1
|
Feng T, Li J, Mao X, Jin X, Cheng L, Xie H, Ma Y. A comparative analysis of the rhizosphere microbial communities among three species of the Salix genus. PeerJ 2025; 13:e19182. [PMID: 40166043 PMCID: PMC11956769 DOI: 10.7717/peerj.19182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Rhizosphere microorganisms exert a significant influence in counteracting diverse external stresses and facilitating plant nutrient uptake. While certain rhizosphere microorganisms associated with Salix species have been investigated, numerous rhizosphere microorganisms from various Salix species remain underexplored. In this study, we employed high-throughput sequencing to examine the rhizosphere bacterial and fungal communities composition and diversity of three Salix species: Salix zangica (SZ), Salix myrtilllacea (SM), and Salix cheilophila (SC). Furthermore, the BugBase and FUNGuild were utilized to predict the functional roles of bacterial and fungal microorganisms. The findings revealed notable variations in the alpha and beta diversities of bacterial and fungal communities among the three Salix species exhibited significant differences (p < 0.05). The relative abundance of Flavobacterium was highest in the SZ samples, while Microvirga exhibited significant enrichment in the SM samples. Microvirga and Vishniacozyma demonstrate the highest number of nodes within their respective bacterial and fungal community network structures. The functions of bacterial microorganisms, including Gram-positive, potentially pathogenic, Gram-negative, and stress-tolerant types, exhibited significant variation among the three Salix species (p < 0.05). Furthermore, for the function of fungal microbe, the ectomycorrhizal guild had the highest abundance of symbiotic modes. This results demonstrated the critical role of ectomycorrhizal fungi in enhancing nutrient absorption and metabolism during the growth of Salix plants. Additionally, this findings also suggested that S. zangica plant was better well-suited for cultivation in stressful environments. These findings guide future questions about plant-microbe interactions, greatly enhancing our understanding of microbial communities for the healthy development of Salix plants.
Collapse
Affiliation(s)
- Tianqing Feng
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
- School of Life Science, Qinghai Normal University, Xining, China
| | - Juan Li
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Xiaoning Mao
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
- School of Life Science, Qinghai Normal University, Xining, China
| | - Xionglian Jin
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
- School of Life Science, Qinghai Normal University, Xining, China
| | - Liang Cheng
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Huichun Xie
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
- School of Life Science, Qinghai Normal University, Xining, China
| | - Yonggui Ma
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
- School of Life Science, Qinghai Normal University, Xining, China
| |
Collapse
|
2
|
Middleton H, Dozois JA, Monard C, Daburon V, Clostres E, Tremblay J, Combier JP, Yergeau É, El Amrani A. Rhizospheric miRNAs affect the plant microbiota. ISME COMMUNICATIONS 2024; 4:ycae120. [PMID: 39474459 PMCID: PMC11520407 DOI: 10.1093/ismeco/ycae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 12/31/2024]
Abstract
Small ribonucleic acids (RNAs) have been shown to play important roles in cross-kingdom communication, notably in plant-pathogen relationships. Plant micro RNAs (miRNAs)-one class of small RNAs-were even shown to regulate gene expression in the gut microbiota. Plant miRNAs could also affect the rhizosphere microbiota. Here we looked for plant miRNAs in the rhizosphere of model plants, and if these miRNAs could affect the rhizosphere microbiota. We first show that plant miRNAs were present in the rhizosphere of Arabidopsis thaliana and Brachypodium distachyon. These plant miRNAs were also found in or on bacteria extracted from the rhizosphere. We then looked at the effect these plants miRNAs could have on two typical rhizosphere bacteria, Variovorax paradoxus and Bacillus mycoides. The two bacteria took up a fluorescent synthetic miRNA but only V. paradoxus shifted its transcriptome when confronted to a mixture of six plant miRNAs. V. paradoxus also changed its transcriptome when it was grown in the rhizosphere of Arabidopsis that overexpressed a miRNA in its roots. As there were differences in the response of the two isolates used, we looked for shifts in the larger microbial community. We observed shifts in the rhizosphere bacterial communities of Arabidopsis mutants that were impaired in their small RNA pathways, or overexpressed specific miRNAs. We also found differences in the growth and community composition of a simplified soil microbial community when exposed in vitro to a mixture of plant miRNAs. Our results support the addition of miRNAs to the plant tools shaping rhizosphere microbial assembly.
Collapse
Affiliation(s)
- Harriet Middleton
- Écosystèmes, Biodiversité, Évolution (ECOBIO), Unité mixte de recherche (UMR) 6553, Centre national de la recherche scientifique (CNRS) - Université de Rennes, Campus Beaulieu, 263 Avenue du Général Leclerc, Rennes, 35042, France
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Jessica Ann Dozois
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Cécile Monard
- Écosystèmes, Biodiversité, Évolution (ECOBIO), Unité mixte de recherche (UMR) 6553, Centre national de la recherche scientifique (CNRS) - Université de Rennes, Campus Beaulieu, 263 Avenue du Général Leclerc, Rennes, 35042, France
| | - Virginie Daburon
- Écosystèmes, Biodiversité, Évolution (ECOBIO), Unité mixte de recherche (UMR) 6553, Centre national de la recherche scientifique (CNRS) - Université de Rennes, Campus Beaulieu, 263 Avenue du Général Leclerc, Rennes, 35042, France
| | - Emmanuel Clostres
- Écosystèmes, Biodiversité, Évolution (ECOBIO), Unité mixte de recherche (UMR) 6553, Centre national de la recherche scientifique (CNRS) - Université de Rennes, Campus Beaulieu, 263 Avenue du Général Leclerc, Rennes, 35042, France
| | - Julien Tremblay
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Jean-Philippe Combier
- Laboratoire de recherche en sciences végétales (LRSV), UMR 5546, Université Paul-Sabatier - CNRS -Institut national polytechnique, 24 chemin de Borde Rouge, Auzeville-Tolosane, 31320, France
| | - Étienne Yergeau
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Abdelhak El Amrani
- Écosystèmes, Biodiversité, Évolution (ECOBIO), Unité mixte de recherche (UMR) 6553, Centre national de la recherche scientifique (CNRS) - Université de Rennes, Campus Beaulieu, 263 Avenue du Général Leclerc, Rennes, 35042, France
| |
Collapse
|
3
|
Baril X, Constant P. Carbon amendments in soil microcosms induce uneven response on H2 oxidation activity and microbial community composition. FEMS Microbiol Ecol 2023; 99:fiad159. [PMID: 38040657 PMCID: PMC10716739 DOI: 10.1093/femsec/fiad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023] Open
Abstract
High-affinity H2-oxidizing bacteria (HA-HOB) thriving in soil are responsible for the most important sink of atmospheric H2. Their activity increases with soil organic carbon content, but the incidence of different carbohydrate fractions on the process has received little attention. Here we tested the hypothesis that carbon amendments impact HA-HOB activity and diversity differentially depending on their recalcitrance and their concentration. Carbon sources (sucrose, starch, cellulose) and application doses (0, 0.1, 1, 3, 5% Ceq soildw-1) were manipulated in soil microcosms. Only 0.1% Ceq soildw-1 cellulose treatment stimulated the HA-HOB activity. Sucrose amendments induced the most significant changes, with an abatement of 50% activity at 1% Ceq soildw-1. This was accompanied with a loss of bacterial and fungal alpha diversity and a reduction of high-affinity group 1 h/5 [NiFe]-hydrogenase gene (hhyL) abundance. A quantitative classification framework was elaborated to assign carbon preference traits to 16S rRNA gene, ITS and hhyL genotypes. The response was uneven at the taxonomic level, making carbon preference a difficult trait to predict. Overall, the results suggest that HA-HOB activity is more susceptible to be stimulated by low doses of recalcitrant carbon, while labile carbon-rich environment is an unfavorable niche for HA-HOB, inducing catabolic repression of hydrogenase.
Collapse
Affiliation(s)
- Xavier Baril
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Philippe Constant
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
4
|
Guo B, Zhang H, Liu Y, Chen J, Li J. Drought-resistant trait of different crop genotypes determines assembly patterns of soil and phyllosphere microbial communities. Microbiol Spectr 2023; 11:e0006823. [PMID: 37754752 PMCID: PMC10581042 DOI: 10.1128/spectrum.00068-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023] Open
Abstract
Crop microbiomes are widely recognized to play a role in crop stress resistance, but the ecological processes that shape crop microbiomes under water stress are unclear. Therefore, we investigated the bacterial communities of two oat (Avena sativa) and two wheat (Triticum aestivum) genotypes under different water stress conditions. Our results show that the microbial assemblage was determined by the crop compartment niche. Host selection pressure on the bacterial community increased progressively from soil to epiphyte to endophyte pathways, leading to a decrease in bacterial community diversity and network complexity. Source tracing shows that soil is the primary source of crop microbial communities and that bulk soil is the main potential source of crop microbiota. It filters gradually through the different compartment niches of the crop. We found that the phyla Actinobacteria, Proteobacteria, Gemmatimonadota, and Myxococcota were significantly enriched in bacterial communities associated with crop-resistance enzyme activity. Crop genotype influenced the composition of the rhizosphere soil microbial community, and the composition of the phylloplane microbial community was affected by water stress. IMPORTANCE In this paper, we investigated the assembly of the plant microbiome in response to water stress. We found that the determinant of microbiome assembly under water stress was the host type and that microbial communities were progressively filtered and enriched as they moved from soil to epiphyte to endophyte communities, with the main potential source being bulk soil. We also screened for bacterial communities that were significantly associated with crop enzyme activity. Our research provides insights into the manipulation of microbes in response to crop resistance to water stress.
Collapse
Affiliation(s)
- Baobei Guo
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, China
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Hong Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, China
| | - Yong Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, China
| | - Jianwen Chen
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Quiza L, Tremblay J, Pagé AP, Greer CW, Pozniak CJ, Li R, Haug B, Hemmingsen SM, St-Arnaud M, Yergeau E. The effect of wheat genotype on the microbiome is more evident in roots and varies through time. ISME COMMUNICATIONS 2023; 3:32. [PMID: 37076737 PMCID: PMC10115884 DOI: 10.1038/s43705-023-00238-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Crop breeding has traditionally ignored the plant-associated microbial communities. Considering the interactions between plant genotype and associated microbiota is of value since different genotypes of the same crop often harbor distinct microbial communities which can influence the plant phenotype. However, recent studies have reported contrasting results, which led us to hypothesize that the effect of genotype is constrained by growth stages, sampling year and plant compartment. To test this hypothesis, we sampled bulk soil, rhizosphere soil and roots of 10 field-grown wheat genotypes, twice per year, for 4 years. DNA was extracted and regions of the bacterial 16 S rRNA and CPN60 genes and the fungal ITS region were amplified and sequenced. The effect of genotype was highly contingent on the time of sampling and on the plant compartment sampled. Only for a few sampling dates, were the microbial communities significantly different across genotypes. The effect of genotype was most often significant for root microbial communities. The three marker genes used provided a highly coherent picture of the effect of genotype. Taken together, our results confirm that microbial communities in the plant environment strongly vary across compartments, growth stages, and years, and that this can mask the effect of genotype.
Collapse
Affiliation(s)
- Liliana Quiza
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | - Julien Tremblay
- Energy, Mining, and Environment Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Antoine P Pagé
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Charles W Greer
- Energy, Mining, and Environment Research Centre, National Research Council Canada, Montréal, QC, Canada
| | | | - Rong Li
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Brenda Haug
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Sean M Hemmingsen
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Marc St-Arnaud
- Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, 4101 rue Sherbrooke E., Montréal, QC, Canada
| | - Etienne Yergeau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada.
| |
Collapse
|
6
|
Pande PM, Azarbad H, Tremblay J, St-Arnaud M, Yergeau E. Metatranscriptomic response of the wheat holobiont to decreasing soil water content. ISME COMMUNICATIONS 2023; 3:30. [PMID: 37061589 PMCID: PMC10105728 DOI: 10.1038/s43705-023-00235-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/17/2023]
Abstract
Crops associate with microorganisms that help their resistance to biotic stress. However, it is not clear how the different partners of this association react during exposure to stress. This knowledge is needed to target the right partners when trying to adapt crops to climate change. Here, we grew wheat in the field under rainout shelters that let through 100%, 75%, 50% and 25% of the precipitation. At the peak of the growing season, we sampled plant roots and rhizosphere, and extracted and sequenced their RNA. We compared the 100% and the 25% treatments using differential abundance analysis. In the roots, most of the differentially abundant (DA) transcripts belonged to the fungi, and most were more abundant in the 25% precipitation treatment. About 10% of the DA transcripts belonged to the plant and most were less abundant in the 25% precipitation treatment. In the rhizosphere, most of the DA transcripts belonged to the bacteria and were generally more abundant in the 25% precipitation treatment. Taken together, our results show that the transcriptomic response of the wheat holobiont to decreasing precipitation levels is stronger for the fungal and bacterial partners than for the plant.
Collapse
Affiliation(s)
- Pranav M Pande
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | - Hamed Azarbad
- Department of Biology, Evolutionary Ecology of Plants, Philipps-University Marburg, Marburg, Germany
| | - Julien Tremblay
- National Research Council of Canada, Energy Mining and Environment, Montréal, Québec, Canada
| | - Marc St-Arnaud
- Institut de recherche en biologie végétale, Université de Montréal et Jardin Botanique de Montréal, Montréal, Québec, Canada
| | - Etienne Yergeau
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada.
| |
Collapse
|
7
|
Lin Y, Yang L, Chen Z, Gao Y, Kong J, He Q, Su Y, Li J, Qiu Q. Seasonal variations of soil bacterial and fungal communities in a subtropical Eucalyptus plantation and their responses to throughfall reduction. Front Microbiol 2023; 14:1113616. [PMID: 37056748 PMCID: PMC10086269 DOI: 10.3389/fmicb.2023.1113616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Climatic change causes obvious seasonal meteorological drought in southern China, yet there is a lack of comprehensive in situ studies on the effects of drought in Eucalyptus plantations. Here, a 50% throughfall reduction (TR) experiment was conducted to investigate the seasonal variations of soil bacterial and fungal communities and functions in a subtropical Eucalyptus plantation and their responses to TR treatment. Soil samples were collected from control (CK) and TR plots in the dry and rainy seasons and were subjected to high-throughput sequencing analysis. Results showed that TR treatment significantly reduced soil water content (SWC) in the rainy season. In CK and TR treatments, fungal alpha-diversity decreased in the rainy season while bacterial alpha-diversity did not change significantly between dry and rainy seasons. Moreover, bacterial networks were more affected by seasonal variations compared with fungal networks. Redundancy analysis showed that alkali hydrolyzed nitrogen and SWC contributed the most to the bacterial and fungal communities, respectively. Functional prediction indicated that the expression of soil bacterial metabolic functions and symbiotic fungi decreased in the rainy season. In conclusion, seasonal variations have a stronger effect on soil microbial community composition, diversity, and function compared with TR treatment. These findings could be used to develop management practices for subtropical Eucalyptus plantations and help maintain soil microbial diversity to sustain long-term ecosystem function and services in response to future changes in precipitation patterns.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Quan Qiu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Ajilogba CF, Olanrewaju OS, Babalola OO. Plant Growth Stage Drives the Temporal and Spatial Dynamics of the Bacterial Microbiome in the Rhizosphere of Vigna subterranea. Front Microbiol 2022; 13:825377. [PMID: 35250941 PMCID: PMC8891599 DOI: 10.3389/fmicb.2022.825377] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Bambara groundnut (BGN) is an underutilized legume commonly found in sub-Saharan Africa. It thrives in marginal soils and is resistant to drought stress. Several studies have been carried out on the nutritional properties of BGN, but very little is known about the effects of plant growth changes and development on rhizosphere bacterial dynamics and function. This study reports on the bacterial dynamics and function in the bulk and rhizosphere soils of BGN at different growth stages (vegetative, flowering, pod-filling, and maturation stages). Aside from the maturation stage that shows distinct community structure from the other growth stages, results obtained showed no significant differences in bacterial community structure among the other growth stages. At a closer level, Actinobacteria, Proteobacteria, and Acidobacteria were dominant in rhizosphere soils at all growth stages. The bulk soil had the least average phyla abundance, while the maturity stage was characterized by the highest average phyla abundance. Rubrobacter, Acidobacterium, and Skermanella were the most predominant genus. It was observed from the analysis of operational taxonomic units that there was significant change in the bacterial structure of the rhizosphere with a higher abundance of potential plant growth-promoting rhizobacteria, at the different growth stages, which include the genera Bacillus and Acidobacterium. Biomarker analysis revealed 7 and 4 highly significant bacterial biomarkers by linear discriminant analysis effect size and random forest analysis at the maturation stage, respectively. The results obtained in this study demonstrated that the bacterial communities of BGN rhizosphere microbiome dynamics and function are influenced by the plant’s growth stages.
Collapse
Affiliation(s)
- Caroline Fadeke Ajilogba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Agricultural Research Council, Natural Resources and Engineering, Division of Agrometeorology, Pretoria, South Africa
| | - Oluwaseyi Samuel Olanrewaju
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Olubukola Oluranti Babalola,
| |
Collapse
|