department of Cardiology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | | | - John Walmsley
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tammo Delhaas
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Frits W Prinzen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Joost Lumens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.,IHU-LIRYC Electrophysiology and Heart Modeling Institute, Pessac, France
| |
Collapse
|
17
|
Bisson A, Pucheux J, Andre C, Bernard A, Pierre B, Babuty D, Fauchier L, Clementy N. Localization of Left Ventricular Lead Electrodes in Relation to Myocardial Scar in Patients Undergoing Cardiac Resynchronization Therapy. J Am Heart Assoc 2018; 7:e009502. [PMID: 30373444 PMCID: PMC6404211 DOI: 10.1161/jaha.118.009502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The efficacy of cardiac resynchronization therapy may be reduced in the event of pacing within myocardial fibrosis. We aimed to develop a method to determine the anatomical relationships between the left ventricular (LV) lead and myocardial fibrosis. Methods and Results In consecutive patients indicated for cardiac resynchronization therapy, cardiovascular magnetic resonance imaging with late gadolinium enhancement assessment was performed before implantation. After implantation, an injected computed tomography scanner (CT scan) was performed. The 2 imaging techniques were fused to assess the LV lead position relative to myocardial scar. A total of 68 patients were included. Myocardial scar was found in 29 (43%) and was localized in lateral segments in 14 (21%). Scar was significantly associated with male sex, ischemic cardiomyopathy, a Selvester score adapted to left bundle branch block (LBBB Selvester), and Selvester criteria for localizing lateral fibrosis (V2 S/S′ ratio). Image fusion was feasible in all patients. Position within myocardial scar was confirmed for 6 electrodes in 3 patients. Prolonged QRS duration during LV pacing ≥139% predicted electrode positioning within scar tissue (sensitivity, 83%; specificity, 91%; P=0.002). Conclusions In cardiac resynchronization therapy patients, fusion between preimplantation cardiovascular magnetic resonance and a postimplantation injected computed tomography scan is a feasible technique. Prolongation of the QRS duration during LV pacing predicts pacing within myocardial scar. Accurate location of LV lead pacing electrodes on the epicardial surface relative to myocardial scar, either by imaging or ECG analyses, may help improve cardiac resynchronization therapy response in selected patients.
Collapse
Affiliation(s)
- Arnaud Bisson
- 1 Cardiology Department Centre Hospitalier Universitaire Trousseau et Faculté de Médecine Université de Tours France
| | - Julien Pucheux
- 2 Radiology Department Centre Hospitalier Universitaire Trousseau et Faculté de Médecine Université de Tours France
| | - Clémentine Andre
- 1 Cardiology Department Centre Hospitalier Universitaire Trousseau et Faculté de Médecine Université de Tours France
| | - Anne Bernard
- 1 Cardiology Department Centre Hospitalier Universitaire Trousseau et Faculté de Médecine Université de Tours France
| | - Bertrand Pierre
- 1 Cardiology Department Centre Hospitalier Universitaire Trousseau et Faculté de Médecine Université de Tours France
| | - Dominique Babuty
- 1 Cardiology Department Centre Hospitalier Universitaire Trousseau et Faculté de Médecine Université de Tours France
| | - Laurent Fauchier
- 1 Cardiology Department Centre Hospitalier Universitaire Trousseau et Faculté de Médecine Université de Tours France
| | - Nicolas Clementy
- 1 Cardiology Department Centre Hospitalier Universitaire Trousseau et Faculté de Médecine Université de Tours France
| |
Collapse
|
18
|
Sieniewicz BJ, Gould J, Porter B, Sidhu BS, Behar JM, Claridge S, Niederer S, Rinaldi CA. Optimal site selection and image fusion guidance technology to facilitate cardiac resynchronization therapy. Expert Rev Med Devices 2018; 15:555-570. [PMID: 30019954 PMCID: PMC6178093 DOI: 10.1080/17434440.2018.1502084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Cardiac resynchronization therapy (CRT) has emerged as one of the few effective treatments for heart failure. However, up to 50% of patients derive no benefit. Suboptimal left ventricle (LV) lead position is a potential cause of poor outcomes while targeted lead deployment has been associated with enhanced response rates. Image-fusion guidance systems represent a novel approach to CRT delivery, allowing physicians to both accurately track and target a specific location during LV lead deployment. AREAS COVERED This review will provide a comprehensive evaluation of how to define the optimal pacing site. We will evaluate the evidence for delivering targeted LV stimulation at sites displaying favorable viability or advantageous mechanical or electrical properties. Finally, we will evaluate several emerging image-fusion guidance systems which aim to facilitate optimal site selection during CRT. EXPERT COMMENTARY Targeted LV lead deployment is associated with reductions in morbidity and mortality. Assessment of tissue characterization and electrical latency are critical and can be achieved in a number of ways. Ultimately, the constraints of coronary sinus anatomy have forced the exploration of novel means of delivering CRT including endocardial pacing which hold promise for the future of CRT delivery.
Collapse
Affiliation(s)
- Benjamin J. Sieniewicz
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Justin Gould
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Bradley Porter
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Baldeep S Sidhu
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Jonathan M Behar
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Simon Claridge
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Steve Niederer
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| | - Christopher A. Rinaldi
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
- Cardiology Department, Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
19
|
Lee AWC, Costa CM, Strocchi M, Rinaldi CA, Niederer SA. Computational Modeling for Cardiac Resynchronization Therapy. J Cardiovasc Transl Res 2018; 11:92-108. [PMID: 29327314 PMCID: PMC5908824 DOI: 10.1007/s12265-017-9779-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022]
Abstract
Cardiac resynchronization therapy (CRT) is an effective treatment for heart failure (HF) patients with an electrical substrate pathology causing ventricular dyssynchrony. However 40-50% of patients do not respond to treatment. Cardiac modeling of the electrophysiology, electromechanics, and hemodynamics of the heart has been used to study mechanisms behind HF pathology and CRT response. Recently, multi-scale dyssynchronous HF models have been used to study optimal device settings and optimal lead locations, investigate the underlying cardiac pathophysiology, as well as investigate emerging technologies proposed to treat cardiac dyssynchrony. However the breadth of patient and experimental data required to create and parameterize these models and the computational resources required currently limits the use of these models to small patient numbers. In the future, once these technical challenges are overcome, biophysically based models of the heart have the potential to become a clinical tool to aid in the diagnosis and treatment of HF.
Collapse
Affiliation(s)
- Angela W C Lee
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | | | - Marina Strocchi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
20
|
Huntjens PR, Ploux S, Strik M, Walmsley J, Ritter P, Haissaguerre M, Prinzen FW, Delhaas T, Lumens J, Bordachar P. Electrical Substrates Driving Response to Cardiac Resynchronization Therapy. Circ Arrhythm Electrophysiol 2018; 11:e005647. [DOI: 10.1161/circep.117.005647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/22/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Peter R. Huntjens
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiac Electrophysiology and Cardiac Stimulation Team, Bordeaux University Hospital, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, the Netherlands (P.R.H., M.S., J.W., F.W.P., T.D., J.L.)
| | - Sylvain Ploux
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiac Electrophysiology and Cardiac Stimulation Team, Bordeaux University Hospital, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, the Netherlands (P.R.H., M.S., J.W., F.W.P., T.D., J.L.)
| | - Marc Strik
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiac Electrophysiology and Cardiac Stimulation Team, Bordeaux University Hospital, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, the Netherlands (P.R.H., M.S., J.W., F.W.P., T.D., J.L.)
| | - John Walmsley
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiac Electrophysiology and Cardiac Stimulation Team, Bordeaux University Hospital, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, the Netherlands (P.R.H., M.S., J.W., F.W.P., T.D., J.L.)
| | - Philippe Ritter
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiac Electrophysiology and Cardiac Stimulation Team, Bordeaux University Hospital, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, the Netherlands (P.R.H., M.S., J.W., F.W.P., T.D., J.L.)
| | - Michel Haissaguerre
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiac Electrophysiology and Cardiac Stimulation Team, Bordeaux University Hospital, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, the Netherlands (P.R.H., M.S., J.W., F.W.P., T.D., J.L.)
| | - Frits W. Prinzen
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiac Electrophysiology and Cardiac Stimulation Team, Bordeaux University Hospital, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, the Netherlands (P.R.H., M.S., J.W., F.W.P., T.D., J.L.)
| | - Tammo Delhaas
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiac Electrophysiology and Cardiac Stimulation Team, Bordeaux University Hospital, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, the Netherlands (P.R.H., M.S., J.W., F.W.P., T.D., J.L.)
| | - Joost Lumens
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiac Electrophysiology and Cardiac Stimulation Team, Bordeaux University Hospital, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, the Netherlands (P.R.H., M.S., J.W., F.W.P., T.D., J.L.)
| | - Pierre Bordachar
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiac Electrophysiology and Cardiac Stimulation Team, Bordeaux University Hospital, Pessac, France (P.R.H., S.P., M.S., P.R., M.H., J.L., P.B.). Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, the Netherlands (P.R.H., M.S., J.W., F.W.P., T.D., J.L.)
| |
Collapse
|
21
|
Clementy N, Laborie G, Pierre B, Benhenda N, Babuty D, Fauchier L. Three-dimensional interlead distance predicts response and outcomes after cardiac resynchronization therapy. Arch Cardiovasc Dis 2017; 110:590-598. [PMID: 28734687 DOI: 10.1016/j.acvd.2017.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/30/2016] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Approximately one-third of patients do not respond favourably to cardiac resynchronization therapy (CRT). A longer distance between ventricular leads may improve response. AIM To study the impact of the true three-dimensional interlead distance (ILD) on outcomes. METHODS Consecutive patients undergoing CRT device implantation were included prospectively. Interlead separation was measured from postprocedural anterior-posterior and lateral chest X-rays. The three-dimensional ILD was calculated using the Pythagorean theorem. Response to CRT was defined using a composite clinical score at 6 months. RESULTS Forty-two patients were included (mean age 70±9 years; QRS duration 154±31ms; left ventricular ejection fraction 26±7%; 50% ischaemic). At 6 months, 71% of patients were considered to be responders. Responders had a significantly longer ILD (108±17 vs. 87±21mm; P=0.002). When the ILD was corrected for cardiac size, the optimal cut-off value was ≥ 0.53 for predicting response (sensitivity 83%, specificity 75%, area under the curve 0.84; P=0.0002). Similar results were obtained in a historical retrospective cohort. The use of proximal electrodes on the left ventricular lead was associated with a longer ILD in 95% of patients, compared with more distal pacing configurations. In the total cohort of 74 patients (median follow-up, 420 days), those with an indexed ILD ≥ 0.53 had a 70% reduction in risk of hospitalization for heart failure (P=0.004). CONCLUSION Longer three-dimensional ILD corrected for cardiac size measured on chest radiographs can accurately predict response to CRT and outcomes. This simple variable may be used to identify optimal lead placement and pacing configuration during CRT implantation.
Collapse
Affiliation(s)
- Nicolas Clementy
- Cardiology Department, François Rabelais University, Tours, France.
| | | | - Bertrand Pierre
- Cardiology Department, François Rabelais University, Tours, France
| | - Nazih Benhenda
- Cardiology Department, François Rabelais University, Tours, France
| | - Dominique Babuty
- Cardiology Department, François Rabelais University, Tours, France
| | - Laurent Fauchier
- Cardiology Department, François Rabelais University, Tours, France
| |
Collapse
|
22
|
Okada JI, Washio T, Nakagawa M, Watanabe M, Kadooka Y, Kariya T, Yamashita H, Yamada Y, Momomura SI, Nagai R, Hisada T, Sugiura S. Multi-scale, tailor-made heart simulation can predict the effect of cardiac resynchronization therapy. J Mol Cell Cardiol 2017; 108:17-23. [PMID: 28502795 DOI: 10.1016/j.yjmcc.2017.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND The currently proposed criteria for identifying patients who would benefit from cardiac resynchronization therapy (CRT) still need to be optimized. A multi-scale heart simulation capable of reproducing the electrophysiology and mechanics of a beating heart may help resolve this problem. The objective of this retrospective study was to test the capability of patient-specific simulation models to reproduce the response to CRT by applying the latest multi-scale heart simulation technology. METHODS AND RESULTS We created patient-specific heart models with realistic three-dimensional morphology based on the clinical data recorded before treatment in nine patients with heart failure and conduction block treated by biventricular pacing. Each model was tailored to reproduce the surface electrocardiogram and hemodynamics of each patient in formats similar to those used in clinical practice, including electrocardiography (ECG), echocardiography, and hemodynamic measurements. We then performed CRT simulation on each heart model according to the actual pacing protocol and compared the results with the clinical data. CRT simulation improved the ECG index and diminished wall motion dyssynchrony in each patient. These results, however, did not correlate with the actual response. The best correlation was obtained between the maximum value of the time derivative of ventricular pressure (dP/dtmax) and the clinically observed improvement in the ejection fraction (EF) (r=0.94, p<0.01). CONCLUSIONS By integrating the complex pathophysiology of the heart, patient-specific, multi-scale heart simulation could successfully reproduce the response to CRT. With further verification, this technique could be a useful tool in clinical decision making.
Collapse
Affiliation(s)
- Jun-Ichi Okada
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba 277-0871, Japan.
| | - Takumi Washio
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba 277-0871, Japan
| | - Machiko Nakagawa
- Healthcare System Unit, Fujitsu Ltd., Ota-ku, Tokyo 144-8588, Japan
| | | | | | - Taro Kariya
- Department of Cardiovascular Medicine, School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroshi Yamashita
- Department of Cardiovascular Medicine, School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoko Yamada
- Department of Cardiovascular Medicine, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Shin-Ichi Momomura
- Department of Cardiovascular Medicine, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Ryozo Nagai
- Department of Cardiovascular Medicine, School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshiaki Hisada
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba 277-0871, Japan; Healthcare System Unit, Fujitsu Ltd., Ota-ku, Tokyo 144-8588, Japan
| | - Seiryo Sugiura
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba 277-0871, Japan
| |
Collapse
|
23
|
Soto Iglesias D, Duchateau N, Kostantyn Butakov CB, Andreu D, Fernandez-Armenta J, Bijnens B, Berruezo A, Sitges M, Camara O. Quantitative Analysis of Electro-Anatomical Maps: Application to an Experimental Model of Left Bundle Branch Block/Cardiac Resynchronization Therapy. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2016; 5:1900215. [PMID: 29164019 PMCID: PMC5477765 DOI: 10.1109/jtehm.2016.2634006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/08/2016] [Accepted: 11/14/2016] [Indexed: 01/02/2023]
Abstract
Electro-anatomical maps (EAMs) are commonly acquired in clinical routine for guiding
ablation therapies. They provide voltage and activation time information on a 3-D
anatomical mesh representation, making them useful for analyzing the electrical
activation patterns in specific pathologies. However, the variability between the
different acquisitions and anatomies hampers the comparison between different maps.
This paper presents two contributions for the analysis of electrical patterns in EAM
data from biventricular surfaces of cardiac chambers. The first contribution is an
integrated automatic 2-D disk representation (2-D bull’s eye plot) of the left
ventricle (LV) and right ventricle (RV) obtained with a quasi-conformal mapping from
the 3-D EAM meshes, that allows an analysis of cardiac resynchronization therapy
(CRT) lead positioning, interpretation of global (total activation time), and local
indices (local activation time (LAT), surrogates of conduction velocity,
inter-ventricular, and transmural delays) that characterize changes in the electrical
activation pattern. The second contribution is a set of indices derived from the
electrical activation: speed maps, computed from LAT values, to study the electrical
wave propagation, and histograms of isochrones to analyze regional electrical
heterogeneities in the ventricles. We have applied the proposed methods to look for
the underlying physiological mechanisms of left bundle branch block (LBBB) and CRT,
with the goal of optimizing the therapy by improving CRT response. To better
illustrate the benefits of the proposed tools, we created a set of synthetically
generated and fully controlled activation patterns, where the proposed representation
and indices were validated. Then, the proposed analysis tools are used to analyze EAM
data from an experimental swine model of induced LBBB with an implanted CRT device.
We have analyzed and compared the electrical activation patterns at baseline, LBBB,
and CRT stages in four animals: two without any structural disease and two with an
induced infarction. By relating the CRT lead location with electrical dyssynchrony,
we evaluated current hypotheses about lead placement in CRT and showed that optimal
pacing sites should target the RV lead close to the apex and the LV one distant from
it.
Collapse
Affiliation(s)
- David Soto Iglesias
- PhySense, Information and Communication Technologies DepartmentUniversitat Pompeu Fabra.,Cardiology DepartmentThorax Institute, Hospital Clinic
| | | | | | - David Andreu
- Cardiology DepartmentThorax Institute, Hospital Clinic
| | | | - Bart Bijnens
- PhySense, Information and Communication Technologies DepartmentUniversitat Pompeu Fabra.,Catalan Institution for Research and Advanced Studies
| | | | - Marta Sitges
- Cardiology DepartmentThorax Institute, Hospital Clinic
| | - Oscar Camara
- PhySense, Information and Communication Technologies DepartmentUniversitat Pompeu Fabra
| |
Collapse
|
24
|
Gorcsan J. Multimodality lead positioning for cardiac resynchronization therapy: how much imaging do we need? Eur J Heart Fail 2016; 18:1383-1385. [DOI: 10.1002/ejhf.661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- John Gorcsan
- University of Pittsburgh; Scaife Hall 564, 200 Lothrop Street Pittsburgh PA 5213-2582 USA
| |
Collapse
|
25
|
Nguyên UC, Mafi-Rad M, Aben JP, Smulders MW, Engels EB, van Stipdonk AMW, Luermans JGLM, Bekkers SCAM, Prinzen FW, Vernooy K. A novel approach for left ventricular lead placement in cardiac resynchronization therapy: Intraprocedural integration of coronary venous electroanatomic mapping with delayed enhancement cardiac magnetic resonance imaging. Heart Rhythm 2016; 14:110-119. [PMID: 27663606 DOI: 10.1016/j.hrthm.2016.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Placing the left ventricular (LV) lead at a site of late electrical activation remote from scar is desired to improve cardiac resynchronization therapy (CRT) response. OBJECTIVE The purpose of this study was to integrate coronary venous electroanatomic mapping (EAM) with delayed enhancement cardiac magnetic resonance (DE-CMR) enabling LV lead guidance to the latest activated vein remote from scar. METHODS Eighteen CRT candidates with focal scar on DE-CMR were prospectively included. DE-CMR images were semi-automatically analyzed. Coronary venous EAM was performed intraprocedurally and integrated with DE-CMR to guide LV lead placement in real time. Image integration accuracy and electrogram parameters were evaluated offline. RESULTS Integration of EAM and DE-CMR was achieved using 8.9 ± 2.8 anatomic landmarks and with accuracy of 4.7 ± 1.1 mm (mean ± SD). Maximal electrical delay ranged between 72 and 197ms (57%-113% of QRS duration) and was heterogeneously located among individuals. In 12 patients, the latest activated vein was located outside scar, and placing the LV lead in the latest activated vein remote from scar was accomplished in 10 patients and prohibited in 2 patients. In the other 6 patients, the latest activated vein was located in scar, and targeting alternative veins was considered. Unipolar voltages were on average lower in scar compared to nonscar (6.71 ± 3.45 mV vs 8.18 ± 4.02 mV [median ± interquartile range), P <.001) but correlated weakly with DE-CMR scar extent (R -0.161, P <.001) and varied widely among individual patients. CONCLUSION Integration of coronary venous EAM with DE-CMR can be used during CRT implantation to guide LV lead placement to the latest activated vein remote from scar, possibly improving CRT.
Collapse
Affiliation(s)
- Uyên Châu Nguyên
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands.
| | - Masih Mafi-Rad
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Martijn W Smulders
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Elien B Engels
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | | | - Justin G L M Luermans
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
26
|
Panthee N, Okada JI, Washio T, Mochizuki Y, Suzuki R, Koyama H, Ono M, Hisada T, Sugiura S. Tailor-made heart simulation predicts the effect of cardiac resynchronization therapy in a canine model of heart failure. Med Image Anal 2016; 31:46-62. [PMID: 26973218 DOI: 10.1016/j.media.2016.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 11/25/2022]
Abstract
Despite extensive studies on clinical indices for the selection of patient candidates for cardiac resynchronization therapy (CRT), approximately 30% of selected patients do not respond to this therapy. Herein, we examined whether CRT simulations based on individualized realistic three-dimensional heart models can predict the therapeutic effect of CRT in a canine model of heart failure with left bundle branch block. In four canine models of failing heart with dyssynchrony, individualized three-dimensional heart models reproducing the electromechanical activity of each animal were created based on the computer tomographic images. CRT simulations were performed for 25 patterns of three ventricular pacing lead positions. Lead positions producing the best and the worst therapeutic effects were selected in each model. The validity of predictions was tested in acute experiments in which hearts were paced from the sites identified by simulations. We found significant correlations between the experimentally observed improvement in ejection fraction (EF) and the predicted improvements in ejection fraction (P<0.01) or the maximum value of the derivative of left ventricular pressure (P<0.01). The optimal lead positions produced better outcomes compared with the worst positioning in all dogs studied, although there were significant variations in responses. Variations in ventricular wall thickness among the dogs may have contributed to these responses. Thus CRT simulations using the individualized three-dimensional heart models can predict acute hemodynamic improvement, and help determine the optimal positions of the pacing lead.
Collapse
Affiliation(s)
- Nirmal Panthee
- Department of Cardiac Surgery, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Jun-ichi Okada
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871 Japan; UT-Heart Inc. 3-25-8 Nozawa, Setagaya-ku, Tokyo 154-0003 Japan
| | - Takumi Washio
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871 Japan; UT-Heart Inc. 3-25-8 Nozawa, Setagaya-ku, Tokyo 154-0003 Japan
| | - Youhei Mochizuki
- Laboratory of Veterinary Internal Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602 Japan
| | - Ryohei Suzuki
- Laboratory of Veterinary Internal Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602 Japan
| | - Hidekazu Koyama
- Laboratory of Veterinary Internal Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602 Japan
| | - Minoru Ono
- Department of Cardiac Surgery, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Toshiaki Hisada
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871 Japan; UT-Heart Inc. 3-25-8 Nozawa, Setagaya-ku, Tokyo 154-0003 Japan
| | - Seiryo Sugiura
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871 Japan; UT-Heart Inc. 3-25-8 Nozawa, Setagaya-ku, Tokyo 154-0003 Japan.
| |
Collapse
|
27
|
Zusterzeel R, Selzman KA, Sanders WE, O’Callaghan KM, Caños DA, Vernooy K, Prinzen FW, Gorgels APM, Strauss DG. Toward Sex-Specific Guidelines for Cardiac Resynchronization Therapy? J Cardiovasc Transl Res 2015; 9:12-22. [DOI: 10.1007/s12265-015-9663-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/30/2015] [Indexed: 11/28/2022]
|
28
|
Kayvanpour E, Mansi T, Sedaghat-Hamedani F, Amr A, Neumann D, Georgescu B, Seegerer P, Kamen A, Haas J, Frese KS, Irawati M, Wirsz E, King V, Buss S, Mereles D, Zitron E, Keller A, Katus HA, Comaniciu D, Meder B. Towards Personalized Cardiology: Multi-Scale Modeling of the Failing Heart. PLoS One 2015; 10:e0134869. [PMID: 26230546 PMCID: PMC4521877 DOI: 10.1371/journal.pone.0134869] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 07/14/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Despite modern pharmacotherapy and advanced implantable cardiac devices, overall prognosis and quality of life of HF patients remain poor. This is in part due to insufficient patient stratification and lack of individualized therapy planning, resulting in less effective treatments and a significant number of non-responders. METHODS AND RESULTS State-of-the-art clinical phenotyping was acquired, including magnetic resonance imaging (MRI) and biomarker assessment. An individualized, multi-scale model of heart function covering cardiac anatomy, electrophysiology, biomechanics and hemodynamics was estimated using a robust framework. The model was computed on n=46 HF patients, showing for the first time that advanced multi-scale models can be fitted consistently on large cohorts. Novel multi-scale parameters derived from the model of all cases were analyzed and compared against clinical parameters, cardiac imaging, lab tests and survival scores to evaluate the explicative power of the model and its potential for better patient stratification. Model validation was pursued by comparing clinical parameters that were not used in the fitting process against model parameters. CONCLUSION This paper illustrates how advanced multi-scale models can complement cardiovascular imaging and how they could be applied in patient care. Based on obtained results, it becomes conceivable that, after thorough validation, such heart failure models could be applied for patient management and therapy planning in the future, as we illustrate in one patient of our cohort who received CRT-D implantation.
Collapse
Affiliation(s)
- Elham Kayvanpour
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Tommaso Mansi
- Siemens Corporation, Corporate Technology, Imaging and Computer Vision, Princeton, New Jersey, United States of America
| | - Farbod Sedaghat-Hamedani
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Ali Amr
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Dominik Neumann
- Siemens Corporation, Corporate Technology, Imaging and Computer Vision, Princeton, New Jersey, United States of America
| | - Bogdan Georgescu
- Siemens Corporation, Corporate Technology, Imaging and Computer Vision, Princeton, New Jersey, United States of America
| | - Philipp Seegerer
- Siemens Corporation, Corporate Technology, Imaging and Computer Vision, Princeton, New Jersey, United States of America
| | - Ali Kamen
- Siemens Corporation, Corporate Technology, Imaging and Computer Vision, Princeton, New Jersey, United States of America
| | - Jan Haas
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Karen S. Frese
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Maria Irawati
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Emil Wirsz
- Siemens AG, Corporate Technology, Erlangen, Germany
| | - Vanessa King
- Siemens Corporation, Corporate Technology, Sensor Technologies, Princeton, New Jersey, United States of America
| | - Sebastian Buss
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Derliz Mereles
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Edgar Zitron
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Andreas Keller
- Biomarker Discovery Center Heidelberg, Heidelberg, Germany
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Hugo A. Katus
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
- Klaus Tschira Institute for Computational Cardiology, Heidelberg, Germany
| | - Dorin Comaniciu
- Siemens Corporation, Corporate Technology, Imaging and Computer Vision, Princeton, New Jersey, United States of America
| | - Benjamin Meder
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
- Klaus Tschira Institute for Computational Cardiology, Heidelberg, Germany
| |
Collapse
|
29
|
Walmsley J, Arts T, Derval N, Bordachar P, Cochet H, Ploux S, Prinzen FW, Delhaas T, Lumens J. Fast Simulation of Mechanical Heterogeneity in the Electrically Asynchronous Heart Using the MultiPatch Module. PLoS Comput Biol 2015. [PMID: 26204520 PMCID: PMC4512705 DOI: 10.1371/journal.pcbi.1004284] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cardiac electrical asynchrony occurs as a result of cardiac pacing or conduction disorders such as left bundle-branch block (LBBB). Electrically asynchronous activation causes myocardial contraction heterogeneity that can be detrimental for cardiac function. Computational models provide a tool for understanding pathological consequences of dyssynchronous contraction. Simulations of mechanical dyssynchrony within the heart are typically performed using the finite element method, whose computational intensity may present an obstacle to clinical deployment of patient-specific models. We present an alternative based on the CircAdapt lumped-parameter model of the heart and circulatory system, called the MultiPatch module. Cardiac walls are subdivided into an arbitrary number of patches of homogeneous tissue. Tissue properties and activation time can differ between patches. All patches within a wall share a common wall tension and curvature. Consequently, spatial location within the wall is not required to calculate deformation in a patch. We test the hypothesis that activation time is more important than tissue location for determining mechanical deformation in asynchronous hearts. We perform simulations representing an experimental study of myocardial deformation induced by ventricular pacing, and a patient with LBBB and heart failure using endocardial recordings of electrical activation, wall volumes, and end-diastolic volumes. Direct comparison between simulated and experimental strain patterns shows both qualitative and quantitative agreement between model fibre strain and experimental circumferential strain in terms of shortening and rebound stretch during ejection. Local myofibre strain in the patient simulation shows qualitative agreement with circumferential strain patterns observed in the patient using tagged MRI. We conclude that the MultiPatch module produces realistic regional deformation patterns in the asynchronous heart and that activation time is more important than tissue location within a wall for determining myocardial deformation. The CircAdapt model is therefore capable of fast and realistic simulations of dyssynchronous myocardial deformation embedded within the closed-loop cardiovascular system. Under normal conditions, the electrical activation of the heart is almost synchronous, leading to uniform contraction. Due to either pathology or electrical pacing, the heart can be activated asynchronously. The result is discoordinated contraction and a reduction in the ability to pump blood. There is considerable interest in using computer simulations to understand how asynchronous electrical activation affects cardiac deformation, and how pathologies of the cardiac conduction system can be treated by pacing the heart. We present the MultiPatch module for simulating the effects of asynchronous electrical activation on cardiac contraction in the relatively simple CircAdapt model of the heart and circulation. We quantitatively compare model simulations to deformation patterns recorded during an experimental study of pacing-induced electrical asynchrony. We then demonstrate a ‘patient-specific’ simulation of deformation in a patient with a conduction disorder called left bundle-branch block. We use timings from endocardial mapping of electrical activation in a patient as an input for the model, and compare the resulting simulated deformation patterns to tagged magnetic resonance imaging recordings from the same patient. The model qualitatively reproduces deformation as observed in the patient. We conclude that the MultiPatch module makes CircAdapt appropriate for simulation of dyssynchronous heart failure in patients.
Collapse
Affiliation(s)
- John Walmsley
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- * E-mail:
| | - Theo Arts
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Nicolas Derval
- Hôpital Cardiologique du Haut-Lévêque, IHU-LIRYC, CHU de Bordeaux, Bordeaux, France
| | - Pierre Bordachar
- Hôpital Cardiologique du Haut-Lévêque, IHU-LIRYC, CHU de Bordeaux, Bordeaux, France
| | - Hubert Cochet
- Hôpital Cardiologique du Haut-Lévêque, IHU-LIRYC, CHU de Bordeaux, Bordeaux, France
| | - Sylvain Ploux
- Hôpital Cardiologique du Haut-Lévêque, IHU-LIRYC, CHU de Bordeaux, Bordeaux, France
| | - Frits W. Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Hôpital Cardiologique du Haut-Lévêque, IHU-LIRYC, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
30
|
|
31
|
Virag N, Jacquemet V, Kappenberger L, Auricchio A. Seventh TRM Forum on Computer Simulation and Experimental Assessment of Cardiac Function: creating the basis for tailored therapies. Europace 2014; 16 Suppl 4:iv1-iv2. [PMID: 25362158 DOI: 10.1093/europace/euu253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nathalie Virag
- TRM Foundation, Lausanne, Switzerland and Medtronic Europe, Tolochenaz, Switzerland
| | - Vincent Jacquemet
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, 5400 boul. Gouin Ouest, Montreal, QC, Canada H4J 1C5 Département de Physiologie Moléculaire et Intégrative, Institut de Génie Biomédical, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | | | - Angelo Auricchio
- Division of Cardiology, Fondazione Cardiocentro Ticino, Lugano, Switzerland Center of Computational Medicine in Cardiology, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|