1
|
Sanyal SK, Etschmann B, Hore SB, Shuster J, Brugger J. Microbial adaptations and biogeochemical cycling of uranium in polymetallic tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133334. [PMID: 38154188 DOI: 10.1016/j.jhazmat.2023.133334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Microorganisms inhabiting uranium (U)-rich environments have specific physiological and biochemical coping mechanisms to deal with U toxicity, and thereby play a crucial role in the U biogeochemical cycling as well as associated heavy metals. We investigated the diversity and functional capabilities of indigenous bacterial communities inhabiting historic U- and Rare-Earth-Elements-rich polymetallic tailings from the Mount Painter Inlier, Northern Flinders Ranges, South Australia. Bacterial diversity profiling identified Actinobacteria as the predominant phylum in all samples. GeoChip analyses revealed the presence of diverse functional genes associated with biogenic element cycling, metal homeostasis/resistance, stress response, and secondary metabolism. The high abundance of metal-resistance and stress-tolerance genes indicates the adaptation of bacterial communities to the "harsh" environmental (metal-rich and semi-arid) conditions of the Northern Flinders Ranges. Additionally, a viable bacterial consortium was enriched from polymetallic tailings. Laboratory experiments demonstrated that the consortium scrubbed uranyl from solution by precipitating a uranyl phosphate biomineral (chernikovite), thus contributing to U biogeochemical cycling. These specialised microbial communities reflect the high specificity of the mineralogy/geochemistry, and biogeography of these U-rich settings. This study provides the fundamental knowledge to develop future applications in securing long-term stability of polymetallic mine waste, and for reprocessing this "waste" to further extract critical minerals.
Collapse
Affiliation(s)
- Santonu K Sanyal
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800 Australia.
| | - Barbara Etschmann
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800 Australia
| | - Stephen B Hore
- Geological Survey of South Australia, Adelaide, South Australia 5001, Australia
| | - Jeremiah Shuster
- Department of Earth Sciences, Western University, London, Ontario N6A 3K7, Canada
| | - Joël Brugger
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800 Australia.
| |
Collapse
|
2
|
Xu R, Sun X, Häggblom MM, Dong Y, Zhang M, Yang Z, Xiao E, Xiao T, Gao P, Li B, Sun W. Metabolic potentials of members of the class Acidobacteriia in metal-contaminated soils revealed by metagenomic analysis. Environ Microbiol 2021; 24:803-818. [PMID: 34081382 DOI: 10.1111/1462-2920.15612] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 01/09/2023]
Abstract
The relative abundance of Acidobacteriia correlated positively with the concentrations of arsenic (As), mercury (Hg), chromium (Cr), copper (Cu) and other metals, suggesting their adaptation of the metal-rich environments. Metagenomic binning reconstructed 29 high-quality metagenome-assembled genomes (MAGs) associated with Acidobacteriia, providing an opportunity to study their metabolic potentials. These MAGs contained genes to transform As, Hg and Cr through oxidation, reduction, efflux and demethylation, suggesting the potential of Acidobacteriia to transform such metal(loid)s. Additionally, genes associated with alleviation of acidic and metal stress were also detected in these MAGs. Acidobacteriia may have the capabilities to resist or transform metal(loid)s in acidic metal-contaminated sites. Moreover, these genes encoding metal transformation could be also identified in the Acidobacteriia-associated MAGs from five additional metal-contaminated sites across Southwest China, as well as Acidobacteriia-associated reference genomes from the NCBI database, suggesting that the capability of metal transformation may be widespread among Acidobacteriia members. This discovery provides an understanding of metabolic potentials of the Acidobacteriia in acidic metal-rich sites.
Collapse
Affiliation(s)
- Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430074, China
| | - Miaomiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,School of Environment, Henan Normal University, China.,Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, China
| |
Collapse
|
3
|
Sanyal SK, Brugger J, Etschmann B, Pederson SM, Delport PWJ, Dixon R, Tearle R, Ludington A, Reith F, Shuster J. Metal resistant bacteria on gold particles: Implications of how anthropogenic contaminants could affect natural gold biogeochemical cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138698. [PMID: 32330727 DOI: 10.1016/j.scitotenv.2020.138698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
In Earth's near-surface environments, gold biogeochemical cycling involves gold dissolution and precipitation processes, which are partly attributed to bacteria. These biogeochemical processes as well as abrasion (via physical transport) are known to act upon gold particles, thereby resulting in particle transformation including the development of pure secondary gold and altered morphology, respectively. While previous studies have inferred gold biogeochemical cycling from gold particles obtained from natural environments, little is known about how metal contamination in an environment could impact this cycle. Therefore, this study aims to infer how potentially toxic metal contaminants could affect the structure and chemistry of gold particles and therefore the biogeochemical cycling of gold. In doing so, river sediments and gold particles from the De Kaap Valley, South Africa, were analysed using both microanalytical and molecular techniques. Of the metal contaminants detected in the sediment, mercury can chemically interact with gold particles thereby directly altering particle morphology and "erasing" textural evidence indicative of particle transformation. Other metal contaminants (including mercury) indirectly affect gold cycling by exerting a selective pressure on bacteria living on the surface of gold particles. Particles harbouring gold-tolerant bacteria with diverse metal resistant genes, such as Arthrobacter sp. and Pseudomonas sp., contained nearly two times more secondary gold relative to particles harbouring bacteria with less gold-tolerance. In conclusion, metal contaminants can have a direct or indirect effect on gold biogeochemical cycling in natural environments impacted by anthropogenic activity.
Collapse
Affiliation(s)
- Santonu Kumar Sanyal
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Joël Brugger
- Monash University, Clayton, Victoria 3800, Australia
| | | | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Roger Dixon
- University of Pretoria, Pretoria 0001, South Africa
| | - Rick Tearle
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Davies Research Centre, School of Animal & Veterinary Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alastair Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Frank Reith
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Jeremiah Shuster
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
4
|
Sanyal SK, Reith F, Shuster J. A genomic perspective of metal-resistant bacteria from gold particles: Possible survival mechanisms during gold biogeochemical cycling. FEMS Microbiol Ecol 2020; 96:5851273. [DOI: 10.1093/femsec/fiaa111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
A bacterial consortium was enriched from gold particles that ‘experienced’ ca. 80 years of biotransformation within waste-rock piles (Australia). This bacterial consortium was exposed to 10 µM AuCl3 to obtain Au-tolerant bacteria. From these isolates, Serratia sp. and Stenotrophomonas sp. were the most Au-tolerant and reduced soluble Au as pure gold nanoparticles, indicating that passive mineralisation is a mechanism for mediating the toxic effect of soluble Au produced during particle dissolution. Genome-wide analysis demonstrated that these isolates also possessed various genes that could provide cellular defence enabling survival under heavy-metal stressed condition by mediating the toxicity of heavy metals through active efflux/reduction. Diverse metal-resistant genes or genes clusters (cop, cus, czc, zntand ars) were detected, which could confer resistance to soluble Au. Comparative genome analysis revealed that the majority of detected heavy-metal resistant genes were similar (i.e. orthologous) to those genes of Cupriavidus metallidurans CH34. The detection of heavy-metal resistance, nutrient cycling and biofilm formation genes (pgaABCD, bsmAandhmpS) may have indirect yet important roles when dealing with soluble Au during particle dissolution. In conclusion, the physiological and genomic results suggest that bacteria living on gold particles would likely use various genes to ensure survival during Au-biogeochemical cycling.
Collapse
Affiliation(s)
- Santonu Kumar Sanyal
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- CSIRO Land & Water, Environmental Contaminant Mitigation and Technologies, Gate 4 Waite Road, Glen Osmond, South Australia 5064, Australia
| | - Frank Reith
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- CSIRO Land & Water, Environmental Contaminant Mitigation and Technologies, Gate 4 Waite Road, Glen Osmond, South Australia 5064, Australia
| | - Jeremiah Shuster
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- CSIRO Land & Water, Environmental Contaminant Mitigation and Technologies, Gate 4 Waite Road, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
5
|
Reith F, Falconer DM, Van Nostrand J, Craw D, Shuster J, Wakelin S. Functional capabilities of bacterial biofilms on gold particles. FEMS Microbiol Ecol 2019; 96:5663612. [DOI: 10.1093/femsec/fiz196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
Gold particles contain gold and other toxic, heavy metals, making them ‘extreme’ geochemical microenvironments. To date, the functional capabilities of bacterial biofilms to deal with these conditions have been inferred from taxonomic analyses. The aims of this study are to evaluate the functional capabilities of bacterial communities on gold particles from six key locations using GeoChip 5.0 and to link functional and taxonomic data. Biofilm communities displayed a wide range of functional capabilities, with up to 53 505 gene probes detected. The capability of bacterial communities to (re)cycle carbon, nitrogen, and sulphur were detected. The cycling of major nutrients is important for maintaining the biofilm community as well as enabling the biogeochemical cycling and mobilisation of heavy and noble metals. Additionally, a multitude of stress- and heavy metal resistance capabilities were also detected, most notably from the α/β/γ-Proteobacteria and Actinobacteria. The multi-copper-oxidase gene copA, which is directly involved in gold resistance and biomineralisation, was the 15th most intense response and was detected in 246 genera. The Parker Road and Belle Brooke sites were consistently the most different from other sites, which may be a result of local physicochemical conditions (extreme nutrient poverty and sulphur-richness, respectively). In conclusion, biofilms on gold particles display wide-ranging metabolic and stress-related capabilities, which may enable them to survive in these niche environments and drive biotransformation of gold particles.
Collapse
Affiliation(s)
- Frank Reith
- The University of Adelaide, School of Biological Sciences, Department of Molecular and Cellular Biology, Adelaide, South Australia 5005, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Donna M Falconer
- University of Otago, Geology Department, North Dunedin, Dunedin 9016, New Zealand
| | - Joy Van Nostrand
- University of Oklahoma, Institute for Environmental Genomics and Microbiology and Plant Biology, Norman, Oklahoma 73019, United States
| | - David Craw
- University of Otago, Geology Department, North Dunedin, Dunedin 9016, New Zealand
| | - Jeremiah Shuster
- The University of Adelaide, School of Biological Sciences, Department of Molecular and Cellular Biology, Adelaide, South Australia 5005, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Steven Wakelin
- Scion, PO Box 29237, Riccarton, Christchurch 8440, New Zealand
- BioProtection Research Centre, PO Box 85084, Lincoln University, Canterbury 7647, New Zealand
| |
Collapse
|