1
|
Fernández-Verdejo D, Cortés P, Guisasola A, Blánquez P, Marco-Urrea E. Bioelectrochemically-assisted degradation of chloroform by a co-culture of Dehalobacter and Dehalobacterium. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100199. [PMID: 36157346 PMCID: PMC9500365 DOI: 10.1016/j.ese.2022.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
Using bioelectrochemical systems (BESs) to provide electrochemically generated hydrogen is a promising technology to provide electron donors for reductive dechlorination by organohalide-respiring bacteria. In this study, we inoculated two syntrophic dechlorinating cultures containing Dehalobacter and Dehalobacterium to sequentially transform chloroform (CF) to acetate in a BES using a graphite fiber brush as the electrode. In this co-culture, Dehalobacter transformed CF to stoichiometric amounts of dichloromethane (DCM) via organohalide respiration, whereas the Dehalobacterium-containing culture converted DCM to acetate via fermentation. BES were initially inoculated with Dehalobacter, and sequential cathodic potentials of -0.6, -0.7, and -0.8 V were poised after consuming three CF doses (500 μM) per each potential during a time-span of 83 days. At the end of this period, the accumulated DCM was degraded in the following seven days after the inoculation of Dehalobacterium. At this point, four consecutive amendments of CF at increasing concentrations of 200, 400, 600, and 800 μM were sequentially transformed by the combined degradation activity of Dehalobacter and Dehalobacterium. The Dehalobacter 16S rRNA gene copies increased four orders of magnitude during the whole period. The coulombic efficiencies associated with the degradation of CF reached values > 60% at a cathodic potential of -0.8 V when the degradation rate of CF achieved the highest values. This study shows the advantages of combining syntrophic bacteria to fully detoxify chlorinated compounds in BESs and further expands the use of this technology for treating water bodies impacted with pollutants.
Collapse
Affiliation(s)
- David Fernández-Verdejo
- Biorem UAB, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Facultat de BioCiències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Albert Guisasola
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Paqui Blánquez
- Biorem UAB, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Ernest Marco-Urrea
- Biorem UAB, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
2
|
Puentes Jácome LA, Lomheim L, Gaspard S, Edwards EA. Biodegradation of Lindane (γ-Hexachlorocyclohexane) To Nontoxic End Products by Sequential Treatment with Three Mixed Anaerobic Microbial Cultures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2968-2979. [PMID: 33557520 DOI: 10.1021/acs.est.0c07221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The γ isomer of hexachlorocyclohexane (HCH), also known as lindane, is a carcinogenic persistent organic pollutant. Lindane was used worldwide as an agricultural insecticide. Legacy soil and groundwater contamination with lindane and other HCH isomers is still a big concern. The biotic reductive dechlorination of HCH to nondesirable and toxic lower chlorinated compounds such as monochlorobenzene (MCB) and benzene, among others, has been broadly documented. Here, we demonstrate that complete biodegradation of lindane to nontoxic end products is attainable using a sequential treatment approach with three mixed anaerobic microbial cultures referred to as culture I, II, and III. Biaugmentation with culture I achieved dechlorination of lindane to MCB and benzene. Culture II was able to dechlorinate MCB to benzene, and finally, culture III carried out methanogenic benzene degradation. Distinct Dehalobacter populations, corresponding to different 16S rRNA amplicon sequence variants in culture I and culture II, were responsible for lindane and MCB dechlorination, respectively. This study continues to highlight key roles of Dehalobacter as chlorobenzene- and HCH -respiring bacteria and demonstrates that sequential treatment with specialized anaerobic cultures may be explored at field sites in order to address legacy soil and groundwater contamination with HCH.
Collapse
Affiliation(s)
- Luz A Puentes Jácome
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Line Lomheim
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Sarra Gaspard
- Laboratory COVACHIMM2E, Université des Antilles, Pointe à Pitre, Guadeloupe, French West-Indies 97157, France
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
3
|
Yu Y, Zhang K, Li Z, Ren C, Chen J, Lin YH, Liu J, Men Y. Microbial Cleavage of C-F Bonds in Two C 6 Per- and Polyfluorinated Compounds via Reductive Defluorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14393-14402. [PMID: 33121241 DOI: 10.1021/acs.est.0c04483] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The C-F bond is one of the strongest single bonds in nature. Although microbial reductive dehalogenation is well known for the other organohalides, no microbial reductive defluorination has been documented for perfluorinated compounds except for a single, nonreproducible study on trifluoroacetate. Here, we report on C-F bond cleavage in two C6 per- and polyfluorinated compounds via reductive defluorination by an organohalide-respiring microbial community. The reductive defluorination was demonstrated by the release of F- and the formation of the corresponding product when lactate was the electron donor, and the fluorinated compound was the sole electron acceptor. The major dechlorinating species in the seed culture, Dehalococcoides, were not responsible for the defluorination as no growth of Dehalococcoides or active expression of Dehalococcoides-reductive dehalogenases was observed. It suggests that minor phylogenetic groups in the community might be responsible for the reductive defluorination. These findings expand our fundamental knowledge of microbial reductive dehalogenation and warrant further studies on the enrichment, identification, and isolation of responsible microorganisms and enzymes. Given the wide use and emerging concerns of fluorinated organics (e.g., per- and polyfluoroalkyl substances), particularly the perfluorinated ones, the discovery of microbial defluorination under common anaerobic conditions may provide valuable insights into the environmental fate and potential bioremediation strategies of these notorious contaminants.
Collapse
Affiliation(s)
- Yaochun Yu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kunyang Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhong Li
- Metabolomics Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jin Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Chow SJ, Lorah MM, Wadhawan AR, Durant ND, Bouwer EJ. Sequential biodegradation of 1,2,4-trichlorobenzene at oxic-anoxic groundwater interfaces in model laboratory columns. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 231:103639. [PMID: 32283437 DOI: 10.7281/t1/i3ilxo] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 05/24/2023]
Abstract
Halogenated organic solvents such as chlorobenzenes (CBs) are frequent groundwater contaminants due to legacy spills. When contaminated anaerobic groundwater discharges into surface water through wetlands and other transition zones, aeration can occur from various physical and biological processes at shallow depths, resulting in oxic-anoxic interfaces (OAIs). This study investigated the potential for 1,2,4-trichlorobenzene (1,2,4-TCB) biodegradation at OAIs. A novel upflow column system was developed to create stable anaerobic and aerobic zones, simulating a natural groundwater OAI. Two columns containing (1) sand and (2) a mixture of wetland sediment and sand were operated continuously for 295 days with varied doses of 0.14-1.4 mM sodium lactate (NaLac) as a model electron donor. Both column matrices supported anaerobic reductive dechlorination and aerobic degradation of 1,2,4-TCB spatially separated between anaerobic and aerobic zones. Reductive dechlorination produced a mixture of di- and monochlorobenzene daughter products, with estimated zero-order dechlorination rates up to 31.3 μM/h. Aerobic CB degradation, limited by available dissolved oxygen, occurred for 1,2,4-TCB and all dechlorinated daughter products. Initial reductive dechlorination did not enhance the overall observed extent or rate of subsequent aerobic CB degradation. Increasing NaLac dose increased the extent of reductive dechlorination, but suppressed aerobic CB degradation at 1.4 mM NaLac due to increased oxygen demand. 16S-rRNA sequencing of biofilm microbial communities revealed strong stratification of functional anaerobic and aerobic organisms between redox zones including the sole putative reductive dechlorinator detected in the columns, Dehalobacter. The sediment mixture column supported enhanced reductive dechlorination compared to the sand column at all tested NaLac doses and growth of Dehalobacter populations up to 4.1 × 108 copies/g (51% relative abundance), highlighting the potential benefit of sediments in reductive dechlorination processes. Results from these model systems suggest both substantial anaerobic and aerobic CB degradation can co-occur along the OAI at contaminated sites where bioavailable electron donors and oxygen are both present.
Collapse
Affiliation(s)
- Steven J Chow
- Department of Environmental Health and Engineering, Johns Hopkins University, Address: 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Michelle M Lorah
- U.S. Geological Survey, MD-DE-DC Water Science Center, Address: 5522 Research Park Drive, Baltimore, MD 21228, United States.
| | - Amar R Wadhawan
- Arcadis U.S. Inc., Address: 7550 Teague Road Suite 210, Hanover, MD 21076, United States
| | - Neal D Durant
- Geosyntec Consultants, Address: 10211 Wincopin Cir Floor 4, Columbia, MD 21044, United States
| | - Edward J Bouwer
- Department of Environmental Health and Engineering, Johns Hopkins University, Address: 3400 North Charles Street, Baltimore, MD 21218, United States
| |
Collapse
|
5
|
Chow SJ, Lorah MM, Wadhawan AR, Durant ND, Bouwer EJ. Sequential biodegradation of 1,2,4-trichlorobenzene at oxic-anoxic groundwater interfaces in model laboratory columns. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 231:103639. [PMID: 32283437 PMCID: PMC7217665 DOI: 10.1016/j.jconhyd.2020.103639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 05/09/2023]
Abstract
Halogenated organic solvents such as chlorobenzenes (CBs) are frequent groundwater contaminants due to legacy spills. When contaminated anaerobic groundwater discharges into surface water through wetlands and other transition zones, aeration can occur from various physical and biological processes at shallow depths, resulting in oxic-anoxic interfaces (OAIs). This study investigated the potential for 1,2,4-trichlorobenzene (1,2,4-TCB) biodegradation at OAIs. A novel upflow column system was developed to create stable anaerobic and aerobic zones, simulating a natural groundwater OAI. Two columns containing (1) sand and (2) a mixture of wetland sediment and sand were operated continuously for 295 days with varied doses of 0.14-1.4 mM sodium lactate (NaLac) as a model electron donor. Both column matrices supported anaerobic reductive dechlorination and aerobic degradation of 1,2,4-TCB spatially separated between anaerobic and aerobic zones. Reductive dechlorination produced a mixture of di- and monochlorobenzene daughter products, with estimated zero-order dechlorination rates up to 31.3 μM/h. Aerobic CB degradation, limited by available dissolved oxygen, occurred for 1,2,4-TCB and all dechlorinated daughter products. Initial reductive dechlorination did not enhance the overall observed extent or rate of subsequent aerobic CB degradation. Increasing NaLac dose increased the extent of reductive dechlorination, but suppressed aerobic CB degradation at 1.4 mM NaLac due to increased oxygen demand. 16S-rRNA sequencing of biofilm microbial communities revealed strong stratification of functional anaerobic and aerobic organisms between redox zones including the sole putative reductive dechlorinator detected in the columns, Dehalobacter. The sediment mixture column supported enhanced reductive dechlorination compared to the sand column at all tested NaLac doses and growth of Dehalobacter populations up to 4.1 × 108 copies/g (51% relative abundance), highlighting the potential benefit of sediments in reductive dechlorination processes. Results from these model systems suggest both substantial anaerobic and aerobic CB degradation can co-occur along the OAI at contaminated sites where bioavailable electron donors and oxygen are both present.
Collapse
Affiliation(s)
- Steven J Chow
- Department of Environmental Health and Engineering, Johns Hopkins University, Address: 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Michelle M Lorah
- U.S. Geological Survey, MD-DE-DC Water Science Center, Address: 5522 Research Park Drive, Baltimore, MD 21228, United States.
| | - Amar R Wadhawan
- Arcadis U.S. Inc., Address: 7550 Teague Road Suite 210, Hanover, MD 21076, United States
| | - Neal D Durant
- Geosyntec Consultants, Address: 10211 Wincopin Cir Floor 4, Columbia, MD 21044, United States
| | - Edward J Bouwer
- Department of Environmental Health and Engineering, Johns Hopkins University, Address: 3400 North Charles Street, Baltimore, MD 21218, United States
| |
Collapse
|
6
|
Qiao W, Puentes Jácome LA, Tang X, Lomheim L, Yang MI, Gaspard S, Avanzi IR, Wu J, Ye S, Edwards EA. Microbial Communities Associated with Sustained Anaerobic Reductive Dechlorination of α-, β-, γ-, and δ-Hexachlorocyclohexane Isomers to Monochlorobenzene and Benzene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:255-265. [PMID: 31830788 DOI: 10.1021/acs.est.9b05558] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intensive historical and worldwide use of pesticide formulations containing hexachlorocyclohexane (HCH) has led to widespread contamination. We derived four anaerobic enrichment cultures from HCH-contaminated soil capable of sustainably dechlorinating each of α-, β-, γ-, and δ-HCH isomers stoichiometrically to benzene and monochlorobenzene (MCB). For each isomer, the dechlorination rates, inferred from production rates of the dechlorinated products, MCB and benzene, increased progressively from <3 to ∼12 μM/day over 2 years. The molar ratio of benzene to MCB produced was a function of the substrate isomer and ranged from β (0.77 ± 0.15), α (0.55 ± 0.09), γ (0.13 ± 0.02), to δ (0.06 ± 0.02) in accordance with pathway predictions based on prevalence of antiperiplanar geometry. Data from 16S rRNA gene amplicon sequencing and quantitative PCR revealed significant increases in the absolute abundances of Pelobacter and Dehalobacter, most notably in the α-HCH and δ-HCH cultures. Cultivation with a different HCH isomer resulted in distinct bacterial communities, but similar archaeal communities. This study provides the first direct comparison of shifts in anaerobic microbial communities induced by the dechlorination of distinct HCH isomers. It also uncovers candidate microorganisms responsible for the dechlorination of α-, β-, γ-, and δ-HCH, a key step toward better understanding and monitoring of natural attenuation processes and improving bioremediation technologies for HCH-contaminated sites.
Collapse
Affiliation(s)
- Wenjing Qiao
- Key Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luz A Puentes Jácome
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Xianjin Tang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Line Lomheim
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Sarra Gaspard
- Laboratory COVACHIMM2E, EA 3592, Université des Antilles, Pointe à Pitre 97157, Guadeloupe, French West-Indies, France
| | - Ingrid Regina Avanzi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Laboratory of Biomaterial and Tissue Engineering, Federal University of Sao Paulo, 136 Silva Jardim Street, Santos 11015-020, São Paulo, Brazil
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Shujun Ye
- Key Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| |
Collapse
|
7
|
Puentes Jácome LA, Wang PH, Molenda O, Li YXJJ, Islam MA, Edwards EA. Sustained Dechlorination of Vinyl Chloride to Ethene in Dehalococcoides-Enriched Cultures Grown without Addition of Exogenous Vitamins and at Low pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11364-11374. [PMID: 31441646 DOI: 10.1021/acs.est.9b02339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trichloroethene (TCE) bioremediation has been demonstrated at field sites using microbial cultures harboring TCE-respiring Dehalococcoides whose growth is cobalamin (vitamin B12)-dependent. Bioaugmentation cultures grown ex situ with ample exogenous vitamins and at neutral pH may become vitamin-limited or inhibited by acidic pH once injected into field sites, resulting in incomplete TCE dechlorination and accumulation of vinyl chloride (VC). Here, we report growth of the Dehalococcoides-containing bioaugmentation culture KB-1 in a TCE-amended mineral medium devoid of vitamins and in a VC-amended mineral medium at low pH (6.0 and 5.5). In these cultures, Acetobacterium, which can synthesize 5,6-dimethylbenzimidazole (DMB), the lower ligand of cobalamin, and Sporomusa are dominant acetogens. At neutral pH, Acetobacterium supports complete TCE dechlorination by Dehalococcoides at millimolar levels with a substantial increase in cobalamin (∼20-fold). Sustained dechlorination of VC to ethene was achieved at pH as low as 5.5. Below pH 5.0, dechlorination was not stimulated by DMB supplementation but was restored by raising pH to neutral. Cell-extract assays revealed that vinyl chloride reductase activity declines significantly below pH 6.0 and is undetectable below pH 5.0. This study highlights the importance of cobamide-producing populations and pH in microbial dechlorinating communities for successful bioremediation at field sites.
Collapse
Affiliation(s)
- Luz A Puentes Jácome
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Po-Hsiang Wang
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Yi Xuan Jine-Jine Li
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - M Ahsanul Islam
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
- Department of Cell and Systems Biology , University of Toronto , Toronto , Ontario M5S 3G5 , Canada
| |
Collapse
|
8
|
Wang PH, Correia K, Ho HC, Venayak N, Nemr K, Flick R, Mahadevan R, Edwards EA. An interspecies malate-pyruvate shuttle reconciles redox imbalance in an anaerobic microbial community. ISME JOURNAL 2019; 13:1042-1055. [PMID: 30607026 DOI: 10.1038/s41396-018-0333-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 11/09/2022]
Abstract
Microbes in ecosystems often develop coordinated metabolic interactions. Therefore, understanding metabolic interdependencies between microbes is critical to deciphering ecosystem function. In this study, we sought to deconstruct metabolic interdependencies in organohalide-respiring consortium ACT-3 containing Dehalobacter restrictus using a combination of metabolic modeling and experimental validation. D. restrictus possesses a complete set of genes for amino acid biosynthesis yet when grown in isolation requires amino acid supplementation. We reconciled this discrepancy using flux balance analysis considering cofactor availability, enzyme promiscuity, and shared protein expression patterns for several D. restrictus strains. Experimentally, 13C incorporation assays, growth assays, and metabolite analysis of D. restrictus strain PER-K23 cultures were performed to validate the model predictions. The model resolved that the amino acid dependency of D. restrictus resulted from restricted NADPH regeneration and predicted that malate supplementation would replenish intracellular NADPH. Interestingly, we observed unexpected export of pyruvate and glutamate in parallel to malate consumption in strain PER-K23 cultures. Further experimental analysis using the ACT-3 transfer cultures suggested the occurrence of an interspecies malate-pyruvate shuttle reconciling a redox imbalance, reminiscent of the mitochondrial malate shunt pathway in eukaryotic cells. Altogether, this study suggests that redox imbalance and metabolic complementarity are important driving forces for metabolite exchange in anaerobic microbial communities.
Collapse
Affiliation(s)
- Po-Hsiang Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Kevin Correia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Han-Chen Ho
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Naveen Venayak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Kayla Nemr
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.
| |
Collapse
|
9
|
Qiao W, Luo F, Lomheim L, Mack EE, Ye S, Wu J, Edwards EA. A Dehalogenimonas Population Respires 1,2,4-Trichlorobenzene and Dichlorobenzenes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13391-13398. [PMID: 30371071 DOI: 10.1021/acs.est.8b04239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chlorobenzenes are ubiquitous contaminants in groundwater and soil at many industrial sites. Previously, we demonstrated the natural attenuation of chlorobenzenes and benzene at a contaminated site inferred from a 5 year site investigation and parallel laboratory microcosm studies. To identify the microbes responsible for the observed dechlorination of chlorobenzenes, the microbial community was surveyed using 16S rRNA gene amplicon sequencing. Members of the Dehalobacter and Dehalococcoides are reported to respire chlorobenzenes; however, neither were abundant in our sediment microcosms. Instead, we observed a significant increase in the relative abundance of Dehalogenimonas from <1% to 16-30% during dechlorination of 1,2,4-trichlorobenzene (TCB), 1,2-dichlorobenzene (DCB), and 1,3-DCB over 19 months. Quantitative PCR (qPCR) confirmed that Dehalogenimonas gene copies increased by 2 orders of magnitude with an average yield of 3.6 ± 2.3 g cells per mol Cl- released ( N = 12). In transfer cultures derived from sediment microcosms, dechlorination of 1,4-DCB and monochlorobenzene (MCB) was carried out by Dehalobacter spp. with a growth yield of 3.0 ± 2.1 g cells per mol Cl- released ( N = 5). Here we show that a Dehalogenimonas population respire 1,2,4-TCB and 1,2-/1,3-DCB isomers. This finding emphasizes the need to monitor a broader spectrum of organohalide-respiring bacteria, including Dehalogenimonas, at sites contaminated with halogenated organic compounds.
Collapse
Affiliation(s)
- Wenjing Qiao
- Key Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering , Nanjing University , Nanjing 210023 , China
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Fei Luo
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Line Lomheim
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - E Erin Mack
- DuPont Corporate Remediation Group , Wilmington , Delaware 19805 , United States
| | - Shujun Ye
- Key Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering , Nanjing University , Nanjing 210023 , China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering , Nanjing University , Nanjing 210023 , China
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| |
Collapse
|