1
|
Balla C, Canovi L, Zuin M, Di Lenno L, Berloni ML, de Carolis B, Di Domenico A, Tonet E, Vitali F, Malagu M, Boriani G, Bertini M. Cardiac Conduction Disorders Due to Acquired or Genetic Causes in Young Adults: A Review of the Current Literature. J Am Heart Assoc 2025; 14:e040274. [PMID: 40314370 DOI: 10.1161/jaha.124.040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Cardiac conduction disorders can manifest in young adults in isolated forms, associated with myocardial diseases or as part of a multiorgan disorder. Underlying causes of cardiac conduction disorders may be genetically determined or acquired. Cardiac conduction disorder in young adults is a complex and often underestimated and underrecognized disease that may need of a multidisciplinary team for the diagnosis, treatment, and long-term management of these patients. Therefore, it is crucial to raise clinicians' awareness of this condition. In this review, we provide a comprehensive update on the cause, diagnosis, and treatment of young adults with cardiac conduction disorders, also suggesting potential strategies to improve the current clinical management of these patients.
Collapse
Affiliation(s)
- Cristina Balla
- Cardiology Unit Azienda Ospedaliero-Universitaria di Ferrara Cona FE Italy
| | - Luca Canovi
- Cardiology Unit Azienda Ospedaliero-Universitaria di Ferrara Cona FE Italy
| | - Marco Zuin
- Cardiology Unit Azienda Ospedaliero-Universitaria di Ferrara Cona FE Italy
| | - Luca Di Lenno
- Pediatric Cardiology and Adult Congenital Heart Disease Program, Department of Cardio-Thoracic and Vascular Medicine IRCCS Azienda Ospedaliero-Universitaria di Bologna Bologna Italy
| | - Maria L Berloni
- Cardiology Unit Azienda Ospedaliero-Universitaria di Ferrara Cona FE Italy
| | | | | | - Elisabetta Tonet
- Cardiology Unit Azienda Ospedaliero-Universitaria di Ferrara Cona FE Italy
| | - Francesco Vitali
- Cardiology Unit Azienda Ospedaliero-Universitaria di Ferrara Cona FE Italy
| | - Michele Malagu
- Cardiology Unit Azienda Ospedaliero-Universitaria di Ferrara Cona FE Italy
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences University of Modena and Reggio Emilia, Policlinico di Modena Modena Italy
| | - Matteo Bertini
- Cardiology Unit Azienda Ospedaliero-Universitaria di Ferrara Cona FE Italy
| |
Collapse
|
2
|
Muñoz-Martín N, Simon-Chica A, Díaz-Díaz C, Cadenas V, Temiño S, Esteban I, Ludwig A, Schormair B, Winkelmann J, Olejnickova V, Sedmera D, Filgueiras-Rama D, Torres M. Meis transcription factors regulate cardiac conduction system development and adult function. Cardiovasc Res 2025; 121:311-323. [PMID: 39691060 PMCID: PMC12012448 DOI: 10.1093/cvr/cvae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 12/19/2024] Open
Abstract
AIMS The cardiac conduction system (CCS) is progressively specified during development by interactions among a discrete number of transcription factors (TFs) that ensure its proper patterning and the emergence of its functional properties. Meis genes encode homeodomain TFs with multiple roles in mammalian development. In humans, Meis genes associate with congenital cardiac malformations and alterations of cardiac electrical activity; however, the basis for these alterations has not been established. Here, we studied the role of Meis TFs in cardiomyocyte development and function during mouse development and adult life. METHODS AND RESULTS We studied Meis1 and Meis2 conditional deletion mouse models that allowed cardiomyocyte-specific elimination of Meis function during development and inducible elimination of Meis function in cardiomyocytes of the adult CCS. We studied cardiac anatomy, contractility, and conduction. We report that Meis factors are global regulators of cardiac conduction, with a predominant role in the CCS. While constitutive Meis deletion in cardiomyocytes led to congenital malformations of the arterial pole and atria, as well as defects in ventricular conduction, Meis elimination in cardiomyocytes of the adult CCS produced sinus node dysfunction and delayed atrio-ventricular conduction. Molecular analyses unravelled Meis-controlled molecular pathways associated with these defects. Finally, we studied in transgenic mice the activity of a Meis1 human enhancer related to an single-nucleotide polymorphism (SNP) associated by Genome-wide association studies (GWAS) to PR (P and R waves of the electrocardiogram) elongation and found that the transgene drives expression in components of the atrio-ventricular conduction system. CONCLUSION Our study identifies Meis TFs as essential regulators of the establishment of cardiac conduction function during development and its maintenance during adult life. In addition, we generated animal models and identified molecular alterations that will ease the study of Meis-associated conduction defects and congenital malformations in humans.
Collapse
MESH Headings
- Animals
- Myeloid Ecotropic Viral Integration Site 1 Protein/genetics
- Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism
- Myeloid Ecotropic Viral Integration Site 1 Protein/deficiency
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Heart Conduction System/metabolism
- Heart Conduction System/physiopathology
- Heart Conduction System/growth & development
- Mice, Knockout
- Gene Expression Regulation, Developmental
- Action Potentials
- Heart Rate
- Phenotype
- Myocardial Contraction
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/physiopathology
- Age Factors
- Sinoatrial Node/metabolism
- Sinoatrial Node/physiopathology
Collapse
Affiliation(s)
- Noelia Muñoz-Martín
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - Ana Simon-Chica
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - Covadonga Díaz-Díaz
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - Vanessa Cadenas
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 3-5 Av. Monforte de Lemos, Madrid 28029, Spain
| | - Susana Temiño
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 3-5 Av. Monforte de Lemos, Madrid 28029, Spain
| | - Isaac Esteban
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 17 Fahrstraße, Erlangen 91054, Germany
| | - Barbara Schormair
- Institute of Neurogenomics, Helmholtz-Zentrum, 1 Ingolstädter Landstraße, Neuherberg 85764, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz-Zentrum, 1 Ingolstädter Landstraße, Neuherberg 85764, Germany
| | - Veronika Olejnickova
- First Faculty of Medicine, Institute of Anatomy, Charles University, U Nemocnice 3, Praha 2, 128 00, Czech Republic
| | - David Sedmera
- First Faculty of Medicine, Institute of Anatomy, Charles University, U Nemocnice 3, Praha 2, 128 00, Czech Republic
| | - David Filgueiras-Rama
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 3-5 Av. Monforte de Lemos, Madrid 28029, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle del Prof Martín Lagos, Madrid 28040, Spain
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 3 Melchor Fernández Almagro, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 3-5 Av. Monforte de Lemos, Madrid 28029, Spain
| |
Collapse
|
3
|
Etheridge SP, Strasburger JF. Immune and non-immune congenital heart block: a tale of two very different entities. Europace 2025; 27:euaf041. [PMID: 40036946 PMCID: PMC11919813 DOI: 10.1093/europace/euaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Affiliation(s)
- Susan P Etheridge
- Division of Cardiology, Department of Pediatrics, Children’s St. Lukes Hospital, Boise, ID 83712, USA
- Stanford Lucile Packard Children’s, Palo Alto, CA 94304, USA
| | - Janette F Strasburger
- Professor of Pediatrics and Biomedical Engineering, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
4
|
Stark CM, Hughes BN, Schacht JP, Urbina TM. Decoding Hearts: Genetic Insights and Clinical Strategies in Congenital Heart Disease. Neoreviews 2025; 26:e73-e88. [PMID: 39889766 DOI: 10.1542/neo.26-2-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/02/2024] [Indexed: 02/03/2025]
Abstract
Structural congenital heart disease (CHD) represents a heterogeneous group of cardiac anomalies of variable embryologic and molecular origins. A basic understanding of the genetics implicated in nonsyndromic (isolated) and syndromic structural CHD can better inform management decisions and family counseling. When a fetus or neonate develops CHD as a result of a genetic cause, it can be due to a mutation or a monogenic, oligogenic, or polygenic pathogenic variant. In this review, we summarize basic cardiac embryology in the context of genetic signaling pathways and proteins that are commonly implicated in syndromic and nonsyndromic structural CHD. We also provide an overview of the basic genetic evaluation in infants with common syndromic structural CHD.
Collapse
Affiliation(s)
- Christopher M Stark
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Brian N Hughes
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - John Paul Schacht
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Theresa M Urbina
- Department of Pediatrics, Madigan Army Medical Center, Tacoma, Washington
| |
Collapse
|
5
|
Sleiman Y, Reisqs JB, Bianca Tan R, Cecchin F, Chahine M, Boutjdir M. Generation of an iPSC cell line (VANYHHi001-A) from a patient with cardiac arrythmias carrying CACNA1D, SCN5A, and DSP variants. Stem Cell Res 2024; 81:103608. [PMID: 39551029 DOI: 10.1016/j.scr.2024.103608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] Open
Abstract
Progressive cardiac conduction defect often associated with variants in sodium voltage-gated channel SCN5A gene and variants in the L-type calcium voltage-gated channel CACNA1D gene are implicated in sinoatrial node dysfunction. We generated an induced pluripotent stem cell line (iPSC) from a 13-year-old patient with history of conduction system disease and ventricular tachycardia, carrying variants in SCN5A (c.2618C > G), CACNA1D (c.3786G > T), and DSP (c.1582C > G). The generated iPSC line exhibited pluripotency markers, differentiated into the three embryonic germ layers, and maintained a normal karyotype. This iPSC line offers insights into the pathophysiological mechanisms of cardiac arrhythmias and personalized therapies development.
Collapse
Affiliation(s)
- Yvonne Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, NY, USA
| | | | - Reina Bianca Tan
- Division of Pediatric Cardiology, Department of Pediatrics, NYU Grossman School of Medicine, NY, USA
| | - Frank Cecchin
- Division of Pediatric Cardiology, Department of Pediatrics, NYU Grossman School of Medicine, NY, USA
| | - Mohamed Chahine
- CERVO Brain Research Centre, Institut Universitaire en Santé Mentale de Québec, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 06A, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, NY, USA; Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, NY, USA; Department of Medicine, New York University Grossman School of Medicine, NY, USA.
| |
Collapse
|
6
|
Guo S, Zha L. Pathogenesis and Clinical Characteristics of Hereditary Arrhythmia Diseases. Genes (Basel) 2024; 15:1368. [PMID: 39596569 PMCID: PMC11593610 DOI: 10.3390/genes15111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Hereditary arrhythmias, as a class of cardiac electrophysiologic abnormalities caused mainly by genetic mutations, have gradually become one of the most important causes of sudden cardiac death in recent years. With the continuous development of genetics and molecular biology techniques, the study of inherited arrhythmias has made remarkable progress in the past few decades. More and more disease-causing genes are being identified, and there have been advances in the application of genetic testing for disease screening in individuals with disease and their family members. Determining more refined disease prevention strategies and therapeutic regimens that are tailored to the genetic characteristics and molecular pathogenesis of different groups or individuals forms the basis of individualized treatment. Understanding advances in the study of inherited arrhythmias provides important clues to better understand their pathogenesis and clinical features. This article provides a review of the pathophysiologic alterations caused by genetic variants and their relationship to disease phenotypes, including mainly cardiac ion channelopathies and cardiac conduction disorders.
Collapse
Affiliation(s)
- Shuang Guo
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Nguyen Tat T, Lien NTK, Luu Sy H, Ta Van T, Dang Viet D, Nguyen Thi H, Tung NV, Thanh LT, Xuan NT, Hoang NH. Identifying the Pathogenic Variants in Heart Genes in Vietnamese Sudden Unexplained Death Victims by Next-Generation Sequencing. Diagnostics (Basel) 2024; 14:1876. [PMID: 39272661 PMCID: PMC11394071 DOI: 10.3390/diagnostics14171876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
In forensics, one-third of sudden deaths remain unexplained after a forensic autopsy. A majority of these sudden unexplained deaths (SUDs) are considered to be caused by inherited cardiovascular diseases. In this study, we investigated 40 young SUD cases (<40 years), with non-diagnostic structural cardiac abnormalities, using Targeted NGS (next-generation sequencing) for 167 genes previously associated with inherited cardiomyopathies and channelopathies. Fifteen cases identified 17 variants on related genes including the following: AKAP9, CSRP3, GSN, HTRA1, KCNA5, LAMA4, MYBPC3, MYH6, MYLK, RYR2, SCN5A, SCN10A, SLC4A3, TNNI3, TNNI3K, and TNNT2. Of these, eight variants were novel, and nine variants were reported in the ClinVar database. Five were determined to be pathogenic and four were not evaluated. The novel and unevaluated variants were predicted by using in silico tools, which revealed that four novel variants (c.5187_5188dup, p.Arg1730llefsTer4 in the AKAP9 gene; c.1454A>T, p.Lys485Met in the MYH6 gene; c.2535+1G>A in the SLC4A3 gene; and c.10498G>T, p.Asp3500Tyr in the RYR2 gene) were pathogenic and three variants (c.292C>G, p.Arg98Gly in the TNNI3 gene; c.683C>A, p.Pro228His in the KCN5A gene; and c.2275G>A, p.Glu759Lys in the MYBPC3 gene) still need to be further verified experimentally. The results of our study contributed to the general understanding of the causes of SUDs. They provided a scientific basis for screening the risk of sudden death in family members of victims. They also suggested that the Targeted NGS method may be used to identify the pathogenic variants in SUD victims.
Collapse
Affiliation(s)
- Tho Nguyen Tat
- Department of Forensic Medicine, Hanoi Medical University, 1 Ton That Tung Str., Dongda, Hanoi 100000, Vietnam
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Hung Luu Sy
- Department of Forensic Medicine, Hanoi Medical University, 1 Ton That Tung Str., Dongda, Hanoi 100000, Vietnam
| | - To Ta Van
- Department of Pathology, National Cancer Hospital, 43 Quan Su Str., Hoan Kiem, Hanoi 100000, Vietnam
| | - Duc Dang Viet
- Cardiovascular Intensive Care Unit, Heart Institute, 108 Military Central Hospital, 1B Tran Hung Dao Str., Hai Ba Trung, Hanoi 100000, Vietnam
| | - Hoa Nguyen Thi
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Le Tat Thanh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| |
Collapse
|
8
|
Takase B, Ikeda T, Shimizu W, Abe H, Aiba T, Chinushi M, Koba S, Kusano K, Niwano S, Takahashi N, Takatsuki S, Tanno K, Watanabe E, Yoshioka K, Amino M, Fujino T, Iwasaki YK, Kohno R, Kinoshita T, Kurita Y, Masaki N, Murata H, Shinohara T, Yada H, Yodogawa K, Kimura T, Kurita T, Nogami A, Sumitomo N. JCS/JHRS 2022 Guideline on Diagnosis and Risk Assessment of Arrhythmia. Circ J 2024; 88:1509-1595. [PMID: 37690816 DOI: 10.1253/circj.cj-22-0827] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Haruhiko Abe
- Department of Heart Rhythm Management, University of Occupational and Environmental Health, Japan
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center
| | - Masaomi Chinushi
- School of Health Sciences, Niigata University School of Medicine
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Shinichi Niwano
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Seiji Takatsuki
- Department of Cardiology, Keio University School of Medicine
| | - Kaoru Tanno
- Cardiology Division, Cardiovascular Center, Showa University Koto-Toyosu Hospital
| | - Eiichi Watanabe
- Division of Cardiology, Department of Internal Medicine, Fujita Health University Bantane Hospital
| | | | - Mari Amino
- Department of Cardiology, Tokai University School of Medicine
| | - Tadashi Fujino
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Yu-Ki Iwasaki
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Ritsuko Kohno
- Department of Heart Rhythm Management, University of Occupational and Environmental Health, Japan
| | - Toshio Kinoshita
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Yasuo Kurita
- Cardiovascular Center, International University of Health and Welfare, Mita Hospital
| | - Nobuyuki Masaki
- Department of Intensive Care Medicine, National Defense Medical College
| | | | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Hirotaka Yada
- Department of Cardiology, International University of Health and Welfare, Mita Hospital
| | - Kenji Yodogawa
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Takeshi Kimura
- Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | | | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | - Naokata Sumitomo
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center
| |
Collapse
|
9
|
Balla C, Margutti A, De Carolis B, Canovi L, Di Domenico A, Vivaldi I, Vitali F, De Raffele M, Malagù M, Sassone B, Biffi M, Selvatici R, Ferlini A, Gualandi F, Bertini M. Cardiac conduction disorders in young adults: Clinical characteristics and genetic background of an underestimated population. Heart Rhythm 2024; 21:1363-1369. [PMID: 38467355 DOI: 10.1016/j.hrthm.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Cardiac conduction disorder (CCD) in patients <50 years old is a rare and mostly unknown condition. OBJECTIVE We aimed to assess clinical characteristics and genetic background of patients <50 years old with CCD of unknown origin. METHODS We retrospectively reviewed a consecutive series of patients with a diagnosis of CCD before the age of 50 years referred to our center between January 2019 and December 2021. Patients underwent complete clinical examination and genetic evaluation. RESULTS We enrolled 39 patients with a median age of 40 years (28-47 years) at the onset of symptoms. A cardiac implantable electronic device was implanted in 69% of the patients. In 15 of 39 CCD index patients (38%), we found a total of 13 different gene variations (3 pathogenic, 6 likely pathogenic, and 4 variants of uncertain significance), mostly in 3 genes (SCN5A, TRPM4, and LMNA). In our cohort, genetic testing led to the decision to implant an implantable cardioverter-defibrillator in 2 patients for the increased risk of sudden cardiac death. CONCLUSION Patients with the occurrence of CCD before the age of 50 years present with a high rate of pathologic gene variations, mostly in 3 genes (SCN5A, TRPM4, and LMNA). The presence of pathogenic variations may add information about the prognosis and lead to an individualized therapeutic approach.
Collapse
Affiliation(s)
- Cristina Balla
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy.
| | - Alice Margutti
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Beatrice De Carolis
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Luca Canovi
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Assunta Di Domenico
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Ilaria Vivaldi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Vitali
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Martina De Raffele
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Michele Malagù
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Biagio Sassone
- Division of Cardiology, SS.ma Annunziata Hospital, Department of Emergency, AUSL Ferrara, Cento (Ferrara), Italy
| | - Mauro Biffi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Rita Selvatici
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Gualandi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Matteo Bertini
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| |
Collapse
|
10
|
Wang GQ, Sun XJ, Zhong L. An uncommon atrioventricular block pattern associated with a novel mutation in TTN. QJM 2024; 117:612-614. [PMID: 38608183 DOI: 10.1093/qjmed/hcae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 04/14/2024] Open
Affiliation(s)
- G Q Wang
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - X J Sun
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - L Zhong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
11
|
Takase B, Ikeda T, Shimizu W, Abe H, Aiba T, Chinushi M, Koba S, Kusano K, Niwano S, Takahashi N, Takatsuki S, Tanno K, Watanabe E, Yoshioka K, Amino M, Fujino T, Iwasaki Y, Kohno R, Kinoshita T, Kurita Y, Masaki N, Murata H, Shinohara T, Yada H, Yodogawa K, Kimura T, Kurita T, Nogami A, Sumitomo N, the Japanese Circulation Society and Japanese Heart Rhythm Society Joint Working Group. JCS/JHRS 2022 Guideline on Diagnosis and Risk Assessment of Arrhythmia. J Arrhythm 2024; 40:655-752. [PMID: 39139890 PMCID: PMC11317726 DOI: 10.1002/joa3.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
| | - Takanori Ikeda
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular MedicineNippon Medical School
| | - Haruhiko Abe
- Department of Heart Rhythm ManagementUniversity of Occupational and Environmental HealthJapan
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and GeneticsNational Cerebral and Cardiovascular Center
| | | | - Shinji Koba
- Division of Cardiology, Department of MedicineShowa University School of Medicine
| | - Kengo Kusano
- Department of Cardiovascular MedicineNational Cerebral and Cardiovascular Center
| | - Shinichi Niwano
- Department of Cardiovascular MedicineKitasato University School of Medicine
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of MedicineOita University
| | | | - Kaoru Tanno
- Cardiovascular Center, Cardiology DivisionShowa University Koto‐Toyosu Hospital
| | - Eiichi Watanabe
- Division of Cardiology, Department of Internal MedicineFujita Health University Bantane Hospital
| | | | - Mari Amino
- Department of CardiologyTokai University School of Medicine
| | - Tadashi Fujino
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Yu‐ki Iwasaki
- Department of Cardiovascular MedicineNippon Medical School
| | - Ritsuko Kohno
- Department of Heart Rhythm ManagementUniversity of Occupational and Environmental HealthJapan
| | - Toshio Kinoshita
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Yasuo Kurita
- Cardiovascular Center, Mita HospitalInternational University of Health and Welfare
| | - Nobuyuki Masaki
- Department of Intensive Care MedicineNational Defense Medical College
| | | | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of MedicineOita University
| | - Hirotaka Yada
- Department of CardiologyInternational University of Health and Welfare Mita Hospital
| | - Kenji Yodogawa
- Department of Cardiovascular MedicineNippon Medical School
| | - Takeshi Kimura
- Cardiovascular MedicineKyoto University Graduate School of Medicine
| | | | - Akihiko Nogami
- Department of Cardiology, Faculty of MedicineUniversity of Tsukuba
| | - Naokata Sumitomo
- Department of Pediatric CardiologySaitama Medical University International Medical Center
| | | |
Collapse
|
12
|
Li T, Marashly Q, Kim JA, Li N, Chelu MG. Cardiac conduction diseases: understanding the molecular mechanisms to uncover targets for future treatments. Expert Opin Ther Targets 2024; 28:385-400. [PMID: 38700451 PMCID: PMC11395937 DOI: 10.1080/14728222.2024.2351501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION The cardiac conduction system (CCS) is crucial for maintaining adequate cardiac frequency at rest and modulation during exercise. Furthermore, the atrioventricular node and His-Purkinje system are essential for maintaining atrioventricular and interventricular synchrony and consequently maintaining an adequate cardiac output. AREAS COVERED In this review article, we examine the anatomy, physiology, and pathophysiology of the CCS. We then discuss in detail the most common genetic mutations and the molecular mechanisms of cardiac conduction disease (CCD) and provide our perspectives on future research and therapeutic opportunities in this field. EXPERT OPINION Significant advancement has been made in understanding the molecular mechanisms of CCD, including the recognition of the heterogeneous signaling at the subcellular levels of sinoatrial node, the involvement of inflammatory and autoimmune mechanisms, and the potential impact of epigenetic regulations on CCD. However, the current treatment of CCD manifested as bradycardia still relies primarily on cardiovascular implantable electronic devices (CIEDs). On the other hand, an If specific inhibitor was developed to treat inappropriate sinus tachycardia and sinus tachycardia in heart failure patients with reduced ejection fraction. More work is needed to translate current knowledge into pharmacologic or genetic interventions for the management of CCDs.
Collapse
Affiliation(s)
- Tingting Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Qussay Marashly
- Department of Cardiology, Montefiore Medical Center, New York, NY, USA
| | - Jitae A. Kim
- Division of CardiovasculMedicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Mihail G. Chelu
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Division of Cardiology), Baylor College of Medicine, Houston, TX, USA
- Baylor St. Luke’s Medical Center, Houston, Texas, USA
- Texas Heart Institute, Houston, Texas, USA
| |
Collapse
|
13
|
Silvetti MS, Colonna D, Gabbarini F, Porcedda G, Rimini A, D’Onofrio A, Leoni L. New Guidelines of Pediatric Cardiac Implantable Electronic Devices: What Is Changing in Clinical Practice? J Cardiovasc Dev Dis 2024; 11:99. [PMID: 38667717 PMCID: PMC11050217 DOI: 10.3390/jcdd11040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Guidelines are important tools to guide the diagnosis and treatment of patients to improve the decision-making process of health professionals. They are periodically updated according to new evidence. Four new Guidelines in 2021, 2022 and 2023 referred to pediatric pacing and defibrillation. There are some relevant changes in permanent pacing. In patients with atrioventricular block, the heart rate limit in which pacemaker implantation is recommended was decreased to reduce too-early device implantation. However, it was underlined that the heart rate criterion is not absolute, as signs or symptoms of hemodynamically not tolerated bradycardia may even occur at higher rates. In sinus node dysfunction, symptomatic bradycardia is the most relevant recommendation for pacing. Physiological pacing is increasingly used and recommended when the amount of ventricular pacing is presumed to be high. New recommendations suggest that loop recorders may guide the management of inherited arrhythmia syndromes and may be useful for severe but not frequent palpitations. Regarding defibrillator implantation, the main changes are in primary prevention recommendations. In hypertrophic cardiomyopathy, pediatric risk calculators have been included in the Guidelines. In dilated cardiomyopathy, due to the rarity of sudden cardiac death in pediatric age, low ejection fraction criteria were demoted to class II. In long QT syndrome, new criteria included severely prolonged QTc with different limits according to genotype, and some specific mutations. In arrhythmogenic cardiomyopathy, hemodynamically tolerated ventricular tachycardia and arrhythmic syncope were downgraded to class II recommendation. In conclusion, these new Guidelines aim to assess all aspects of cardiac implantable electronic devices and improve treatment strategies.
Collapse
Affiliation(s)
- Massimo Stefano Silvetti
- Paediatric Cardiology and Cardiac Arrhythmia/Syncope Unit, Bambino Gesù Children’s Hospital IRCCS, European Reference Network for Rare and Low Prevalence Complex Disease of the Heart (ERN GUARD-Heart), 00100 Rome, Italy
| | - Diego Colonna
- Adult Congenital Heart Disease Unit, Monaldi Hospital, 80131 Naples, Italy;
| | - Fulvio Gabbarini
- Paediatric Cardiology and Adult Congenital Heart Disease Unit, Regina Margherita Hospital, 10126 Torino, Italy;
| | - Giulio Porcedda
- Paediatric Cardiology Unit, A. Meyer Children’s Hospital, 50139 Florence, Italy;
| | - Alessandro Rimini
- Paediatric Cardiology Unit, G. Gaslini Children’s Hospital IRCCS, 16147 Genoa, Italy;
| | - Antonio D’Onofrio
- Departmental Unit of Electrophysiology, Evaluation and Treatment of Arrhythmia, Monaldi Hospital, 80131 Naples, Italy;
| | - Loira Leoni
- Cardiology Unit, Department of Cardio-Thoracic-Vascular Science and Public Health, Padua University Hospital (ERN GUARD-Heart), 35121 Padua, Italy;
| |
Collapse
|
14
|
Crotti L, Brugada P, Calkins H, Chevalier P, Conte G, Finocchiaro G, Postema PG, Probst V, Schwartz PJ, Behr ER. From gene-discovery to gene-tailored clinical management: 25 years of research in channelopathies and cardiomyopathies. Europace 2023; 25:euad180. [PMID: 37622577 PMCID: PMC10450790 DOI: 10.1093/europace/euad180] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 08/26/2023] Open
Abstract
In the early nineties, few years before the birth of Europace, the clinical and scientific world of familial arrhythmogenic conditions was revolutionized by the identification of the first disease-causing genes. The explosion of genetic studies over a 15-year period led to the discovery of major disease-causing genes in practically all channelopathies and cardiomyopathies, bringing insight into the pathophysiological mechanisms of these conditions. The birth of next generation sequencing allowed a further step forward and other significant genes, as CALM1-3 in channelopathies and FLN C and TTN in cardiomyopathies were identified. Genotype-phenotype studies allowed the implementation of the genetic results in diagnosis, risk stratification, and therapeutic management with a different level of evidence in different arrhythmogenic conditions. The influence of common genetic variants, i.e. SNPs, on disease manifestation was proved in mid-twenties, and in the last 10 years with the advent of genome-wide association studies performed in familial arrhythmogenic diseases, the concept of polygenic risk score has been consolidated. Now, we are at the start of another amazing phase, i.e. the initiation of first gene therapy clinical trials.
Collapse
Affiliation(s)
- Lia Crotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Piazza dell'Ateneo Nuovo, 1 - 20126, Italy
- IRCCS Istituto Auxologico Italiano, Department of Cardiology, Cardiomyopathy Unit, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Piazzale Brescia, 20, 20149 Milan, Italy
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklaan 101, Brussels 1090, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philippe Chevalier
- Neuromyogene Institute, Claude Bernard University, Lyon 1, Lyon, France
- Service de Rythmologie, Hospices Civils de Lyon, Lyon, France
| | - Giulio Conte
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Gherardo Finocchiaro
- Cardiovascular Sciences Research Centre, St. George’s, University of London, London, UK
| | - Pieter G Postema
- Department of Cardiology, Amsterdam University Medical Centers, location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Vincent Probst
- Centre Hospitalier Universitaire Nantes, Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Peter J Schwartz
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy
| | - Elijah R Behr
- Cardiology Section, Institute of Molecular and Clinical Sciences, St. George's, University of London, London SW17 0RE, UK
- Department of Cardiology, Mayo Clinic Healthcare, 15 Portland Pl, London W1B 1PT, UK
- Department of Cardiology, St. George's University Hospitals NHS Foundation Trust, London SW17 0QT
| |
Collapse
|
15
|
Specterman MJ, Behr ER. Cardiogenetics: the role of genetic testing for inherited arrhythmia syndromes and sudden death. Heart 2023; 109:434-441. [PMID: 36167638 DOI: 10.1136/heartjnl-2021-320015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/06/2022] [Indexed: 12/07/2022] Open
Abstract
There have been remarkable advances in our knowledge of the underlying heritability of cardiac arrhythmias. Long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, progressive cardiac conduction disease and the short QT syndrome comprise the inherited arrhythmia syndromes (IASs). Pathogenic variants in cardiac ion channel and calcium handling protein genes lead to these conditions, usually in the absence of overt structural cardiac disease. Diagnosis is contingent on the ECG phenotype but genetic testing may help to confirm the diagnosis and provide information on the mechanism of arrhythmogenesis that may guide treatment and provide prognostic information in relation to the risk of sudden arrhythmic death. Clinical genetic testing uses 'panels' of genes that are the likely culprits for the IASs being investigated. An International Consortium (Clinical Genome Resource) has curated gene panels based on genetic and experimental evidence of causation of inherited conditions and that have a role in clinical genetic testing. A 'single gene' or monogenic basis for IASs exists but in future, missing heritability and incomplete penetrance will be uncovered by association of common variants through genome-wide association studies. Novel rare variants will also be detected through whole-genome sequencing. The formulation of polygenic risk scores will likely help to predict phenotypic expression and response to treatments/risk stratification and move genetic testing very much to the fore of the diagnostic process.
Collapse
Affiliation(s)
- Mark J Specterman
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
16
|
Asatryan B, Barth AS. Sex-related differences in incidence, phenotype and risk of sudden cardiac death in inherited arrhythmia syndromes. Front Cardiovasc Med 2023; 9:1010748. [PMID: 36684594 PMCID: PMC9845907 DOI: 10.3389/fcvm.2022.1010748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Inherited Arrhythmia Syndromes (IAS) including long QT and Brugada Syndrome, are characterized by life-threatening arrhythmias in the absence of apparent structural heart disease and are caused by pathogenic variants in genes encoding cardiac ion channels or associated proteins. Studies of large pedigrees of families affected by IAS have demonstrated incomplete penetrance and variable expressivity. Biological sex is one of several factors that have been recognized to modulate disease severity in IAS. There is a growing body of evidence linking sex hormones to the susceptibility to arrhythmias, yet, many sex-specific disease aspects remain underrecognized as female sex and women with IAS are underinvestigated and findings from male-predominant cohorts are often generalized to both sexes with minimal to no consideration of relevant sex-associated differences in prevalence, disease manifestations and outcome. In this review, we highlight current knowledge of sex-related biological differences in normal cardiac electrophysiology and sex-associated factors that influence IAS phenotypes.
Collapse
Affiliation(s)
- Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas S. Barth
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Andreas S. Barth ✉
| |
Collapse
|
17
|
Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace 2022; 24:1307-1367. [PMID: 35373836 PMCID: PMC9435643 DOI: 10.1093/europace/euac030] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische
Centra, Amsterdam, location AMC, The Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute,
University of Sydney, Sydney, Australia
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de
México, Mexico
- Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine,
and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm
Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and
Windland Smith Rice Sudden Death Genomics Laboratory, Mayo
Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University,
Stanford, California, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute,
Minas Gerais, Brazil; and
Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Héctor Barajas-Martinez
- Cardiovascular Research, Lankenau Institute of Medical
Research, Wynnewood, PA, USA; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical
Sciences, St. George’s, University of London; St. George’s University Hospitals NHS
Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental
Cardiology, Amsterdam, The
Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven,
Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques
Héréditaires, ICAN, Inserm UMR1166, Hôpital
Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin,
Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital,
Istituto Auxologico Italiano, IRCCS, Milan,
Italy
- Department of Medicine and Surgery, University of
Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology,
University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard
Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research
Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular
Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A
Coruña, Spain; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP,
Faculdade de Medicina, Universidade de Sao Paulo, Sao
Paulo, Brazil; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital
Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon
Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of
Medicine, University of Washington, Seattle, WA,
USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart
Institute, Université de Montréal, Montreal,
Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical
Sciences, Imperial College London, London,
UK
- Royal Brompton & Harefield Hospitals, Guy’s
and St. Thomas’ NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of
Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University,
Cleveland, OH, USA
| |
Collapse
|
18
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick Eduardo B, Barajas‐Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz‐Genga M, Sacilotto L, Schulze‐Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi J, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, Mac Intyre C, Mackall JA, Mont L, Napolitano C, Ochoa Juan P, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt‐Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. J Arrhythm 2022; 38:491-553. [PMID: 35936045 PMCID: PMC9347209 DOI: 10.1002/joa3.12717] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur A. M. Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische CentraAmsterdamThe Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary InstituteUniversity of SydneySydneyAustralia
| | - Manlio F. Márquez
- Instituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMexico
| | | | - Michael J. Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo ClinicRochesterMNUSA
| | - Euan A. Ashley
- Department of Cardiovascular MedicineStanford UniversityStanfordCAUSA
| | | | | | - Elijah R. Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George’sUniversity of London; St. George’s University Hospitals NHS Foundation TrustLondonUKMayo Clinic HealthcareLondon
| | - Connie R. Bezzina
- Amsterdam UMC Heart Center, Department of Experimental CardiologyAmsterdamThe Netherlands
| | - Jeroen Breckpot
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | | | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCSMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Michael H. Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of CardiologyUniversity of TorontoTorontoONCanada
| | - Steven Lubitz
- Cardiac Arrhythmia ServiceMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Naomasa Makita
- National Cerebral and Cardiovascular CenterResearch InstituteSuitaJapan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular CenterSuitaJapan
| | | | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao PauloBrazil
| | - Eric Schulze‐Bahr
- Institute for Genetics of Heart DiseasesUniversity Hospital MünsterMünsterGermany
| | - Wataru Shimizu
- Department of Cardiovascular MedicineGraduate School of MedicineTokyoJapan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | - James S. Ware
- National Heart and Lung Institute and MRC London Institute of Medical SciencesImperial College LondonLondonUK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation TrustLondonUK
| | - David S. Winlaw
- Cincinnati Children's Hospital Medical CentreUniversity of CincinnatiCincinnatiOHUSA
| | | | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, SuitaOsakaJapan
| | - Andreas Bollmann
- Department of ElectrophysiologyHeart Center Leipzig at University of LeipzigLeipzigGermany
- Leipzig Heart InstituteLeipzigGermany
| | - Jong‐Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam HospitalKorea University College of MedicineSeoulRepublic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of CardiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloBrazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo ClinicRochesterMNUSA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos AiresBuenos AiresArgentina
| | - Kui Hong
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Andrew D. Krahn
- Division of CardiologyUniversity of British ColumbiaVancouverCanada
| | - Ciorsti Mac Intyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo ClinicRochesterMNUSA
| | - Judith A. Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - Lluís Mont
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS). Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), MadridSpain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCSPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pablo Ochoa Juan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), MadridSpain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de HierroMadridSpain
- Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), MadridSpain
| | - Petr Peichl
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
- Hipercol Brasil ProgramSão PauloBrazil
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
| | - Jon Skinner
- Sydney Childrens Hospital NetworkUniversity of SydneySydneyAustralia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care MedicineUniversity Hospital Campus Klinikum BielefeldBielefeldGermany
| | - Jacob Tfelt‐Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of genetics, Department of Forensic Medicine, Faculty of Medical SciencesUniversity of CopenhagenDenmark
| | - Thomas Deneke
- Heart Center Bad NeustadtBad Neustadt a.d. SaaleGermany
| |
Collapse
|
19
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi JI, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, MacIntyre C, Mackall JA, Mont L, Napolitano C, Ochoa JP, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt-Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm 2022; 19:e1-e60. [PMID: 35390533 DOI: 10.1016/j.hrthm.2022.03.1225] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, location AMC, The Netherlands.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia.
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; and Member of the Latin American Heart Rhythm Society (LAHRS).
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute, Minas Gerais, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George's, University of London; St. George's University Hospitals NHS Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental Cardiology, Amsterdam, The Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques Héréditaires, ICAN, Inserm UMR1166, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A Coruña, Spain; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany; Leipzig Heart Institute, Leipzig Heart Digital, Leipzig, Germany
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, Canada
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Judith A Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lluís Mont
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), Madrid, Spain
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo 05403-000, Brazil; Hipercol Brasil Program, São Paulo, Brazil
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Jon Skinner
- Sydney Childrens Hospital Network, University of Sydney, Sydney, Australia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care Medicine, University Hospital Campus Klinikum Bielefeld, Bielefeld, Germany
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Deneke
- Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| |
Collapse
|
20
|
Dyssekilde JR, Christiansen MK, Johansen JB, Nielsen JC, Bundgaard H, Jensen HK. Familial risk of atrioventricular block in first-degree relatives. BRITISH HEART JOURNAL 2022; 108:1194-1199. [PMID: 35246466 PMCID: PMC9279841 DOI: 10.1136/heartjnl-2021-320411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Objective Rare cases of genetically inherited atrioventricular block (AVB) have been reported; however, the heredity of AVB remains unknown. We aimed to assess the heredity of AVB. Design, setting and participants Using data from the Danish Civil Registration Registry, we established a nationwide cohort of individuals with parental links. Data were merged with information from the Danish Pacemaker and Implantable Cardioverter Defibrillator Registry, containing information on all pacemaker implantations performed in Denmark during the study period, to identify patients who received a first-time pacemaker because of AVB. Results A total of 4 648 204 individuals had parental links and a total of 26 880 consecutive patients received a first-time pacemaker due to AVB. Overall, the adjusted rate ratio (RR) of pacemaker implantation due to AVB was 2.1 (95% CI 1.8 to 2.5) if a father, mother or sibling had AVB compared with the risk in the general population. The adjusted RR was 2.2 (1.7–2.9) for offspring of mothers with AVB, 1.9 (1.5–2.4) for offspring of fathers with AVB and 3.5 (2.3–5.4) for siblings to a patient with AVB. The risk increased inversely proportionally with the age of the index case at the time of pacemaker implantation. The corresponding adjusted RRs were 15.8 (4.8–52.3) and 10.0 (3.3–30.4) if a mother or father, respectively, had a pacemaker implantation before 50 years. Conclusion and relevance First-degree relatives to a patient with AVB carry an increased risk of AVB with the risk being strongly inversely associated with the age of the index case at pacemaker implantation. These findings indicate a genetic component in the development of AVB in families with an early-onset disease.
Collapse
Affiliation(s)
| | | | | | - Jens Cosedis Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | | | - Henrik Kjaerulf Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark .,Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Mai W, Kusumoto F. Advanced Atrioventricular Block due to Hypervagotonia: Treatment with Hyoscyamine. HeartRhythm Case Rep 2022; 8:343-346. [PMID: 35607346 PMCID: PMC9123321 DOI: 10.1016/j.hrcr.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Cheng J, Wei W, Fang Y, Zhou N, Wu Q, Zhao Q. Sudden cardiac death and cardiac sodium channel diseases. JOURNAL OF FORENSIC SCIENCE AND MEDICINE 2022. [DOI: 10.4103/jfsm.jfsm_123_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
23
|
Sheikhy A, Fallahzadeh A, Aghaei Meybodi HR, Hasanzad M, Tajdini M, Hosseini K. Personalized medicine in cardiovascular disease: review of literature. J Diabetes Metab Disord 2021; 20:1793-1805. [PMID: 34900826 DOI: 10.1007/s40200-021-00840-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Purpose Personalized medicine (PM) is the concept of managing patients based on their characteristics, including genotypes. In the field of cardiology, advantages of PM could be found in the diagnosis and treatment of several conditions such as arrhythmias and cardiomyopathies; moreover, it may be beneficial to prevent adverse drug reactions (ADR) and select the best medication. Genetic background can help us in selecting effective treatments, appropriate dose requirements, and preventive strategies in individuals with particular genotypes. Method In this review, we provide examples of personalized medicine based on human genetics for the most used pharmaceutics in cardiology, including warfarin, clopidogrel, and statins. We also review cardiovascular diseases, including coronary artery disease, arrhythmia, and cardiomyopathies. Conclusion Genetic factors are as important as environmental factors and they should be tested and evaluated more in the future by improving in genetic testing tools. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-021-00840-0.
Collapse
Affiliation(s)
- Ali Sheikhy
- Research Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Fallahzadeh
- Research Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghaei Meybodi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masih Tajdini
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Hosseini
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Shah MJ, Silka MJ, Avari Silva JN, Balaji S, Beach CM, Benjamin MN, Berul CI, Cannon B, Cecchin F, Cohen MI, Dalal AS, Dechert BE, Foster A, Gebauer R, Gonzalez Corcia MC, Kannankeril PJ, Karpawich PP, Kim JJ, Krishna MR, Kubuš P, LaPage MJ, Mah DY, Malloy-Walton L, Miyazaki A, Motonaga KS, Niu MC, Olen M, Paul T, Rosenthal E, Saarel EV, Silvetti MS, Stephenson EA, Tan RB, Triedman J, Von Bergen NH, Wackel PL. 2021 PACES expert consensus statement on the indications and management of cardiovascular implantable electronic devices in pediatric patients. Indian Pacing Electrophysiol J 2021; 21:367-393. [PMID: 34333141 PMCID: PMC8577100 DOI: 10.1016/j.ipej.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consensus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology (ACC), and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate CIED follow-up in pediatric patients.
Collapse
Affiliation(s)
- Maully J Shah
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Michael J Silka
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
| | | | | | | | - Monica N Benjamin
- Hospital de Pediatría Juan P. Garrahan, Hospital El Cruce, Hospital Británico de Buenos Aires, Instituto Cardiovascular ICBA, Buenos Aires, Argentina
| | | | | | - Frank Cecchin
- New York University Grossman School of Medicine, New York, NY, USA
| | | | - Aarti S Dalal
- Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Anne Foster
- Advocate Children's Heart Institute, Chicago, IL, USA
| | - Roman Gebauer
- Heart Centre Leipzig, University of Leipzig, Leipzig, Germany
| | | | | | - Peter P Karpawich
- University Pediatricians, Children's Hospital of Michigan, Detroit, MI, USA
| | | | | | - Peter Kubuš
- Children's Heart Center, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | | | | | | | - Aya Miyazaki
- Shizuoka General Hospital and Mt. Fuji Shizuoka Children's Hospital, Shizuoka, Japan
| | | | - Mary C Niu
- University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | | | - Thomas Paul
- Georg-August-University Medical Center, Göttingen, Germany
| | - Eric Rosenthal
- Evelina London Children's Hospital and St Thomas' Hospital, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | | | | | - Reina B Tan
- New York University Langone Health, New York, NY, USA
| | | | | | | |
Collapse
|
25
|
Shah MJ, Silka MJ, Silva JNA, Balaji S, Beach CM, Benjamin MN, Berul CI, Cannon B, Cecchin F, Cohen MI, Dalal AS, Dechert BE, Foster A, Gebauer R, Gonzalez Corcia MC, Kannankeril PJ, Karpawich PP, Kim JJ, Krishna MR, Kubuš P, LaPage MJ, Mah DY, Malloy-Walton L, Miyazaki A, Motonaga KS, Niu MC, Olen M, Paul T, Rosenthal E, Saarel EV, Silvetti MS, Stephenson EA, Tan RB, Triedman J, Bergen NHV, Wackel PL. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients: Developed in collaboration with and endorsed by the Heart Rhythm Society (HRS), the American College of Cardiology (ACC), the American Heart Association (AHA), and the Association for European Paediatric and Congenital Cardiology (AEPC) Endorsed by the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). JACC Clin Electrophysiol 2021; 7:1437-1472. [PMID: 34794667 DOI: 10.1016/j.jacep.2021.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consensus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology (ACC), and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate CIED follow-up in pediatric patients.
Collapse
Affiliation(s)
- Maully J Shah
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| | - Michael J Silka
- University of Southern California Keck School of Medicine, Los Angeles, California, USA.
| | | | | | | | - Monica N Benjamin
- Hospital de Pediatría Juan P. Garrahan, Hospital El Cruce, Hospital Británico de Buenos Aires, Instituto Cardiovascular ICBA, Buenos Aires, Argentina
| | | | | | - Frank Cecchin
- New York University Grossman School of Medicine, New York, New York, USA
| | | | - Aarti S Dalal
- Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Anne Foster
- Advocate Children's Heart Institute, Chicago, Illinois, USA
| | - Roman Gebauer
- Heart Centre Leipzig, University of Leipzig, Leipzig, Germany
| | | | | | - Peter P Karpawich
- University Pediatricians, Children's Hospital of Michigan, Detroit, Michigan, USA
| | | | | | - Peter Kubuš
- Children's Heart Center, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | | | | | | | - Aya Miyazaki
- Shizuoka General Hospital and Mt. Fuji Shizuoka Children's Hospital, Shizuoka, Japan
| | | | - Mary C Niu
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Melissa Olen
- Nicklaus Children's Hospital, Miami, Florida, USA
| | - Thomas Paul
- Georg-August-University Medical Center, Göttingen, Germany
| | - Eric Rosenthal
- Evelina London Children's Hospital and St Thomas' Hospital, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | | | | | - Reina B Tan
- New York University Langone Health, New York, New York, USA
| | | | - Nicholas H Von Bergen
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | |
Collapse
|
26
|
2021 PACES expert consensus statement on the indications and management of cardiovascular implantable electronic devices in pediatric patients. Cardiol Young 2021; 31:1738-1769. [PMID: 34338183 DOI: 10.1017/s1047951121003413] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consensus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology (ACC), and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate CIED follow-up in pediatric patients.
Collapse
|
27
|
Arana-Rueda E, Pezzotti MR, Pedrote A, Acosta J, Frutos-López M, Varela LM, García-Fernández N, Castellano A. Brugada syndrome masked by complete left bundle branch block: A clinical and functional study of its association with the p.1449Y>H SCN5A variant. J Cardiovasc Electrophysiol 2021; 32:2785-2790. [PMID: 34411358 DOI: 10.1111/jce.15215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 11/27/2022]
Abstract
SCN5A gene variants are associated with both Brugada syndrome and conduction disturbances, sometimes expressing an overlapping phenotype. Functional consequences of SCN5A variants assessed by patch-clamp electrophysiology are particularly beneficial for correct pathogenic classification and are related to disease penetrance and severity. Here, we identify a novel SCN5A loss of function variant, p.1449Y>H, which presented with high penetrance and complete left bundle branch block, totally masking the typical findings on the electrocardiogram. We highlight the possibility of this overlap combination that makes impossible an electrocardiographic diagnosis and, through a functional analysis, associate the p.1449Y>H variant to SCN5A pathogenicity.
Collapse
Affiliation(s)
- Eduardo Arana-Rueda
- Department of Cardiology, Arrhythmia Unit, Virgen del Rocío University Hospital, Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - María R Pezzotti
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Alonso Pedrote
- Department of Cardiology, Arrhythmia Unit, Virgen del Rocío University Hospital, Sevilla, Spain
| | - Juan Acosta
- Department of Cardiology, Arrhythmia Unit, Virgen del Rocío University Hospital, Sevilla, Spain
| | - Manuel Frutos-López
- Department of Cardiology, Arrhythmia Unit, Virgen del Rocío University Hospital, Sevilla, Spain
| | - Lourdes-María Varela
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Noelia García-Fernández
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Antonio Castellano
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Sevilla, Spain.,CIBERCV, ISCIII, Madrid, Spain
| |
Collapse
|
28
|
Shah MJ, Silka MJ, Silva JA, Balaji S, Beach C, Benjamin M, Berul C, Cannon B, Cecchin F, Cohen M, Dalal A, Dechert B, Foster A, Gebauer R, Gonzalez Corcia MC, Kannankeril P, Karpawich P, Kim J, Krishna MR, Kubuš P, Malloy-Walton L, LaPage M, Mah D, Miyazaki A, Motonaga K, Niu M, Olen M, Paul T, Rosenthal E, Saarel E, Silvetti MS, Stephenson E, Tan R, Triedman J, Von Bergen N, Wackel P. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients. Heart Rhythm 2021; 18:1888-1924. [PMID: 34363988 DOI: 10.1016/j.hrthm.2021.07.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023]
Abstract
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consenus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology, (ACC) and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate follow-up in pediatric patients.
Collapse
Affiliation(s)
- Maully J Shah
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| | - Michael J Silka
- University of Southern California Keck School of Medicine, Los Angeles, California.
| | | | | | - Cheyenne Beach
- Yale University School of Medicine, New Haven, Connecticut
| | - Monica Benjamin
- Hospital de Pediatría Juan P. Garrahan, Hospital El Cruce, Hospital Británico de Buenos Aires, Instituto Cardiovascular ICBA, Buenos Aires, Argentina
| | | | | | - Frank Cecchin
- New York Univeristy Grossman School of Medicine, New York, New York
| | | | - Aarti Dalal
- Washington University in St. Louis, St. Louis, Missouri
| | | | - Anne Foster
- Advocate Children's Heart Institute, Chicago, Illinois
| | - Roman Gebauer
- Heart Centre Leipzig, University of Leipzig, Leipzig, Germany
| | | | | | - Peter Karpawich
- University Pediatricians, Children's Hospital of Michigan, Detroit, Michigan
| | | | | | - Peter Kubuš
- Children's Heart Center, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | | | | | - Doug Mah
- Harvard Medical School, Boston, Massachussetts
| | - Aya Miyazaki
- Shizuoka General Hospital and Mt. Fuji Shizuoka Children's Hospital, Shizuoka, Japan
| | | | - Mary Niu
- University of Utah Health Sciences Center, Salt Lake City, Utah
| | | | - Thomas Paul
- Georg-August-University Medical Center, Göttingen, Germany
| | - Eric Rosenthal
- Evelina London Children's Hospital and St Thomas' Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | - Reina Tan
- New York University Langone Health, New York, New York
| | - John Triedman
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Nicholas Von Bergen
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | |
Collapse
|
29
|
Stiles MK, Wilde AAM, Abrams DJ, Ackerman MJ, Albert CM, Behr ER, Chugh SS, Cornel MC, Gardner K, Ingles J, James CA, Juang JMJ, Kääb S, Kaufman ES, Krahn AD, Lubitz SA, MacLeod H, Morillo CA, Nademanee K, Probst V, Saarel EV, Sacilotto L, Semsarian C, Sheppard MN, Shimizu W, Skinner JR, Tfelt-Hansen J, Wang DW. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. J Arrhythm 2021; 37:481-534. [PMID: 34141003 PMCID: PMC8207384 DOI: 10.1002/joa3.12449] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
This international multidisciplinary document intends to provide clinicians with evidence-based practical patient-centered recommendations for evaluating patients and decedents with (aborted) sudden cardiac arrest and their families. The document includes a framework for the investigation of the family allowing steps to be taken, should an inherited condition be found, to minimize further events in affected relatives. Integral to the process is counseling of the patients and families, not only because of the emotionally charged subject, but because finding (or not finding) the cause of the arrest may influence management of family members. The formation of multidisciplinary teams is essential to provide a complete service to the patients and their families, and the varied expertise of the writing committee was formulated to reflect this need. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by Class of Recommendation and Level of Evidence. The recommendations were opened for public comment and reviewed by the relevant scientific and clinical document committees of the Asia Pacific Heart Rhythm Society (APHRS) and the Heart Rhythm Society (HRS); the document underwent external review and endorsement by the partner and collaborating societies. While the recommendations are for optimal care, it is recognized that not all resources will be available to all clinicians. Nevertheless, this document articulates the evaluation that the clinician should aspire to provide for patients with sudden cardiac arrest, decedents with sudden unexplained death, and their families.
Collapse
Affiliation(s)
- Martin K Stiles
- Waikato Clinical School Faculty of Medicine and Health Science The University of Auckland Hamilton New Zealand
| | - Arthur A M Wilde
- Heart Center Department of Clinical and Experimental Cardiology Amsterdam University Medical Center University of Amsterdam Amsterdam the Netherlands
| | | | | | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute St George's University of London, and St George's University Hospitals NHS Foundation Trust London UK
| | | | - Martina C Cornel
- Amsterdam University Medical Center Vrije Universiteit Amsterdam Clinical Genetics Amsterdam Public Health Research Institute Amsterdam the Netherlands
| | | | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute The University of Sydney Sydney Australia
| | | | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology Department of Internal Medicine National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | - Stefan Kääb
- Department of Medicine I University Hospital LMU Munich Munich Germany
| | | | | | | | - Heather MacLeod
- Data Coordinating Center for the Sudden Death in the Young Case Registry Okemos MI USA
| | | | - Koonlawee Nademanee
- Chulalongkorn University Faculty of Medicine, and Pacific Rim Electrophysiology Research Institute at Bumrungrad Hospital Bangkok Thailand
| | | | - Elizabeth V Saarel
- Cleveland Clinic Lerner College of Cardiology at Case Western Reserve University Cleveland OH USA
- St Luke's Medical Center Boise ID USA
| | - Luciana Sacilotto
- Heart Institute University of São Paulo Medical School São Paulo Brazil
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute The University of Sydney Sydney Australia
| | - Mary N Sheppard
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute St George's University of London, and St George's University Hospitals NHS Foundation Trust London UK
| | - Wataru Shimizu
- Department of Cardiovascular Medicine Nippon Medical School Tokyo Japan
| | | | - Jacob Tfelt-Hansen
- Department of Forensic Medicine Faculty of Medical Sciences Rigshospitalet Copenhagen Denmark
| | - Dao Wu Wang
- The First Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
30
|
Janin A, Januel L, Cazeneuve C, Delinière A, Chevalier P, Millat G. Molecular Diagnosis of Inherited Cardiac Diseases in the Era of Next-Generation Sequencing: A Single Center's Experience Over 5 Years. Mol Diagn Ther 2021; 25:373-385. [PMID: 33954932 DOI: 10.1007/s40291-021-00530-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Molecular diagnosis in inherited cardiac diseases is challenging because of the significant genetic and clinical heterogeneity. We present a detailed molecular investigation of a cohort of 4185 patients with referrals for inherited cardiac diseases. METHODS Patients suffering from cardiomyopathies (3235 probands), arrhythmia syndromes (760 probands), or unexplained sudden cardiac arrest (190 cases) were analyzed using a next-generation sequencing (NGS) workflow based on a panel of 105 genes involved in sudden cardiac death. RESULTS (Likely) pathogenic variations were identified for approximately 30% of the cohort. Pathogenic copy number variations (CNVs) were detected in approximately 3.1% of patients for whom a (likely) pathogenic variation were identified. A (likely) pathogenic variation was also detected for 21.1% of patients who died from sudden cardiac death. Unexpected variants, including incidental findings, were present for 28 cases. Pathogenic variations were mainly observed in genes with definitive evidence of disease causation. CONCLUSIONS Our study, which comprises over than 4000 probands, is one of most important cohorts reported in inherited cardiac diseases. The global mutation detection rate would be significantly increased by determining the putative pathogenicity of the large number of variants of uncertain significance. Identification of "unexpected" variants also showed the clinical utility of genetic testing in inherited cardiac diseases as they can redirect clinical management and medical resources toward a meaningful precision medicine. In cases with negative result, a WGS approach could be considered, but would probably have a limited impact on mutation detection rate as (likely) pathogenic variations were essentially clustered in genes with strong evidence of disease causation.
Collapse
Affiliation(s)
- Alexandre Janin
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France.,Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France.,Université de Lyon, 69003, Lyon, France
| | - Louis Januel
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France
| | - Cécile Cazeneuve
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France
| | - Antoine Delinière
- Université de Lyon, 69003, Lyon, France.,Hôpital Cardiologique Louis Pradel, Service de Rythmologie, Lyon, France
| | - Philippe Chevalier
- Université de Lyon, 69003, Lyon, France.,Hôpital Cardiologique Louis Pradel, Service de Rythmologie, Lyon, France
| | - Gilles Millat
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France. .,Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France. .,Université de Lyon, 69003, Lyon, France.
| |
Collapse
|
31
|
Pérez-Riera AR, Barbosa-Barros R, Daminello-Raimundo R, de Abreu LC, Nikus K. The Vectorcardiogram and the Main Dromotropic Disturbances. Curr Cardiol Rev 2021; 17:50-59. [PMID: 32778036 PMCID: PMC8142362 DOI: 10.2174/1573403x16666200810105504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 02/01/2023] Open
Abstract
Until the mid-1980s, it was believed that the vectorcardiogram (VCG) presented a greater specificity, sensitivity and accuracy in comparison to the 12-lead electrocardiogram (ECG), in the cardiology diagnosis. Currently, the VCG still is superior to the ECG in specific situations, such as in the evaluation of myocardial infarctions when associated with intraventricular conduction disturbances, in the identification and location of accessory pathways in ventricular preexcitation, in the differential diagnosis of patterns varying from normal of electrical axis deviation, in the evaluation of particular aspects of Brugada syndrome, Brugada phenocopies, concealed form of arrhythmogenic right ventricular cardiomyopathy and zonal or fascicular blocks of the right bundle branch on right ventricular free wall.VCG allows us to analyze the presence of left septal fascicular block more accurately than ECG and in the diagnosis of the interatrial blocks and severity of some chambers enlargements. The three-dimensional spatial orientation of both the atrial and the ventricular activity provides a far more complete observation tool than the linear ECG. We believe that the ECG/VCG binomial simultaneously obtained by the technique called electro-vectorcardiography (ECG/VCG) brought a significant gain for the differential diagnosis of several pathologies. Finally, in the field of education and research, VCG provided a better and more rational tridimensional insight into the electrical phenomena that occurs spatially, and represented an important impact on the progress of electrocardiography.
Collapse
Affiliation(s)
- Andrés R Pérez-Riera
- Laboratorio de Delineamento de Estudos e Escrita Científica, Centro Universitario Saude ABC, Santo Andre, Sao Paulo, Brazil
| | - Raimundo Barbosa-Barros
- Coronary Center of the Hospital de Messejana Dr. Carlos Alberto Studart Gomes, Fortaleza, Ceara, Brazil
| | - Rodrigo Daminello-Raimundo
- Laboratorio de Delineamento de Estudos e Escrita Científica, Centro Universitario Saude ABC, Santo Andre, Sao Paulo, Brazil
| | - Luiz C de Abreu
- Laboratorio de Delineamento de Estudos e Escrita Científica, Centro Universitario Saude ABC, Santo Andre, Sao Paulo, Brazil
| | - Kjell Nikus
- Heart Center, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
32
|
Stiles MK, Wilde AAM, Abrams DJ, Ackerman MJ, Albert CM, Behr ER, Chugh SS, Cornel MC, Gardner K, Ingles J, James CA, Jimmy Juang JM, Kääb S, Kaufman ES, Krahn AD, Lubitz SA, MacLeod H, Morillo CA, Nademanee K, Probst V, Saarel EV, Sacilotto L, Semsarian C, Sheppard MN, Shimizu W, Skinner JR, Tfelt-Hansen J, Wang DW. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. Heart Rhythm 2021; 18:e1-e50. [PMID: 33091602 PMCID: PMC8194370 DOI: 10.1016/j.hrthm.2020.10.010] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
This international multidisciplinary document intends to provide clinicians with evidence-based practical patient-centered recommendations for evaluating patients and decedents with (aborted) sudden cardiac arrest and their families. The document includes a framework for the investigation of the family allowing steps to be taken, should an inherited condition be found, to minimize further events in affected relatives. Integral to the process is counseling of the patients and families, not only because of the emotionally charged subject, but because finding (or not finding) the cause of the arrest may influence management of family members. The formation of multidisciplinary teams is essential to provide a complete service to the patients and their families, and the varied expertise of the writing committee was formulated to reflect this need. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by Class of Recommendation and Level of Evidence. The recommendations were opened for public comment and reviewed by the relevant scientific and clinical document committees of the Asia Pacific Heart Rhythm Society (APHRS) and the Heart Rhythm Society (HRS); the document underwent external review and endorsement by the partner and collaborating societies. While the recommendations are for optimal care, it is recognized that not all resources will be available to all clinicians. Nevertheless, this document articulates the evaluation that the clinician should aspire to provide for patients with sudden cardiac arrest, decedents with sudden unexplained death, and their families.
Collapse
Affiliation(s)
- Martin K Stiles
- Waikato Clinical School, Faculty of Medicine and Health Science, The University of Auckland, Hamilton, New Zealand
| | - Arthur A M Wilde
- Amsterdam University Medical Center, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam, the Netherlands
| | | | | | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London, and St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Sumeet S Chugh
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Martina C Cornel
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Clinical Genetics, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | | | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | | | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | | | - Andrew D Krahn
- The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Heather MacLeod
- Data Coordinating Center for the Sudden Death in the Young Case Registry, Okemos, Michigan, USA
| | | | - Koonlawee Nademanee
- Chulalongkorn University, Faculty of Medicine, and Pacific Rim Electrophysiology Research Institute at Bumrungrad Hospital, Bangkok, Thailand
| | | | - Elizabeth V Saarel
- Cleveland Clinic Lerner College of Cardiology at Case Western Reserve University, Cleveland, Ohio, and St Luke's Medical Center, Boise, Idaho, USA
| | - Luciana Sacilotto
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | - Mary N Sheppard
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London, and St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Jonathan R Skinner
- Cardiac Inherited Disease Group, Starship Hospital, Auckland, New Zealand
| | - Jacob Tfelt-Hansen
- Department of Forensic Medicine, Faculty of Medical Sciences, Rigshospitalet, Copenhagen, Denmark
| | - Dao Wu Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Coluccia G, Oddone D, Maggi R, Corallo S, Senes J, Donateo P, Puggioni E, Brignole M. Left bundle branch area pacing in a young athlete with progressive cardiac conduction (Lev-Lenegre) disease. J Electrocardiol 2020; 64:95-98. [PMID: 33412431 DOI: 10.1016/j.jelectrocard.2020.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/26/2023]
Abstract
We present the case of a professional soccer player affected by right bundle branch block and symptomatic 2:1 atrio-ventricular block during effort, due to progressive cardiac conduction disease (Lev-Lenegre disease), who received successful left bundle branch area pacing after a failed attempt at His bundle pacing. The electrocardiographic outcome of paced QRS was consistent with a rapid electrical activation of the left ventricle through the Purkinje system. The pursue of physiological pacing was preferred over conventional, given the young age of our patient and the expectedly high burden of stimulation, to reduce the long-term risk of pacing-induced cardiomyopathy.
Collapse
Affiliation(s)
- Giovanni Coluccia
- Arrhythmia Centre, Department of Cardiology, Ospedali del Tigullio, Lavagna, GE, Italy.
| | - Daniele Oddone
- Arrhythmia Centre, Department of Cardiology, Ospedali del Tigullio, Lavagna, GE, Italy
| | - Roberto Maggi
- Arrhythmia Centre, Department of Cardiology, Ospedali del Tigullio, Lavagna, GE, Italy
| | - Serena Corallo
- Arrhythmia Centre, Department of Cardiology, Ospedali del Tigullio, Lavagna, GE, Italy
| | - Jacopo Senes
- Arrhythmia Centre, Department of Cardiology, Ospedali del Tigullio, Lavagna, GE, Italy
| | - Paolo Donateo
- Arrhythmia Centre, Department of Cardiology, Ospedali del Tigullio, Lavagna, GE, Italy
| | - Enrico Puggioni
- Arrhythmia Centre, Department of Cardiology, Ospedali del Tigullio, Lavagna, GE, Italy
| | - Michele Brignole
- Arrhythmia Centre, Department of Cardiology, Ospedali del Tigullio, Lavagna, GE, Italy
| |
Collapse
|
34
|
Matrix metalloproteinase 1 1 G/2 G gene polymorphism is associated with acquired atrioventricular block via linking a higher serum protein level. Sci Rep 2020; 10:9900. [PMID: 32555355 PMCID: PMC7303204 DOI: 10.1038/s41598-020-66896-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022] Open
Abstract
Limited studies are available regarding the pathophysiological mechanism of acquired atrioventricular block (AVB). Matrix metalloproteinases (MMPs) and angiotensin-converting enzyme (ACE) have been implicated in the pathogenesis of arrhythmia. However, the relationship between these molecules and acquired AVB is still unclear. One hundred and two patients with documented acquired AVB and 100 controls were studied. Gene polymorphisms of the MMP1 and ACE encoding genes were screened by the gene sequencing method or polymerase chain reaction-fragment length polymorphism assay, followed by an association study. The frequencies of the MMP1 −1607 2G2G genotype and MMP1 −1607 2 G allele were significantly higher in the AVB group than that in the controls (OR = 1.933, P = 0.027 and OR = 1.684, P = 0.012, respectively). Consistently, the level of serum MMP1 was significantly greater in acquired AVB patients than that in controls (6568.9 ± 5748.6 pg/ml vs. 4730.5 ± 3377.1 pg/ml, P = 0.019). In addition, the MMP1 2G2G genotype showed a higher MMP-1 serum level than the other genotypes (1G1G/1G2G) (7048.1 ± 5683.0 pg/ml vs. 5072.4 ± 4267.6 pg/ml, P = 0.042). MMP1 1 G/2 G gene polymorphism may contribute to determining the disease susceptibility of acquired AVB by linking the MMP serum protein level.
Collapse
|
35
|
Liu J, Liu D, Li M, Wu K, Liu N, Zhao C, Shi X, Liu Q. Identification of a nonsense mutation in TNNI3K associated with cardiac conduction disease. J Clin Lab Anal 2020; 34:e23418. [PMID: 32529721 PMCID: PMC7521241 DOI: 10.1002/jcla.23418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cardiac conduction disease (CCD) is a common cardiovascular disease which can lead to life-threatening conditions. The importance of heredity in CCD has been realized in recent years. Several causal genes have been found to be implicated in CCD such as SCN5A, TRPM4, SCN1B, TNNI3K, LMNA, and NKX2.5. To date, only four genetic mutations in TNNI3K have been identified related to CCD. METHODS Whole-exome sequencing (WES) was carried out in order to identify the underlying disease-causing mutation in a Chinese family with CCD. The potential mutations were confirmed by Sanger sequencing. Real-time qPCR was used to detect the level of TNNI3K mRNA expression. RESULTS A nonsense mutation in TNNI3K (NM_015978.2: g.170891C > T, c.1441C > T) was identified in this family and validated by Sanger sequencing. Real-time qPCR confirmed that the level of TNNI3K mRNA expression was decreased compared with the controls. CONCLUSIONS This study found the first nonsense TNNI3K mutation associated with CCD in a Chinese family. TNNI3K harboring the mutation (c.1441C > T) implicated a loss-of-function pathogenic mechanism with an autosomal dominant inheritance pattern. This research enriches the phenotypic spectrum of TNNI3K mutations, casting a new light upon the genotype-phenotype correlations between TNNI3K mutations and CCD and indicating the importance of TNNI3K screening in CCD patients.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Da Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Muzheng Li
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Keke Wu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Na Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chenyu Zhao
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoliu Shi
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Medical Genetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
36
|
Abstract
Left bundle branch block may be due to conduction system degeneration or a reflection of myocardial pathology. Left bundle branch block may also develop following aortic valve disease or cardiac procedures. Patients with heart failure with reduced ejection fraction and left bundle branch block may respond positively to cardiac resynchronization therapy. Lead placement via the coronary sinus is the mainstay approach of cardiac resynchronization therapy. However, other options, including physiological pacing, are being explored. In this review, we summarize the salient pathophysiologic and clinical aspects of left bundle branch block, as well as current and future strategies for management.
Collapse
Affiliation(s)
- Nicholas Y Tan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Chance M Witt
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Jae K Oh
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Yong-Mei Cha
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|