1
|
Cerca J, Díaz PJ, Goubert C, Yang H, Bieker VC, Fernández-Mazuecos M, Vargas P, Schley R, Li S, Guevara-Andino JE, Petersen B, Petersen G, Sinha NR, Nielsen LR, Leebens-Mack JH, Rivas-Torres G, Rieseberg LH, Martin MD. No evidence of transposable element bursts in the Galápagos Scalesia adaptive radiation despite hybridization, diversification and ecological niche shifts. Mob DNA 2025; 16:23. [PMID: 40450335 DOI: 10.1186/s13100-025-00362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/21/2025] [Indexed: 06/03/2025] Open
Abstract
Transposable elements (TEs) have been hypothesized to play a pivotal role in driving diversification by facilitating the emergence of novel phenotypes and the accumulation of divergence between species. Hybridization and adaptation to novel niches have been proposed to destabilize mechanisms constraining TE proliferation, potentially inducing a 'TE burst' that promotes TE accumulation on the genome. The rapid speciation and ecological diversification characteristic of adaptive radiations offer a unique opportunity to examine the link between TE accumulation and speciation, diversification, hybridization and adaptation. Here, focusing on all 15 species of the genus Scalesia (Asteraceae), a radiation endemic to the Galápagos Islands, we test whether diversification, hybridization, or shifts in ecological niche are associated with changes in TE accumulation in genomes. Our analyses reveal little to no variation in TE accumulation among Scalesia species nor its hybrid populations. Shifts in ecological niches, linked to climatic variation, did not result in discernible changes in TE accumulation, a surprising finding given the anticipated selective pressure imposed by aridity, a factor often linked to genome size reduction. We found no distinct patterns in the temporal accumulation of TEs, and no effects at the class or superfamily level. Our findings suggest that while TEs may play a key role in evolution at the locus level, their macroevolutionary association with diversification or speciation appears weak. Rather than actively driving evolutionary diversification, TEs may simply be'along for the ride.
Collapse
Affiliation(s)
- José Cerca
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- , SciLifeLab, Karolinska Institutet Science Park, Tomtebodavägen 23, Solna, 171 65, Sweden.
| | - Patricia Jaramillo Díaz
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador
- Department of Botany and Plant Physiology, University of Málaga, Málaga, Spain
- IUCN SSC Galapagos Plant Specialist Group, Puerto Ayora, Galapagos, 200102, Ecuador
| | - Clément Goubert
- McGill Genome Centre, McGill University, Montreal, QC, H3A 0G1, Canada
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Heidi Yang
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vanessa C Bieker
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Pablo Vargas
- Department of Biodiversity and Conservation, Real Jardín Botánico de Madrid (RJB-CSIC), Madrid, 28014, Spain
| | - Rowan Schley
- Department of Geography, University of Exeter, Laver Building, North Park Road, Exeter, Devon, UK
| | - Siyu Li
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Juan Ernesto Guevara-Andino
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito, Ecuador
| | - Bent Petersen
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, DK-1353, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Gitte Petersen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Lene R Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, Frederiksberg C, 1958, Denmark
| | | | - Gonzalo Rivas-Torres
- Colegio de Ciencias Biológicas y Ambientales, Galapagos Science Center, Universidad San Francisco de Quito USFQ, 170901, Quito, Ecuador
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael D Martin
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Pritam S, Signor S. Evolution of piRNA-guided defense against transposable elements. Trends Genet 2025; 41:390-401. [PMID: 39672679 DOI: 10.1016/j.tig.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
Transposable elements (TEs) shape every aspect of genome biology, influencing genome stability, size, and organismal fitness. Following the 2007 discovery of the piRNA defense system, researchers have made numerous findings about organisms' defenses against these genomic invaders. TEs are suppressed by a 'genomic immune system', where TE insertions within specialized regions called PIWI-interacting RNA (piRNA) clusters produce small RNAs responsible for their suppression. The evolution of piRNA clusters and the piRNA system is only now being understood, largely because most research has been conducted in developmental biology labs using only one to two genotypes of Drosophila melanogaster. While piRNAs themselves were identified simultaneously in various organisms (flies, mice, rats, and zebrafish) in 2006-2007, detailed work on piRNA clusters has only recently expanded beyond D. melanogaster. By studying piRNA cluster evolution in various organisms from an evolutionary perspective, we are beginning to understand more about TE suppression mechanisms and organism-TE coevolution.
Collapse
Affiliation(s)
- Shashank Pritam
- Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
3
|
Scarpa A, Pianezza R, Gellert HR, Haider A, Kim BY, Lai EC, Kofler R, Signor S. Double trouble: two retrotransposons triggered a cascade of invasions in Drosophila species within the last 50 years. Nat Commun 2025; 16:516. [PMID: 39788974 PMCID: PMC11718211 DOI: 10.1038/s41467-024-55779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
Horizontal transfer of genetic material in eukaryotes has rarely been documented over short evolutionary timescales. Here, we show that two retrotransposons, Shellder and Spoink, invaded the genomes of multiple species of the melanogaster subgroup within the last 50 years. Through horizontal transfer, Spoink spread in D. melanogaster during the 1980s, while both Shellder and Spoink invaded D. simulans in the 1990s. Possibly following hybridization, D. simulans infected the island endemic species D. mauritiana (Mauritius) and D. sechellia (Seychelles) with both TEs after 1995. In the same approximate time-frame, Shellder also invaded D. teissieri, a species confined to sub-Saharan Africa. We find that the donors of Shellder and Spoink are likely American Drosophila species from the willistoni, cardini, and repleta groups. Thus, the described cascade of TE invasions could only become feasible after D. melanogaster and D. simulans extended their distributions into the Americas 200 years ago, likely aided by human activity. Our work reveals that cascades of TE invasions, likely initiated by human-mediated range expansions, could have an impact on the genomic and phenotypic evolution of geographically dispersed species. Within a few decades, TEs could invade many species, including island endemics, with distributions very distant from the donor of the TE.
Collapse
Affiliation(s)
- Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Riccardo Pianezza
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Hannah R Gellert
- Department of Biology, Stanford University, Stanford, California, USA
| | - Anna Haider
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, California, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, USA
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.
| | - Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, USA.
| |
Collapse
|
4
|
Haig D. Germline ecology: Managed herds, tolerated flocks, and pest control. J Hered 2024; 115:643-659. [PMID: 38447039 DOI: 10.1093/jhered/esae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. Mitochondrial and ribosomal DNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more "junk" in their genomes than organisms with early sequestration of germ cells.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
5
|
Jansen G, Gebert D, Kumar TR, Simmons E, Murphy S, Teixeira FK. Tolerance thresholds underlie responses to DNA damage during germline development. Genes Dev 2024; 38:631-654. [PMID: 39054057 PMCID: PMC11368186 DOI: 10.1101/gad.351701.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Selfish DNA modules like transposable elements (TEs) are particularly active in the germline, the lineage that passes genetic information across generations. New TE insertions can disrupt genes and impair the functionality and viability of germ cells. However, we found that in P-M hybrid dysgenesis in Drosophila, a sterility syndrome triggered by the P-element DNA transposon, germ cells harbor unexpectedly few new TE insertions despite accumulating DNA double-strand breaks (DSBs) and inducing cell cycle arrest. Using an engineered CRISPR-Cas9 system, we show that generating DSBs at silenced P-elements or other noncoding sequences is sufficient to induce germ cell loss independently of gene disruption. Indeed, we demonstrate that both developing and adult mitotic germ cells are sensitive to DSBs in a dosage-dependent manner. Following the mitotic-to-meiotic transition, however, germ cells become more tolerant to DSBs, completing oogenesis regardless of the accumulated genome damage. Our findings establish DNA damage tolerance thresholds as crucial safeguards of genome integrity during germline development.
Collapse
Affiliation(s)
- Gloria Jansen
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Daniel Gebert
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | | | - Emily Simmons
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Sarah Murphy
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Felipe Karam Teixeira
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom;
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
6
|
Betancourt AJ, Wei KHC, Huang Y, Lee YCG. Causes and Consequences of Varying Transposable Element Activity: An Evolutionary Perspective. Annu Rev Genomics Hum Genet 2024; 25:1-25. [PMID: 38603565 PMCID: PMC12105613 DOI: 10.1146/annurev-genom-120822-105708] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Transposable elements (TEs) are genomic parasites found in nearly all eukaryotes, including humans. This evolutionary success of TEs is due to their replicative activity, involving insertion into new genomic locations. TE activity varies at multiple levels, from between taxa to within individuals. The rapidly accumulating evidence of the influence of TE activity on human health, as well as the rapid growth of new tools to study it, motivated an evaluation of what we know about TE activity thus far. Here, we discuss why TE activity varies, and the consequences of this variation, from an evolutionary perspective. By studying TE activity in nonhuman organisms in the context of evolutionary theories, we can shed light on the factors that affect TE activity. While the consequences of TE activity are usually deleterious, some have lasting evolutionary impacts by conferring benefits on the host or affecting other evolutionary processes.
Collapse
Affiliation(s)
- Andrea J Betancourt
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kevin H-C Wei
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Yuh Chwen G Lee
- Center for Complex Biological Systems, University of California, Irvine, California, USA;
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
7
|
Selvaraju D, Wierzbicki F, Kofler R. Experimentally evolving Drosophila erecta populations may fail to establish an effective piRNA-based host defense against invading P-elements. Genome Res 2024; 34:410-425. [PMID: 38490738 PMCID: PMC11067887 DOI: 10.1101/gr.278706.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
To prevent the spread of transposable elements (TEs), hosts have developed sophisticated defense mechanisms. In mammals and invertebrates, a major defense mechanism operates through PIWI-interacting RNAs (piRNAs). To investigate the establishment of the host defense, we introduced the P-element, one of the most widely studied eukaryotic transposons, into naive lines of Drosophila erecta We monitored the invasion in three replicates for more than 50 generations by sequencing the genomic DNA (using short and long reads), the small RNAs, and the transcriptome at regular intervals. A piRNA-based host defense was rapidly established in two replicates (R1, R4) but not in a third (R2), in which P-element copy numbers kept increasing for over 50 generations. We found that the ping-pong cycle could not be activated in R2, although the ping-pong cycle is fully functional against other TEs. Furthermore, R2 had both insertions in piRNA clusters and siRNAs, suggesting that neither of them is sufficient to trigger the host defense. Our work shows that control of an invading TE requires activation of the ping-pong cycle and that this activation is a stochastic event that may fail in some populations, leading to a proliferation of TEs that ultimately threaten the integrity of the host genome.
Collapse
Affiliation(s)
- Divya Selvaraju
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Vienna, Austria
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria;
| |
Collapse
|
8
|
Pianezza R, Scarpa A, Narayanan P, Signor S, Kofler R. Spoink, a LTR retrotransposon, invaded D. melanogaster populations in the 1990s. PLoS Genet 2024; 20:e1011201. [PMID: 38530818 PMCID: PMC10965091 DOI: 10.1371/journal.pgen.1011201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
During the last few centuries D. melanogaster populations were invaded by several transposable elements, the most recent of which was thought to be the P-element between 1950 and 1980. Here we describe a novel TE, which we named Spoink, that has invaded D. melanogaster. It is a 5216nt LTR retrotransposon of the Ty3/gypsy superfamily. Relying on strains sampled at different times during the last century we show that Spoink invaded worldwide D. melanogaster populations after the P-element between 1983 and 1993. This invasion was likely triggered by a horizontal transfer from the D. willistoni group, much as the P-element. Spoink is probably silenced by the piRNA pathway in natural populations and about 1/3 of the examined strains have an insertion into a canonical piRNA cluster such as 42AB. Given the degree of genetic investigation of D. melanogaster it is perhaps surprising that Spoink was able to invade unnoticed.
Collapse
Affiliation(s)
- Riccardo Pianezza
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Prakash Narayanan
- Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
9
|
Scarpa A, Kofler R. The impact of paramutations on the invasion dynamics of transposable elements. Genetics 2023; 225:iyad181. [PMID: 37819004 PMCID: PMC10697812 DOI: 10.1093/genetics/iyad181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
According to the prevailing view, the trap model, the activity of invading transposable elements (TEs) is greatly reduced when a TE copy jumps into a piRNA cluster, which triggers the emergence of piRNAs that silence the TE. One crucial component in the host defence are paramutations. Mediated by maternally deposited piRNAs, paramutations convert TE insertions into piRNA producing loci, thereby transforming selfish TEs into agents of the host defence. Despite this significant effect, the impact of paramutations on the dynamics of TE invasions remains unknown. To address this issue, we performed extensive forward simulations of TE invasions with piRNA clusters and paramutations. We found that paramutations significantly affect TE dynamics, by accelerating the silencing of TE invasions, reducing the number of insertions accumulating during the invasions and mitigating the fitness cost of TEs. We also demonstrate that piRNA production induced by paramutations, an epigenetically inherited trait, may be positively selected. Finally, we show that paramutations may account for three important open problems with the trap model. Firstly, paramutated TE insertions may compensate for the insufficient number of insertions in piRNA clusters observed in previous studies. Secondly, paramutations may explain the discrepancy between the observed and the expected abundance of different TE families in Drosophila melanogaster. Thirdly, piRNA clusters may be crucial to trigger the host defence, but paramutations render the clusters dispensable once the defence has been established. This could account for the lack of TE activation when three major piRNA clusters were deleted in a previous study.
Collapse
Affiliation(s)
- Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Wien 1210, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Wien 1210, Austria
| |
Collapse
|