1
|
Baati H, Siala M, Benali S, Azri C, Dunlap C, Martínez-Espinosa RM, Trigui M. Elucidating metabolic pathways through genomic analysis in highly heavy metal-resistant Halobacterium salinarum strains. Heliyon 2024; 10:e40822. [PMID: 39717611 PMCID: PMC11665356 DOI: 10.1016/j.heliyon.2024.e40822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
The annotated and predicted genomes of five archaeal strains (AS1, AS2, AS8, AS11 and AS19), isolated from Sfax solar saltern sediments (Tunisia) and affiliated with Halobacterium salinarum, were performed by RAST webserver (Rapid Annotation using Subsystem Technology) and NCBI prokaryotic genome annotation pipeline (PGAP). The results showed the ability of strains to use a reduced semi-phosphorylative Entner-Doudoroff pathway for glucose degradation and an Embden-Meyerhof one for gluconeogenesis. They could use glucose, fructose, glycerol, and acetate as sole source of carbon and energy. ATP synthase, various cytochromes and aerobic respiration proteins were encoded. All strains showed fermentation capability through the arginine deiminase pathway and facultative anaerobic respiration using electron acceptors (Dimethyl sulfoxide and trimethylamine N-oxide). Several biosynthesis pathways for many amino acids were identified. Comparative and pangenome analyses between the strains and the well-studied halophilic archaea Halobacterium NRC-1 highlighted a notable dissimilarity. Besides, the strains shared a core genome of 1973 genes and an accessory genome of 767 genes. 129, 94, 67, 15 and 29 unique genes were detected in the AS1, AS2, AS8, AS11 and AS19 genomes, respectively. Most of these unique genes code for hypothetical proteins. The strains displayed plant-growth promoting characteristics under heavy metal stress (Ammonium assimilation, phosphate solubilization, chemotaxis, cell motility and production of indole acetic acid, siderophore and phenazine). Therefore, they could be used as a biofertilizer to promote plant growth. The genomes encoded numerous biotechnologically relevant genes responsible for vitamin biosynthesis, including cobalamin, folate, biotin, pantothenate, riboflavin, thiamine, menaquinone, nicotinate, and nicotinamide. The carotenogenetic pathway of the studied strains was also predicted. Consequently, the findings of this study contribute to a better understanding of the halophilic archaea metabolism providing valuable insights into their ecophysiology as well as relevant biotechnological applications.
Collapse
Affiliation(s)
- Houda Baati
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Mariem Siala
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Souad Benali
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Chafai Azri
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Christopher Dunlap
- United States Department of Agriculture, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, 1815 North University St, Peoria, IL, 61604, USA
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080, Alicante, Spain
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Mohamed Trigui
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| |
Collapse
|
2
|
Giani M, Pire C, Martínez-Espinosa RM. Bacterioruberin: Biosynthesis, Antioxidant Activity, and Therapeutic Applications in Cancer and Immune Pathologies. Mar Drugs 2024; 22:167. [PMID: 38667784 PMCID: PMC11051356 DOI: 10.3390/md22040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Halophilic archaea, also termed haloarchaea, are a group of moderate and extreme halophilic microorganisms that constitute the major microbial populations in hypersaline environments. In these ecosystems, mainly aquatic, haloarchaea are constantly exposed to ionic and oxidative stress due to saturated salt concentrations and high incidences of UV radiation (mainly in summer). To survive under these harsh conditions, haloarchaea have developed molecular adaptations including hyperpigmentation. Regarding pigmentation, haloarchaeal species mainly synthesise the rare C50 carotenoid called bacterioruberin (BR) and its derivatives, monoanhydrobacterioruberin and bisanhydrobacterioruberin. Due to their colours and extraordinary antioxidant properties, BR and its derivatives have been the aim of research in several research groups all over the world during the last decade. This review aims to summarise the most relevant characteristics of BR and its derivatives as well as describe their reported antitumoral, immunomodulatory, and antioxidant biological activities. Based on their biological activities, these carotenoids can be considered promising natural biomolecules that could be used as tools to design new strategies and/or pharmaceutical formulas to fight against cancer, promote immunomodulation, or preserve skin health, among other potential uses.
Collapse
Affiliation(s)
- Micaela Giani
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.); (C.P.)
| | - Carmen Pire
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.); (C.P.)
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.); (C.P.)
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
3
|
Papapostolou H, Kachrimanidou V, Alexandri M, Plessas S, Papadaki A, Kopsahelis N. Natural Carotenoids: Recent Advances on Separation from Microbial Biomass and Methods of Analysis. Antioxidants (Basel) 2023; 12:antiox12051030. [PMID: 37237896 DOI: 10.3390/antiox12051030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Biotechnologically produced carotenoids occupy an important place in the scientific research. Owing to their role as natural pigments and their high antioxidant properties, microbial carotenoids have been proposed as alternatives to their synthetic counterparts. To this end, many studies are focusing on their efficient and sustainable production from renewable substrates. Besides the development of an efficient upstream process, their separation and purification as well as their analysis from the microbial biomass confers another important aspect. Currently, the use of organic solvents constitutes the main extraction process; however, environmental concerns along with potential toxicity towards human health necessitate the employment of "greener" techniques. Hence, many research groups are focusing on applying emerging technologies such as ultrasounds, microwaves, ionic liquids or eutectic solvents for the separation of carotenoids from microbial cells. This review aims to summarize the progress on both the biotechnological production of carotenoids and the methods for their effective extraction. In the framework of circular economy and sustainability, the focus is given on green recovery methods targeting high-value applications such as novel functional foods and pharmaceuticals. Finally, methods for carotenoids identification and quantification are also discussed in order to create a roadmap for successful carotenoids analysis.
Collapse
Affiliation(s)
- Harris Papapostolou
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | | | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | - Stavros Plessas
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| |
Collapse
|
4
|
Pan H, Zhu B, Li J, Zhou Z, Bu W, Dai Y, Lu X, Liu H, Tian Y. Degradation of iprodione by a novel strain Azospirillum sp. A1-3 isolated from Tibet. Front Microbiol 2023; 13:1057030. [PMID: 36699606 PMCID: PMC9869045 DOI: 10.3389/fmicb.2022.1057030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
A bacterial strain A1-3 with iprodione-degrading capabilities was isolated from the soil for vegetable growing under greenhouses at Lhasa, Tibet. Based on phenotypic, phylogenetic, and genotypic data, strain A1-3 was considered to represent a novel species of genus Azospirillum. It was able to use iprodione as the sole source of carbon and energy for growth, 27.96 mg/L (50.80%) iprodione was reduced within 108 h at 25°C. During the degradation of iprodione by Azospirillum sp. A1-3, iprodione was firstly degraded to N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine, and then to (3,5-dichlorophenylurea) acetic acid. However, (3,5-dichlorophenylurea) acetic acid cannot be degraded to 3,5-dichloroaniline by Azospirillum sp. A1-3. A ipaH gene which has a highly similarity (98.72-99.92%) with other previously reported ipaH genes, was presented in Azospirillum sp. A1-3. Azospirillum novel strain with the ability of iprodione degradation associated with nitrogen fixation has never been reported to date, and Azospirillum sp. A1-3 might be a promising candidate for application in the bioremediation of iprodione-contaminated environments.
Collapse
Affiliation(s)
- Hu Pan
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Beike Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jin Li
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Ziqiong Zhou
- School of Food Science, Tibet Institute of Agriculture and Animal Husbandry, Nyingchi, China
| | - Wenbin Bu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yanna Dai
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,*Correspondence: Huhu Liu, ✉
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,Yun Tian, ✉
| |
Collapse
|
5
|
Ubiquitousness of Haloferax and Carotenoid Producing Genes in Arabian Sea Coastal Biosystems of India. Mar Drugs 2021; 19:md19080442. [PMID: 34436281 PMCID: PMC8400781 DOI: 10.3390/md19080442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
This study presents a comparative analysis of halophiles from the global open sea and coastal biosystems through shotgun metagenomes (n = 209) retrieved from public repositories. The open sea was significantly enriched with Prochlorococcus and Candidatus pelagibacter. Meanwhile, coastal biosystems were dominated by Marinobacter and Alcanivorax. Halophilic archaea Haloarcula and Haloquandratum, predominant in the coastal biosystem, were significantly (p < 0.05) enriched in coastal biosystems compared to the open sea. Analysis of whole genomes (n = 23,540), retrieved from EzBioCloud, detected crtI in 64.66% of genomes, while cruF was observed in 1.69% Bacteria and 40.75% Archaea. We further confirmed the viability and carotenoid pigment production by pure culture isolation (n = 1351) of extreme halophiles from sediments (n = 410 × 3) sampling at the Arabian coastline of India. All red-pigmented isolates were represented exclusively by Haloferax, resistant to saturated NaCl (6 M), and had >60% G + C content. Multidrug resistance to tetracycline, gentamicin, ampicillin, and chloramphenicol were also observed. Our study showed that coastal biosystems could be more suited for bioprospection of halophiles rather than the open sea.
Collapse
|