1
|
Nyambo K, Tapfuma KI, Adu-Amankwaah F, Julius L, Baatjies L, Niang IS, Smith L, Govender KK, Ngxande M, Watson DJ, Wiesner L, Mavumengwana V. Molecular docking, molecular dynamics simulations and binding free energy studies of interactions between Mycobacterium tuberculosis Pks13, PknG and bioactive constituents of extremophilic bacteria. Sci Rep 2024; 14:6794. [PMID: 38514663 PMCID: PMC10957976 DOI: 10.1038/s41598-024-57124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Mycobacterial pathogens present a significant challenge to disease control efforts globally due to their inherent resistance to multiple antibiotics. The rise of drug-resistant strains of Mycobacterium tuberculosis has prompted an urgent need for innovative therapeutic solutions. One promising way to discover new tuberculosis drugs is by utilizing natural products from the vast biochemical space. Multidisciplinary methods can used to harness the bioactivity of these natural products. This study aimed to evaluate the antimycobacterial efficacy of functional crude extracts from bacteria isolated from gold mine tailings in South Africa. Bacterial strains were identified using 16S rRNA sequencing. The crude extracts obtained from the bacteria were tested against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. Untargeted HPLC-qTOF and molecular networking were used to identify the functional constituents present in extracts that exhibited inhibitory activity. A virtual screening workflow (VSW) was used to filter compounds that were strong binders to Mycobacterium tuberculosis Pks13 and PknG. The ligands returned from the VSW were subjected to optimization using density functional theory (DFT) at M06-2X/6-311++ (d,p) level of theory and basis set implemented in Gaussian16 Rev.C01. The optimized ligands were re-docked against Mycobacterium tuberculosis Pks13 and PknG. Molecular dynamics simulation and molecular mechanics generalized born surface area were used to evaluate the stability of the protein-ligand complexes formed by the identified hits. The hit that showed promising binding characteristics was virtually modified through multiple synthetic routes using reaction-driven enumeration. Three bacterial isolates showed significant activity against the two strains of Mycobacterium, while only two, Bacillus subtilis and Bacillus licheniformis, exhibited activity against both Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. The tentatively identified compounds from the bacterial crude extracts belonged to various classes of natural compounds associated with antimicrobial activity. Two compounds, cyclo-(L-Pro-4-OH-L-Leu) and vazabitide A, showed strong binding against PknG and Pks13, with pre-MD MM-GBSA values of - 42.8 kcal/mol and - 47.6 kcal/mol, respectively. The DFT-optimized compounds exhibited the same docking scores as the ligands optimized using the OPSL-4 force field. After modifying vazabitide A, its affinity to the Pks13 binding site increased to - 85.8 kcal/mol, as revealed by the post-MD MM-GBSA analysis. This study highlights the potential of bacteria isolates from gold mine tailings as a source of new scaffolds for designing and optimizing anti-Mycobacterium agents. These agents synthesized in-silico can be further tested in-vitro to evaluate their efficacy.
Collapse
Affiliation(s)
- Kudakwashe Nyambo
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Kudzanai Ian Tapfuma
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Francis Adu-Amankwaah
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Lauren Julius
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Lucinda Baatjies
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Idah Sithole Niang
- Department of Biotechnology and Biochemistry, University of Zimbabwe, B064, Mount Pleasant, Harare, Zimbabwe
| | - Liezel Smith
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Krishna Kuben Govender
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Cape Town, South Africa
| | - Mkhuseli Ngxande
- Computer Science Division, Department of Mathematical Sciences, Faculty of Science, University of Stellenbosch, Matieland, South Africa
| | - Daniel J Watson
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Vuyo Mavumengwana
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa.
| |
Collapse
|
2
|
Sanyal SK, Etschmann B, Hore SB, Shuster J, Brugger J. Microbial adaptations and biogeochemical cycling of uranium in polymetallic tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133334. [PMID: 38154188 DOI: 10.1016/j.jhazmat.2023.133334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Microorganisms inhabiting uranium (U)-rich environments have specific physiological and biochemical coping mechanisms to deal with U toxicity, and thereby play a crucial role in the U biogeochemical cycling as well as associated heavy metals. We investigated the diversity and functional capabilities of indigenous bacterial communities inhabiting historic U- and Rare-Earth-Elements-rich polymetallic tailings from the Mount Painter Inlier, Northern Flinders Ranges, South Australia. Bacterial diversity profiling identified Actinobacteria as the predominant phylum in all samples. GeoChip analyses revealed the presence of diverse functional genes associated with biogenic element cycling, metal homeostasis/resistance, stress response, and secondary metabolism. The high abundance of metal-resistance and stress-tolerance genes indicates the adaptation of bacterial communities to the "harsh" environmental (metal-rich and semi-arid) conditions of the Northern Flinders Ranges. Additionally, a viable bacterial consortium was enriched from polymetallic tailings. Laboratory experiments demonstrated that the consortium scrubbed uranyl from solution by precipitating a uranyl phosphate biomineral (chernikovite), thus contributing to U biogeochemical cycling. These specialised microbial communities reflect the high specificity of the mineralogy/geochemistry, and biogeography of these U-rich settings. This study provides the fundamental knowledge to develop future applications in securing long-term stability of polymetallic mine waste, and for reprocessing this "waste" to further extract critical minerals.
Collapse
Affiliation(s)
- Santonu K Sanyal
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800 Australia.
| | - Barbara Etschmann
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800 Australia
| | - Stephen B Hore
- Geological Survey of South Australia, Adelaide, South Australia 5001, Australia
| | - Jeremiah Shuster
- Department of Earth Sciences, Western University, London, Ontario N6A 3K7, Canada
| | - Joël Brugger
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800 Australia.
| |
Collapse
|
3
|
Saha J, Sarkar M, Mandal P, Pal A. Comparative Study of Heavy Metal Uptake and Analysis of Plant Growth Promotion Potential of Multiple Heavy Metal-Resistant Bacteria Isolated From Arable Land. Curr Microbiol 2021; 79:7. [PMID: 34905111 DOI: 10.1007/s00284-021-02704-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Abstract
Heavy metal-induced pollution is a serious environmental concern. This study was aimed at exploring indigenous heavy metal-resistant and plant growth promoting bacteria from arable land that might be useful for developing green strategies to counter the challenges related to bioremediation and sustainable agriculture. A thorough screening and characterization of all the twenty heavy metal-resistant bacterial isolates obtained in this study was done. Of these, three potent isolates were further analyzed to unravel their heavy metal resistance and uptake potentiality. Minimum inhibitory concentration determination depicted considerable tolerance (≥ 500 µg/mL) of the three isolates to Ni, Zn, Fe, Cd, Cu, etc. Growth kinetics of the isolates in presence of various heavy metals indicated differences between normal and metal-induced growth. pH tolerance and pigmentation ability of the isolates were also analyzed. Inductively Coupled Plasma-Mass Spectrometry study revealed maximum Cd uptake by the isolates during exponential phase of growth. One of the isolates demonstrated plant growth promotion ability detected using different in vitro qualitative screening tests. Molecular identification using 16S rRNA depicted the isolates as strains of Pseudomonas aeruginosa. This was the first study of heavy metal-resistant and plant growth promoting bacteria from this region. Further exploration of such multi metal-resistant indigenous bacteria may pave the way for designing effective strategies for bioremediation and sustainable agriculture.
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Monalisha Sarkar
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Parimal Mandal
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India.
| |
Collapse
|
4
|
Staicu LC, Stolz JF. Editorial: microbes vs. metals: harvest and recycle. FEMS Microbiol Ecol 2021; 97:6231540. [PMID: 33864064 DOI: 10.1093/femsec/fiab056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/25/2023] Open
Affiliation(s)
- Lucian C Staicu
- Faculty of Biology, Institute for Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|