1
|
Wöhlbrand L, Dörries M, Siani R, Medrano-Soto A, Schnaars V, Schumacher J, Hilbers C, Thies D, Kube M, Reinhardt R, Schloter M, Saier MH, Winklhofer M, Rabus R. Key role of Desulfobacteraceae in C/S cycles of marine sediments is based on congeneric catabolic-regulatory networks. SCIENCE ADVANCES 2025; 11:eads5631. [PMID: 40053579 PMCID: PMC11887813 DOI: 10.1126/sciadv.ads5631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Marine sediments are highly bioactive habitats, where sulfate-reducing bacteria contribute substantially to seabed carbon cycling by oxidizing ~77 Tmol Corg year-1. This remarkable activity is largely attributable to the deltaproteobacterial family Desulfobacteraceae of complete oxidizers (to CO2), which our biogeography focused meta-analysis verified as cosmopolitan. However, the catabolic/regulatory networks underlying this ecophysiological feat at the thermodynamic limit are essentially unknown. Integrating cultivation-based (80 conditions) proteogenomics of six representative Desulfobacteraceae spp., we identify molecular commonalities explaining the family's environmental relevance and success. Desulfobacteraceae genomes are specifically enriched in substrate uptake, degradation capacities, and regulatory functions including fine-tuned sulfate uptake. Conserved gene arrangements and shared regulatory patterns translate into strikingly similar (sub-)proteome profiles. From 319 proteins, we constructed a meta-network for catabolizing 35 substrates. Therefrom, we defined a Desulfobacteraceae characteristic gene subset, which we found prevalent in metagenomes of organic-rich, marine sediments. These genes are promising targets to advance our mechanistic understanding of Desulfobacteraceae-driven biogeochemical processes in marine sediments and beyond.
Collapse
Affiliation(s)
- Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Marvin Dörries
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the Carl von Ossietzky Universität Oldenburg (HIFMB), Oldenburg, Germany
| | - Roberto Siani
- Institute for Comparative Microbiome Analysis (COMI), Department of Environmental Sciences, Helmholtz Zentrum München, Oberschleißheim, Munich, Germany
- Chair for Environmental Microbiology, School of Life Sciences, Technical University Munich, Freising, Germany
| | - Arturo Medrano-Soto
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Vanessa Schnaars
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Julian Schumacher
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christina Hilbers
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Daniela Thies
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Michael Kube
- Integrative Infection Biology Crops-Livestocks, Faculty of Agricultural Sciences, University Hohenheim, Stuttgart, Germany
| | | | - Michael Schloter
- Institute for Comparative Microbiome Analysis (COMI), Department of Environmental Sciences, Helmholtz Zentrum München, Oberschleißheim, Munich, Germany
- Chair for Environmental Microbiology, School of Life Sciences, Technical University Munich, Freising, Germany
| | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Michael Winklhofer
- Institute of Biology and Environmental Sciences (IBU), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Halevy I, Fike DA, Pasquier V, Bryant RN, Wenk CB, Turchyn AV, Johnston DT, Claypool GE. Sedimentary parameters control the sulfur isotope composition of marine pyrite. Science 2023; 382:946-951. [PMID: 37995229 DOI: 10.1126/science.adh1215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Reconstructions of coupled carbon, oxygen, and sulfur cycles rely heavily on sedimentary pyrite sulfur isotope compositions (δ34Spyr). With a model of sediment diagenesis, paired with global datasets of sedimentary parameters, we show that the wide range of δ34Spyr (~100 per mil) in modern marine sediments arises from geographic patterns in the relative rates of diffusion, burial, and microbial reduction of sulfate. By contrast, the microbial sulfur isotope fractionation remains large and relatively uniform. Over Earth history, the effect of increasing seawater sulfate and oxygen concentrations on sulfate and sulfide transport and reaction may explain the corresponding increase observed in the δ34S offset between sulfate and pyrite. More subtle variations may be related to changes in depositional environments associated with sea level fluctuations and supercontinent cycles.
Collapse
Affiliation(s)
- I Halevy
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - D A Fike
- Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130-4899, USA
| | - V Pasquier
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - R N Bryant
- Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130-4899, USA
- Earth, Atmospheric and Planetary Sciences, Purdue University, W. Lafayette, IN 47907, USA
| | - C B Wenk
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - A V Turchyn
- Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - D T Johnston
- Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - G E Claypool
- 8910 West Jewell Avenue, Unit 209, Lakewood, CO 80232, USA
| |
Collapse
|
3
|
Horn EJ, van Hille RP, Oyekola OO, Welz PJ. Functional Microbial Communities in Hybrid Linear Flow Channel Reactors for Desulfurization of Tannery Effluent. Microorganisms 2022; 10:2305. [PMID: 36422375 PMCID: PMC9695182 DOI: 10.3390/microorganisms10112305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024] Open
Abstract
Recent research has demonstrated that hybrid linear flow channel reactors (HLFCRs) can desulfurize tannery effluent via sulfate reduction and concurrent oxidation of sulfide to elemental sulfur. The reactors can be used to pre-treat tannery effluent to improve the efficiency of downstream anaerobic digestion and recover sulfur. This study was conducted to gain insight into the bacterial communities in HLFCRs operated in series and identify structure-function relationships. This was accomplished by interpreting the results obtained from amplicon sequencing of the 16S rRNA gene and quantification of the dissimilatory sulfite reducing (dsrB) gene. In an effort to provide a suitable inoculum, microbial consortia were harvested from saline estuaries and enriched. However, it was found that bioaugmentation was not necessary because native communities from tannery wastewater were selected over exogenous communities from the enriched consortia. Overall, Dethiosulfovibrio sp. and Petrimonas sp. were strongly selected (maximum relative abundances of 29% and 26%, respectively), while Desulfobacterium autotrophicum (57%), and Desulfobacter halotolerans (27%) dominated the sulfate reducing bacteria. The presence of elemental sulfur reducing genera such as Dethiosulfovibrio and Petrimonas is not desirable in HLFCRs, and strategies to counter their selection need to be considered to ensure efficiency of these systems for pre-treatment of tannery effluent.
Collapse
|
4
|
Wu Q, Guthrie MJ, Jin Q. Physiological Acclimation Extrapolates the Kinetics and Thermodynamics of Methanogenesis From Laboratory Experiments to Natural Environments. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.838487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemotrophic microorganisms face the steep challenge of limited energy resources in natural environments. This observation has important implications for interpreting and modeling the kinetics and thermodynamics of microbial reactions. Current modeling frameworks treat microbes as autocatalysts, and simulate microbial energy conservation and growth with fixed kinetic and thermodynamic parameters. However, microbes are capable of acclimating to the environment and modulating their parameters in order to gain competitive fitness. Here we constructed an optimization model and described microbes as self-adapting catalysts by linking microbial parameters to intracellular metabolic resources. From the optimization results, we related microbial parameters to the substrate concentration and the energy available in the environment, and simplified the relationship between the kinetics and the thermodynamics of microbial reactions. We took as examples Methanosarcina and Methanosaeta – the methanogens that produce methane from acetate – and showed how the acclimation model extrapolated laboratory observations to natural environments and improved the simulation of methanogenesis and the dominance of Methanosaeta over Methanosarcina in lake sediments. These results highlight the importance of physiological acclimation in shaping the kinetics and thermodynamics of microbial reactions and in determining the outcome of microbial interactions.
Collapse
|
5
|
Response to substrate limitation by a marine sulfate-reducing bacterium. THE ISME JOURNAL 2022; 16:200-210. [PMID: 34285365 PMCID: PMC8692349 DOI: 10.1038/s41396-021-01061-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Sulfate-reducing microorganisms (SRM) in subsurface sediments live under constant substrate and energy limitation, yet little is known about how they adapt to this mode of life. We combined controlled chemostat cultivation and transcriptomics to examine how the marine sulfate reducer, Desulfobacterium autotrophicum, copes with substrate (sulfate or lactate) limitation. The half-saturation uptake constant (Km) for lactate was 1.2 µM, which is the first value reported for a marine SRM, while the Km for sulfate was 3 µM. The measured residual lactate concentration in our experiments matched values observed in situ in marine sediments, supporting a key role of SRM in the control of lactate concentrations. Lactate limitation resulted in complete lactate oxidation via the Wood-Ljungdahl pathway and differential overexpression of genes involved in uptake and metabolism of amino acids as an alternative carbon source. D. autotrophicum switched to incomplete lactate oxidation, rerouting carbon metabolism in response to sulfate limitation. The estimated free energy was significantly lower during sulfate limitation (-28 to -33 kJ mol-1 sulfate), suggesting that the observed metabolic switch is under thermodynamic control. Furthermore, we detected the upregulation of putative sulfate transporters involved in either high or low affinity uptake in response to low or high sulfate concentration.
Collapse
|
6
|
Wegener G, Gropp J, Taubner H, Halevy I, Elvert M. Sulfate-dependent reversibility of intracellular reactions explains the opposing isotope effects in the anaerobic oxidation of methane. SCIENCE ADVANCES 2021; 7:7/19/eabe4939. [PMID: 33952515 PMCID: PMC8099194 DOI: 10.1126/sciadv.abe4939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/17/2021] [Indexed: 06/01/2023]
Abstract
The anaerobic oxidation of methane (AOM) is performed by methanotrophic archaea (ANME) in distinct sulfate-methane interfaces of marine sediments. In these interfaces, AOM often appears to deplete methane in the heavy isotopes toward isotopic compositions similar to methanogenesis. Here, we shed light on this effect and its physiological underpinnings using a thermophilic ANME-1-dominated culture. At high sulfate concentrations, residual methane is enriched in both 13C and 2H (13α = 1.016 and 2α = 1.155), as observed previously. In contrast, at low sulfate concentrations, the residual methane is substantially depleted in 13C (13α = 0.977) and, to a lesser extent, in 2H. Using a biochemical-isotopic model, we explain the sulfate dependence of the net isotopic fractionation through the thermodynamic drive of the involved intracellular reactions. Our findings relate these isotopic patterns to the physiology and environment of the ANME, thereby explaining a commonly observed isotopic enigma.
Collapse
Affiliation(s)
- Gunter Wegener
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany.
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Jonathan Gropp
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Heidi Taubner
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
- Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcus Elvert
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
- Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
7
|
Anion transport as a target of adaption to perchlorate in sulfate-reducing communities. ISME JOURNAL 2019; 14:450-462. [PMID: 31659234 DOI: 10.1038/s41396-019-0540-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 11/09/2022]
Abstract
Inhibitors can be used to control the functionality of microbial communities by targeting specific metabolisms. The targeted inhibition of dissimilatory sulfate reduction limits the generation of toxic and corrosive hydrogen sulfide across several industrial systems. Sulfate-reducing microorganisms (SRM) are specifically inhibited by sulfate analogs, such as perchlorate. Previously, we showed pure culture SRM adaptation to perchlorate stress through mutation of the sulfate adenylyltransferase, a central enzyme in the sulfate reduction pathway. Here, we explored adaptation to perchlorate across unconstrained SRM on a community scale. We followed natural and bio-augmented sulfidogenic communities through serial transfers in increasing concentrations of perchlorate. Our results demonstrated that perchlorate stress altered community structure by initially selecting for innately more resistant strains. Isolation, whole-genome sequencing, and molecular biology techniques allowed us to define subsequent genetic mechanisms of adaptation that arose across the dominant adapting SRM. Changes in the regulation of divalent anion:sodium symporter family transporters led to increased intracellular sulfate to perchlorate ratios, allowing SRM to escape the effects of competitive inhibition. Thus, in contrast to pure-culture results, SRM in communities cope with perchlorate stress via changes in anion transport and its regulation. This highlights the value of probing evolutionary questions in an ecological framework, bridging the gap between ecology, evolution, genomics, and physiology.
Collapse
|
8
|
Jørgensen BB, Findlay AJ, Pellerin A. The Biogeochemical Sulfur Cycle of Marine Sediments. Front Microbiol 2019. [DOI: 10.10.3389/fmicb.2019.00849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Jørgensen BB, Findlay AJ, Pellerin A. The Biogeochemical Sulfur Cycle of Marine Sediments. Front Microbiol 2019; 10:849. [PMID: 31105660 PMCID: PMC6492693 DOI: 10.3389/fmicb.2019.00849] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
Microbial dissimilatory sulfate reduction to sulfide is a predominant terminal pathway of organic matter mineralization in the anoxic seabed. Chemical or microbial oxidation of the produced sulfide establishes a complex network of pathways in the sulfur cycle, leading to intermediate sulfur species and partly back to sulfate. The intermediates include elemental sulfur, polysulfides, thiosulfate, and sulfite, which are all substrates for further microbial oxidation, reduction or disproportionation. New microbiological discoveries, such as long-distance electron transfer through sulfide oxidizing cable bacteria, add to the complexity. Isotope exchange reactions play an important role for the stable isotope geochemistry and for the experimental study of sulfur transformations using radiotracers. Microbially catalyzed processes are partly reversible whereby the back-reaction affects our interpretation of radiotracer experiments and provides a mechanism for isotope fractionation. We here review the progress and current status in our understanding of the sulfur cycle in the seabed with respect to its microbial ecology, biogeochemistry, and isotope geochemistry.
Collapse
Affiliation(s)
- Bo Barker Jørgensen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
10
|
Stoeva MK, Coates JD. Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding. MICROBIOLOGY-SGM 2018; 165:254-269. [PMID: 30556806 DOI: 10.1099/mic.0.000750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbial sulfate reduction (SR) by sulfate-reducing micro-organisms (SRM) is a primary environmental mechanism of anaerobic organic matter mineralization, and as such influences carbon and sulfur cycling in many natural and engineered environments. In industrial systems, SR results in the generation of hydrogen sulfide, a toxic, corrosive gas with adverse human health effects and significant economic and environmental consequences. Therefore, there has been considerable interest in developing strategies for mitigating hydrogen sulfide production, and several specific inhibitors of SRM have been identified and characterized. Specific inhibitors are compounds that disrupt the metabolism of one group of organisms, with little or no effect on the rest of the community. Putative specific inhibitors of SRM have been used to control sulfidogenesis in industrial and engineered systems. Despite the value of these inhibitors, mechanistic and quantitative studies into the molecular mechanisms of their inhibition have been sparse and unsystematic. The insight garnered by such studies is essential if we are to have a more complete understanding of SR, including the past and current selective pressures acting upon it. Furthermore, the ability to reliably control sulfidogenesis - and potentially assimilatory sulfate pathways - relies on a thorough molecular understanding of inhibition. The scope of this review is to summarize the current state of the field: how we measure and understand inhibition, the targets of specific SR inhibitors and how SRM acclimatize and/or adapt to these stressors.
Collapse
Affiliation(s)
- Magdalena K Stoeva
- 1Energy Biosciences Institute, University of California - Berkeley, Berkeley, CA, USA
- 2Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
| | - John D Coates
- 2Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
- 1Energy Biosciences Institute, University of California - Berkeley, Berkeley, CA, USA
| |
Collapse
|
11
|
Jochum LM, Schreiber L, Marshall IPG, Jørgensen BB, Schramm A, Kjeldsen KU. Single-Cell Genomics Reveals a Diverse Metabolic Potential of Uncultivated Desulfatiglans-Related Deltaproteobacteria Widely Distributed in Marine Sediment. Front Microbiol 2018; 9:2038. [PMID: 30233524 PMCID: PMC6129605 DOI: 10.3389/fmicb.2018.02038] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Desulfatiglans-related organisms comprise one of the most abundant deltaproteobacterial lineages in marine sediments where they occur throughout the sediment column in a gradient of increasing sulfate and organic carbon limitation with depth. Characterized Desulfatiglans isolates are dissimilatory sulfate reducers able to grow by degrading aromatic hydrocarbons. The ecophysiology of environmental Desulfatiglans-populations is poorly understood, however, possibly utilization of aromatic compounds may explain their predominance in marine subsurface sediments. We sequenced and analyzed seven Desulfatiglans-related single-cell genomes (SAGs) from Aarhus Bay sediments to characterize their metabolic potential with regard to aromatic compound degradation and energy metabolism. The average genome assembly size was 1.3 Mbp and completeness estimates ranged between 20 and 50%. Five of the SAGs (group 1) originated from the sulfate-rich surface part of the sediment while two (group 2) originated from sulfate-depleted subsurface sediment. Based on 16S rRNA gene amplicon sequencing group 2 SAGs represent the more frequent types of Desulfatiglans-populations in Aarhus Bay sediments. Genes indicative of aromatic compound degradation could be identified in both groups, but the two groups were metabolically distinct with regard to energy conservation. Group 1 SAGs carry a full set of genes for dissimilatory sulfate reduction, whereas the group 2 SAGs lacked any genetic evidence for sulfate reduction. The latter may be due to incompleteness of the SAGs, but as alternative energy metabolisms group 2 SAGs carry the genetic potential for growth by acetogenesis and fermentation. Group 1 SAGs encoded reductive dehalogenase genes, allowing them to access organohalides and possibly conserve energy by their reduction. Both groups possess sulfatases unlike their cultured relatives allowing them to utilize sulfate esters as source of organic carbon and sulfate. In conclusion, the uncultivated marine Desulfatiglans populations are metabolically diverse, likely reflecting different strategies for coping with energy and sulfate limitation in the subsurface seabed.
Collapse
Affiliation(s)
- Lara M Jochum
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lars Schreiber
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Ian P G Marshall
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Bo B Jørgensen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper U Kjeldsen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Pellerin A, Wenk CB, Halevy I, Wing BA. Sulfur Isotope Fractionation by Sulfate-Reducing Microbes Can Reflect Past Physiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4013-4022. [PMID: 29505248 DOI: 10.1021/acs.est.7b05119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sulfur (S) isotope fractionation by sulfate-reducing microorganisms is a direct manifestation of their respiratory metabolism. This fractionation is apparent in the substrate (sulfate) and waste (sulfide) produced. The sulfate-reducing metabolism responds to variability in the local environment, with the response determined by the underlying genotype, resulting in the expression of an "isotope phenotype". Sulfur isotope phenotypes have been used as a diagnostic tool for the metabolic activity of sulfate-reducing microorganisms in the environment. Our experiments with Desulfovibrio vulgaris Hildenborough (DvH) grown in batch culture suggest that the S isotope phenotype of sulfate respiring microbes may lag environmental changes on time scales that are longer than generational. When inocula from different phases of growth are assayed under the same environmental conditions, we observed that DvH exhibited different net apparent fractionations of up to -9‰. The magnitude of fractionation was weakly correlated with physiological parameters but was strongly correlated to the age of the initial inoculum. The S isotope fractionation observed between sulfate and sulfide showed a positive correlation with respiration rate, contradicting the well-described negative dependence of fractionation on respiration rate. Quantitative modeling of S isotope fractionation shows that either a large increase (≈50×) in the abundance of sulfate adenylyl transferase (Sat) or a smaller increase in sulfate transport proteins (≈2×) is sufficient to account for the change in fractionation associated with past physiology. Temporal transcriptomic studies with DvH imply that expression of sulfate permeases doubles over the transition from early exponential to early stationary phase, lending support to the transport hypothesis proposed here. As it is apparently maintained for multiple generations (≈1-6) of subsequent growth in the assay environment, we suggest that this fractionation effect acts as a sort of isotopic "memory" of a previous physiological and environmental state. Whatever its root cause, this physiological hysteresis effect can explain variations in fractionations observed in many environments. It may also enable new insights into life at energetic limits, especially if its historical footprint extends deeper than generational.
Collapse
Affiliation(s)
- André Pellerin
- Center for Geomicrobiology, Department of Bioscience , Aarhus University , Ny Munkegade 114 , Aarhus C 8000 , Denmark
| | - Christine B Wenk
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Itay Halevy
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Boswell A Wing
- Geological Sciences , University of Colorado Boulder , UCB 399, Boulder , Colorado 80309-0399 , United States
| |
Collapse
|
13
|
Marietou A, Røy H, Jørgensen BB, Kjeldsen KU. Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis. Front Microbiol 2018; 9:309. [PMID: 29551997 PMCID: PMC5840216 DOI: 10.3389/fmicb.2018.00309] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM) there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT) are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.
Collapse
Affiliation(s)
- Angeliki Marietou
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Hans Røy
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Bo B Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper U Kjeldsen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay. Appl Environ Microbiol 2017; 83:AEM.01547-17. [PMID: 28939599 DOI: 10.1128/aem.01547-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/14/2017] [Indexed: 11/20/2022] Open
Abstract
Most sulfate-reducing microorganisms (SRMs) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRMs, and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRMs by amplicon sequencing and quantifying the dsrB gene, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRMs were present in all geochemical zones, including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurred across the transition from bioturbated surface sediments to nonbioturbated sediments below, where redox fluctuations and the input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed a weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by the persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community.IMPORTANCE Sulfate-reducing microorganisms (SRMs) are key players in the marine carbon and sulfur cycles, especially in coastal sediments, yet little is understood about the environmental factors controlling their depth distribution. Our results suggest that macrofaunal activity is a key driver of SRM abundance and community structure in marine sediments and that a small subset of SRM species of high relative abundance in the subsurface SRM community persists from the sulfate-rich surface sediment to sulfate-depleted methanogenic subsurface sediment. More generally, we conclude that SRM communities inhabiting the subsurface seabed assemble by the selective survival of members of the surface community.
Collapse
|