1
|
Bamba M, Akyol TY, Azuma Y, Quilbe J, Andersen SU, Sato S. Synergistic effects of plant genotype and soil microbiome on growth in Lotus japonicus. FEMS Microbiol Ecol 2024; 100:fiae056. [PMID: 38678008 PMCID: PMC11068475 DOI: 10.1093/femsec/fiae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The biological interactions between plants and their root microbiomes are essential for plant growth, and even though plant genotype (G), soil microbiome (M), and growth conditions (environment; E) are the core factors shaping root microbiome, their relationships remain unclear. In this study, we investigated the effects of G, M, and E and their interactions on the Lotus root microbiome and plant growth using an in vitro cross-inoculation approach, which reconstructed the interactions between nine Lotus accessions and four soil microbiomes under two different environmental conditions. Results suggested that a large proportion of the root microbiome composition is determined by M and E, while G-related (G, G × M, and G × E) effects were significant but small. In contrast, the interaction between G and M had a more pronounced effect on plant shoot growth than M alone. Our findings also indicated that most microbiome variations controlled by M have little effect on plant phenotypes, whereas G × M interactions have more significant effects. Plant genotype-dependent interactions with soil microbes warrant more attention to optimize crop yield and resilience.
Collapse
Affiliation(s)
- Masaru Bamba
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Yusuke Azuma
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Johan Quilbe
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Stig Uggerhøj Andersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| |
Collapse
|
2
|
Khanal A, Han SR, Lee JH, Oh TJ. Comparative Genome Analysis of Polar Mesorhizobium sp. PAMC28654 to Gain Insight into Tolerance to Salinity and Trace Element Stress. Microorganisms 2024; 12:120. [PMID: 38257947 PMCID: PMC10820077 DOI: 10.3390/microorganisms12010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, Mesorhizobium sp. PAMC28654 was isolated from a soil sample collected from the polar region of Uganda. Whole-genome sequencing and comparative genomics were performed to better understand the genomic features necessary for Mesorhizobium sp. PAMC28654 to survive and thrive in extreme conditions and stresses. Additionally, diverse sequence analysis tools were employed for genomic investigation. The results of the analysis were then validated using wet-lab experiments. Genome analysis showed trace elements' resistant proteins (CopC, CopD, CzcD, and Acr3), exopolysaccharide (EPS)-producing proteins (ExoF and ExoQ), and nitrogen metabolic proteins (NarG, NarH, and NarI). The strain was positive for nitrate reduction. It was tolerant to 100 mM NaCl at 15 °C and 25 °C temperatures and resistant to multiple trace elements (up to 1 mM CuSO4·5H2O, 2 mM CoCl2·6H2O, 1 mM ZnSO4·7H2O, 0.05 mM Cd(NO3)2·4H2O, and 100 mM Na2HAsO4·7H2O at 15 °C and 0.25 mM CuSO4·5H2O, 2 mM CoCl2·6H2O, 0.5 mM ZnSO4·7H2O, 0.01 mM Cd(NO3)2·4H2O, and 100 mM Na2HAsO4·7H2O at 25 °C). This research contributes to our understanding of bacteria's ability to survive abiotic stresses. The isolated strain can be a potential candidate for implementation for environmental and agricultural purposes.
Collapse
Affiliation(s)
- Anamika Khanal
- Genome-Based Bio-IT Convergence Institute, Asan 31460, Republic of Korea; (A.K.); (S.-R.H.)
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
| | - So-Ra Han
- Genome-Based Bio-IT Convergence Institute, Asan 31460, Republic of Korea; (A.K.); (S.-R.H.)
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute, Incheon 21990, Republic of Korea;
| | - Tae-Jin Oh
- Genome-Based Bio-IT Convergence Institute, Asan 31460, Republic of Korea; (A.K.); (S.-R.H.)
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea
| |
Collapse
|
3
|
Epstein B, Burghardt LT, Heath KD, Grillo MA, Kostanecki A, Hämälä T, Young ND, Tiffin P. Combining GWAS and population genomic analyses to characterize coevolution in a legume-rhizobia symbiosis. Mol Ecol 2022. [PMID: 35793264 DOI: 10.1111/mec.16602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
The mutualism between legumes and rhizobia is clearly the product of past coevolution. However, the nature of ongoing evolution between these partners is less clear. To characterize the nature of recent coevolution between legumes and rhizobia, we used population genomic analysis to characterize selection on functionally annotated symbiosis genes as well as on symbiosis gene candidates identified through a two-species association analysis. For the association analysis, we inoculated each of 202 accessions of the legume host Medicago truncatula with a community of 88 Sinorhizobia (Ensifer) meliloti strains. Multistrain inoculation, which better reflects the ecological reality of rhizobial selection in nature than single-strain inoculation, allows strains to compete for nodulation opportunities and host resources and for hosts to preferentially form nodules and provide resources to some strains. We found extensive host by symbiont, that is, genotype-by-genotype, effects on rhizobial fitness and some annotated rhizobial genes bear signatures of recent positive selection. However, neither genes responsible for this variation nor annotated host symbiosis genes are enriched for signatures of either positive or balancing selection. This result suggests that stabilizing selection dominates selection acting on symbiotic traits and that variation in these traits is under mutation-selection balance. Consistent with the lack of positive selection acting on host genes, we found that among-host variation in growth was similar whether plants were grown with rhizobia or N-fertilizer, suggesting that the symbiosis may not be a major driver of variation in plant growth in multistrain contexts.
Collapse
Affiliation(s)
- Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Liana T Burghardt
- Department of Plant Sciences, The University of Pennsylvania, University Park, Pennsylvania, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Adam Kostanecki
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Nevin D Young
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA.,Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|