1
|
Doni L, Azzola A, Oliveri C, Bosi E, Auguste M, Morri C, Bianchi CN, Montefalcone M, Vezzulli L. Genome-resolved metagenomics revealed novel microbial taxa with ancient metabolism from macroscopic microbial mat structures inhabiting anoxic deep reefs of a Maldivian Blue Hole. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13315. [PMID: 39267241 PMCID: PMC11392830 DOI: 10.1111/1758-2229.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/12/2024] [Indexed: 09/17/2024]
Abstract
Blue holes are vertical water-filled openings in carbonate rock that exhibit complex morphology, ecology, and water chemistry. In this study, macroscopic microbial mat structures found in complete anoxic conditions in the Faanu Mudugau Blue Hole (Maldives) were studied by metagenomic methods. Such communities have likely been evolutionary isolated from the surrounding marine environment for more than 10,000 years since the Blue Hole formation during the last Ice Age. A total of 48 high-quality metagenome-assembled genomes (MAGs) were recovered, predominantly composed of the phyla Chloroflexota, Proteobacteria and Desulfobacterota. None of these MAGs have been classified to species level (<95% ANI), suggesting the discovery of several new microbial taxa. In particular, MAGs belonging to novel bacterial genera within the order Dehalococcoidales accounted for 20% of the macroscopic mat community. Genome-resolved metabolic analysis of this dominant microbial fraction revealed a mixotrophic lifestyle based on energy conservation via fermentation, hydrogen metabolism and anaerobic CO2 fixation through the Wood-Ljungdahl pathway. Interestingly, these bacteria showed a high proportion of ancestral genes in their genomes providing intriguing perspectives on mechanisms driving microbial evolution in this peculiar environment. Overall, our results provide new knowledge for understanding microbial life under extreme conditions in blue hole environments.
Collapse
Affiliation(s)
- Lapo Doni
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Annalisa Azzola
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
| | - Emanuele Bosi
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Carla Morri
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre (GMC), Genoa, Italy
| | - Carlo Nike Bianchi
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre (GMC), Genoa, Italy
| | - Monica Montefalcone
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
2
|
Li P, Tian Y, Yang K, Tian M, Zhu Y, Chen X, Hu R, Qin T, Liu Y, Peng S, Yi Z, Liu Z, Ao H, Li J. Mechanism of microbial action of the inoculated nitrogen-fixing bacterium for growth promotion and yield enhancement in rice (Oryza sativa L.). ADVANCED BIOTECHNOLOGY 2024; 2:32. [PMID: 39883349 PMCID: PMC11709144 DOI: 10.1007/s44307-024-00038-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 01/31/2025]
Abstract
The use of nitrogen-fixing bacteria in agriculture is increasingly recognized as a sustainable method to boost crop yields, reduce chemical fertilizer use, and improve soil health. However, the microbial mechanisms by which inoculation with nitrogen-fixing bacteria enhance rice production remain unclear. In this study, rice seedlings were inoculated with the nitrogen-fixing bacterium R3 (Herbaspirillum) at the rhizosphere during the seedling stage in a pot experiment using paddy soil. We investigated the effects of such inoculation on nutrient content in the rhizosphere soil, plant growth, and the nitrogen-fixing microbial communities within the rhizosphere and endorhizosphere. The findings showed that inoculation with the R3 strain considerably increased the amounts of nitrate nitrogen, ammonium nitrogen, and available phosphorus in the rhizosphere by 14.77%, 27.83%, and 22.67%, respectively, in comparison to the control (CK). Additionally, the theoretical yield of rice was enhanced by 8.81% due to this inoculation, primarily through a 10.24% increase in the effective number of rice panicles and a 4.14% increase in the seed setting rate. Further analysis revealed that the structure of the native nitrogen-fixing microbial communities within the rhizosphere and endorhizosphere were altered by inoculation with the R3 strain, significantly increasing the α-diversity of the communities. The relative abundance of key nitrogen-fixing genera such as Ralstonia, Azotobacter, Geobacter, Streptomyces, and Pseudomonas were increased, enhancing the quantity and community stability of the nitrogen-fixing community. Consequently, the nitrogen-fixing capacity and sustained activity of the microbial community in the rhizosphere soil were strengthened. Additionally, the expression levels of the nitrogen absorption and transport-related genes OsNRT1 and OsPTR9 in rice roots were upregulated by inoculation with the R3 strain, potentially contributing to the increased rice yield. Our study has revealed the potential microbial mechanisms through which inoculation with nitrogen-fixing bacteria enhances rice yield. This finding provides a scientific basis for subsequent agricultural practices and is of critical importance for increasing rice production and enhancing the ecosystem services of rice fields.
Collapse
Affiliation(s)
- Peng Li
- Hunan Soil and Fertilizer Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yunhe Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Kun Yang
- Hunan Tobacco Science Institute, Changsha, 410004, China
| | - Meijie Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Zhu
- Hunan Tobacco Company Changde Branch, Changde, 415000, China
| | - Xinyu Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Ruiwen Hu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Tian Qin
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha, 410004, China
| | - Shuguang Peng
- Hunan Tobacco Science Institute, Changsha, 410004, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Zhixuan Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Hejun Ao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Abdallah RZ, Elbehery AHA, Ahmed SF, Ouf A, Malash MN, Liesack W, Siam R. Deciphering the functional and structural complexity of the Solar Lake flat mat microbial benthic communities. mSystems 2024; 9:e0009524. [PMID: 38727215 PMCID: PMC11237645 DOI: 10.1128/msystems.00095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/04/2024] [Indexed: 06/19/2024] Open
Abstract
The Solar Lake in Taba, Egypt, encompasses one of the few modern-day microbial mats' systems metabolically analogous to Precambrian stromatolites. Solar Lake benthic communities and their adaptation to the Lake's unique limnological cycle have not been described for over two decades. In this study, we revisit the flat mat and describe the summer's shallow water versus exposed microbial community; the latter occurs in response to the seasonal partial receding of water. We employed metagenomic NovaSeq-6000 shotgun sequencing and 16S rRNA, mcrA, and dsrB quantitative PCR. A total of 292 medium-to-high-quality metagenome-assembled genomes (MAGs) were reconstructed. At the structural level, Candidatus Aenigmatarchaeota, Micrarchaeota, and Omnitrophota MAGs were exclusively detected in the shallow-water mats, whereas Halobacteria and Myxococcota MAGs were specific to the exposed microbial mat. Functionally, genes involved in reactive oxygen species (ROS) detoxification and osmotic pressure were more abundant in the exposed than in the shallow-water microbial mats, whereas genes involved in sulfate reduction/oxidation and nitrogen fixation were ubiquitously detected. Genes involved in the utilization of methylated amines for methane production were predominant when compared with genes associated with alternative methanogenesis pathways. Solar Lake methanogen MAGs belonged to Methanosarcinia, Bathyarchaeia, Candidatus Methanofastidiosales, and Archaeoglobales. The latter had the genetic capacity for anaerobic methane oxidation. Moreover, Coleofasciculus chthonoplastes, previously reported to dominate the winter shallow-water flat mat, had a substantial presence in the summer. These findings reveal the taxonomic and biochemical microbial zonation of the exposed and shallow-water Solar Lake flat mat benthic community and their capacity to ecologically adapt to the summer water recession. IMPORTANCE Fifty-five years ago, the extremophilic "Solar Lake" was discovered on the Red Sea shores, garnering microbiologists' interest worldwide from the 1970s to 1990s. Nevertheless, research on the lake paused at the turn of the millennium. In our study, we revisited the Solar Lake benthic community using a genome-centric approach and described the distinct microbial communities in the exposed versus shallow-water mat unveiling microbial zonation in the benthic communities surrounding the Solar Lake. Our findings highlighted the unique structural and functional adaptations employed by these microbial mat communities. Moreover, we report new methanogens and phototrophs, including an intriguing methanogen from the Archaeoglobales family. We describe how the Solar Lake's flat mat microbial community adapts to stressors like oxygen intrusion and drought due to summer water level changes, which provides insights into the genomic strategies of microbial communities to cope with altered and extreme environmental conditions.
Collapse
Affiliation(s)
- Rehab Z Abdallah
- Biology department, The American University in Cairo, Cairo, Egypt
| | - Ali H A Elbehery
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Shimaa F Ahmed
- Biology department, The American University in Cairo, Cairo, Egypt
| | - Amged Ouf
- Biology department, The American University in Cairo, Cairo, Egypt
| | - Mohamed N Malash
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Rania Siam
- Biology department, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
4
|
Rodríguez-Cruz UE, Castelán-Sánchez HG, Madrigal-Trejo D, Eguiarte LE, Souza V. Uncovering novel bacterial and archaeal diversity: genomic insights from metagenome-assembled genomes in Cuatro Cienegas, Coahuila. Front Microbiol 2024; 15:1369263. [PMID: 38873164 PMCID: PMC11169877 DOI: 10.3389/fmicb.2024.1369263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
A comprehensive study was conducted in the Cuatro Ciénegas Basin (CCB) in Coahuila, Mexico, which is known for its diversity of microorganisms and unique physicochemical properties. The study focused on the "Archaean Domes" (AD) site in the CCB, which is characterized by an abundance of hypersaline, non-lithifying microbial mats. In AD, we analyzed the small domes and circular structures using metagenome assembly genomes (MAGs) with the aim of expanding our understanding of the prokaryotic tree of life by uncovering previously unreported lineages, as well as analyzing the diversity of bacteria and archaea in the CCB. A total of 325 MAGs were identified, including 48 Archaea and 277 Bacteria. Remarkably, 22 archaea and 104 bacteria could not be classified even at the genus level, highlighting the remarkable novel diversity of the CCB. Besides, AD site exhibited significant diversity at the phylum level, with Proteobacteria being the most abundant, followed by Desulfobacteria, Spirochaetes, Bacteroidetes, Nanoarchaeota, Halobacteriota, Cyanobacteria, Planctomycetota, Verrucomicrobiota, Actinomycetes and Chloroflexi. In Archaea, the monophyletic groups of MAGs belonged to the Archaeoglobi, Aenigmarchaeota, Candidate Nanoarchaeota, and Halobacteriota. Among Bacteria, monophyletic groups were also identified, including Spirochaetes, Proteobacteria, Planctomycetes, Actinobacteria, Verrucomicrobia, Bacteroidetes, Candidate Bipolaricaulota, Desulfobacteria, and Cyanobacteria. These monophyletic groups were possibly influenced by geographic isolation, as well as the extreme and fluctuating environmental conditions in the pond AD, such as stoichiometric imbalance of C:N:P of 122:42:1, fluctuating pH (5-9.8) and high salinity (5.28% to saturation).
Collapse
Affiliation(s)
- Ulises E. Rodríguez-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - David Madrigal-Trejo
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
5
|
Skoog EJ, Bosak T. Predicted metabolic roles and stress responses provide insights into candidate phyla Hydrogenedentota and Sumerlaeota as members of the rare biosphere in biofilms from various environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13228. [PMID: 38192240 PMCID: PMC10866078 DOI: 10.1111/1758-2229.13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Pustular mats from Shark Bay, Western Australia, host complex microbial communities bound within an organic matrix. These mats harbour many poorly characterized organisms with low relative abundances (<1%), such as candidate phyla Hydrogenedentota and Sumerlaeota. Here, we aim to constrain the metabolism and physiology of these candidate phyla by analyzing two representative metagenome-assembled genomes (MAGs) from a pustular mat. Metabolic reconstructions of these MAGs suggest facultatively anaerobic, chemoorganotrophic lifestyles of both organisms and predict that both MAGs can metabolize a diversity of carbohydrate substrates. Ca. Sumerlaeota possesses genes involved in degrading chitin, cellulose and other polysaccharides, while Ca. Hydrogenedentota can metabolize cellulose derivatives in addition to glycerol, fatty acids and phosphonates. Both Ca. phyla can respond to nitrosative stress and participate in nitrogen metabolism. Metabolic comparisons of MAGs from Shark Bay and those from various polyextreme environments (i.e., hot springs, hydrothermal vents, subsurface waters, anaerobic digesters, etc.) reveal similar metabolic capabilities and adaptations to hypersalinity, oxidative stress, antibiotics, UV radiation, nitrosative stress, heavy metal toxicity and life in surface-attached communities. These adaptations and capabilities may account for the widespread nature of these organisms and their contributions to biofilm communities in a range of extreme surface and subsurface environments.
Collapse
Affiliation(s)
- Emilie J. Skoog
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Integrative Oceanography DivisionScripps Institution of Oceanography, UC San DiegoLa JollaCaliforniaUSA
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
6
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
7
|
Cerk K, Ugalde‐Salas P, Nedjad CG, Lecomte M, Muller C, Sherman DJ, Hildebrand F, Labarthe S, Frioux C. Community-scale models of microbiomes: Articulating metabolic modelling and metagenome sequencing. Microb Biotechnol 2024; 17:e14396. [PMID: 38243750 PMCID: PMC10832553 DOI: 10.1111/1751-7915.14396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
Building models is essential for understanding the functions and dynamics of microbial communities. Metabolic models built on genome-scale metabolic network reconstructions (GENREs) are especially relevant as a means to decipher the complex interactions occurring among species. Model reconstruction increasingly relies on metagenomics, which permits direct characterisation of naturally occurring communities that may contain organisms that cannot be isolated or cultured. In this review, we provide an overview of the field of metabolic modelling and its increasing reliance on and synergy with metagenomics and bioinformatics. We survey the means of assigning functions and reconstructing metabolic networks from (meta-)genomes, and present the variety and mathematical fundamentals of metabolic models that foster the understanding of microbial dynamics. We emphasise the characterisation of interactions and the scaling of model construction to large communities, two important bottlenecks in the applicability of these models. We give an overview of the current state of the art in metagenome sequencing and bioinformatics analysis, focusing on the reconstruction of genomes in microbial communities. Metagenomics benefits tremendously from third-generation sequencing, and we discuss the opportunities of long-read sequencing, strain-level characterisation and eukaryotic metagenomics. We aim at providing algorithmic and mathematical support, together with tool and application resources, that permit bridging the gap between metagenomics and metabolic modelling.
Collapse
Affiliation(s)
- Klara Cerk
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | | | - Chabname Ghassemi Nedjad
- Inria, University of Bordeaux, INRAETalenceFrance
- University of Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800TalenceFrance
| | - Maxime Lecomte
- Inria, University of Bordeaux, INRAETalenceFrance
- INRAE STLO¸University of RennesRennesFrance
| | | | | | - Falk Hildebrand
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | - Simon Labarthe
- Inria, University of Bordeaux, INRAETalenceFrance
- INRAE, University of Bordeaux, BIOGECO, UMR 1202CestasFrance
| | | |
Collapse
|
8
|
Chen B, Yu K, Fu L, Wei Y, Liang J, Liao Z, Qin Z, Yu X, Deng C, Han M, Ma H. The diversity, community dynamics, and interactions of the microbiome in the world's deepest blue hole: insights into extreme environmental response patterns and tolerance of marine microorganisms. Microbiol Spectr 2023; 11:e0053123. [PMID: 37861344 PMCID: PMC10883803 DOI: 10.1128/spectrum.00531-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE This study comprehensively examined the community dynamics, functional profiles, and interactions of the microbiome in the world's deepest blue hole. The findings revealed a positive correlation between the α-diversities of Symbiodiniaceae and archaea, indicating the potential reliance of Symbiodiniaceae on archaea in an extreme environment resulting from a partial niche overlap. The negative association between the α-diversity and β-diversity of the bacterial community suggested that the change rule of the bacterial community was consistent with the Anna Karenina effects. The core microbiome comprised nine microbial taxa, highlighting their remarkable tolerance and adaptability to sharp environmental gradient variations. Bacteria and archaea played significant roles in carbon, nitrogen, and sulfur cycles, while fungi contributed to carbon metabolism. This study advanced our understanding of the community dynamics, response patterns, and resilience of microorganisms populating the world's deepest blue hole, thereby facilitating further ecological and evolutional exploration of microbiomes in diverse extreme environments.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai, China
| | - Liang Fu
- Sansha Track Ocean Coral Reef Conservation Research Institute Co. Ltd. , Qionghai, China
| | - Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University , Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Chuanqi Deng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Honglin Ma
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University , Nanning, China
| |
Collapse
|
9
|
Gonçalves OS, Creevey CJ, Santana MF. Designing a synthetic microbial community through genome metabolic modeling to enhance plant-microbe interaction. ENVIRONMENTAL MICROBIOME 2023; 18:81. [PMID: 37974247 PMCID: PMC10655421 DOI: 10.1186/s40793-023-00536-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Manipulating the rhizosphere microbial community through beneficial microorganism inoculation has gained interest in improving crop productivity and stress resistance. Synthetic microbial communities, known as SynComs, mimic natural microbial compositions while reducing the number of components. However, achieving this goal requires a comprehensive understanding of natural microbial communities and carefully selecting compatible microorganisms with colonization traits, which still pose challenges. In this study, we employed multi-genome metabolic modeling of 270 previously described metagenome-assembled genomes from Campos rupestres to design a synthetic microbial community to improve the yield of important crop plants. RESULTS We used a targeted approach to select a minimal community (MinCom) encompassing essential compounds for microbial metabolism and compounds relevant to plant interactions. This resulted in a reduction of the initial community size by approximately 4.5-fold. Notably, the MinCom retained crucial genes associated with essential plant growth-promoting traits, such as iron acquisition, exopolysaccharide production, potassium solubilization, nitrogen fixation, GABA production, and IAA-related tryptophan metabolism. Furthermore, our in-silico selection for the SymComs, based on a comprehensive understanding of microbe-microbe-plant interactions, yielded a set of six hub species that displayed notable taxonomic novelty, including members of the Eremiobacterota and Verrucomicrobiota phyla. CONCLUSION Overall, the study contributes to the growing body of research on synthetic microbial communities and their potential to enhance agricultural practices. The insights gained from our in-silico approach and the selection of hub species pave the way for further investigations into the development of tailored microbial communities that can optimize crop productivity and improve stress resilience in agricultural systems.
Collapse
Affiliation(s)
- Osiel S Gonçalves
- Grupo de Genômica Eco-evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Christopher J Creevey
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Mateus F Santana
- Grupo de Genômica Eco-evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Zhang H, Wei T, Li Q, Fu L, He L, Wang Y. Metagenomic 16S rDNA reads of in situ preserved samples revealed microbial communities in the Yongle blue hole. PeerJ 2023; 11:e16257. [PMID: 37941937 PMCID: PMC10629384 DOI: 10.7717/peerj.16257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/18/2023] [Indexed: 11/10/2023] Open
Abstract
Our knowledge on biogeochemistry and microbial ecology of marine blue holes is limited due to challenges in collecting multilayered water column and oxycline zones. In this study, we collected samples from 16 water layers in Yongle blue hole (YBH) located in the South China Sea using the in situ microbial filtration and fixation (ISMIFF) apparatus. The microbial communities based on 16S rRNA metagenomic reads for the ISMIFF samples showed high microbial diversity and consistency among samples with similar dissolved oxygen levels. At the same depth of the anoxic layer, the ISMIFF samples were dominated by sulfate-reducing bacteria from Desulfatiglandales (17.96%). The sulfide concentration is the most significant factor that drives the division of microbial communities in YBH, which might support the prevalence of sulfate-reducing microorganisms in the anoxic layers. Our results are different from the microbial community structures of a Niskin sample of this study and the reported samples collected in 2017, in which a high relative abundance of Alteromonadales (26.59%) and Thiomicrospirales (38.13%), and Arcobacteraceae (11.74%) was identified. We therefore demonstrate a new profile of microbial communities in YBH probably due to the effect of sampling and molecular biological methods, which provides new possibilities for further understanding of the material circulation mechanism of blue holes and expanding anoxic marine water zones under global warming.
Collapse
Affiliation(s)
- Hongxi Zhang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Taoshu Wei
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Qingmei Li
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Liang Fu
- Sansha Trackline Institute of Coral Reef Environment Protection, Sansha, Hainan, China
| | - Lisheng He
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
11
|
Saliminasab M, Yamazaki Y, Palmateer A, Harris A, Schubert L, Langner P, Heberle J, Bondar AN, Brown LS. A Proteorhodopsin-Related Photosensor Expands the Repertoire of Structural Motifs Employed by Sensory Rhodopsins. J Phys Chem B 2023; 127:7872-7886. [PMID: 37694950 PMCID: PMC10519204 DOI: 10.1021/acs.jpcb.3c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Microbial rhodopsins are light-activated retinal-binding membrane proteins that perform a variety of ion transport and photosensory functions. They display several cases of convergent evolution where the same function is present in unrelated or very distant protein groups. Here we report another possible case of such convergent evolution, describing the biophysical properties of a new group of sensory rhodopsins. The first representative of this group was identified in 2004 but none of the members had been expressed and characterized. The well-studied haloarchaeal sensory rhodopsins interacting with methyl-accepting Htr transducers are close relatives of the halobacterial proton pump bacteriorhodopsin. In contrast, the sensory rhodopsins we describe here are relatives of proteobacterial proton pumps, proteorhodopsins, but appear to interact with Htr-like transducers likewise, even though they do not conserve the residues important for the interaction of haloarchaeal sensory rhodopsins with their transducers. The new sensory rhodopsins display many unusual amino acid residues, including those around the retinal chromophore; most strikingly, a tyrosine in place of a carboxyl counterion of the retinal Schiff base on helix C. To characterize their unique sequence motifs, we augment the spectroscopy and biochemistry data by structural modeling of the wild-type and three mutants. Taken together, the experimental data, bioinformatics sequence analyses, and structural modeling suggest that the tyrosine/aspartate complex counterion contributes to a complex water-mediated hydrogen-bonding network that couples the protonated retinal Schiff base to an extracellular carboxylic dyad.
Collapse
Affiliation(s)
- Maryam Saliminasab
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yoichi Yamazaki
- Division
of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Alyssa Palmateer
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Andrew Harris
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luiz Schubert
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Pit Langner
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- University
of Bucharest, Faculty of Physics, Atomiştilor 405, Măgurele 077125, Romania
- Forschungszentrum
Jülich, Institute for Neuroscience and Medicine and Institute
for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52428 Jülich, Germany
| | - Leonid S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
12
|
Pavloudi C, Zafeiropoulos H. Deciphering the community structure and the functional potential of a hypersaline marsh microbial mat community. FEMS Microbiol Ecol 2022; 98:6843573. [PMID: 36416806 DOI: 10.1093/femsec/fiac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Microbial mats are vertically stratified communities of microorganisms characterized by pronounced physiochemical gradients allowing for high species diversity and a wide range of metabolic capabilities. High Throughput Sequencing has the potential to reveal the biodiversity and function of such ecosystems in the cycling of elements. The present study combines 16S rRNA amplicon sequencing and shotgun metagenomics on a hypersaline marsh in Tristomo bay (Karpathos, Greece). Samples were collected in July 2018 and November 2019 from microbial mats, deeper sediment, aggregates observed in the water overlying the sediment, as well as sediment samples with no apparent layering. Metagenomic samples' coassembly and binning revealed 250 bacterial and 39 archaeal metagenome-assembled genomes, with completeness estimates higher than 70% and contamination less than 5%. All MAGs had KEGG Orthology terms related to osmoadaptation, with the 'salt in' strategy ones being prominent. Halobacteria and Bacteroidetes were the most abundant taxa in the mats. Photosynthesis was most likely performed by purple sulphur and nonsulphur bacteria. All samples had the capacity for sulphate reduction, dissimilatory arsenic reduction, and conversion of pyruvate to oxaloacetate. Overall, both sequencing methodologies resulted in similar taxonomic compositions and revealed that the formation of the microbial mat in this marsh exhibits seasonal variation.
Collapse
Affiliation(s)
- Christina Pavloudi
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003, Heraklion, Crete, Greece.,Department of Biological Sciences, The George Washington University, 2029 G St NW, Bell Hall 302, Washington DC 20052, United States
| | - Haris Zafeiropoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003, Heraklion, Crete, Greece.,Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013, Heraklion, Crete, Greece.,Laboratory of Molecular Bacteriology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, box 1028, 3000 Leuven, Belgium
| |
Collapse
|