1
|
Blanco-Fuertes M, Sibila M, Franzo G, Obregon-Gutierrez P, Illas F, Correa-Fiz F, Aragón V. Ceftiofur treatment of sows results in long-term alterations in the nasal microbiota of the offspring that can be ameliorated by inoculation of nasal colonizers. Anim Microbiome 2023; 5:53. [PMID: 37864263 PMCID: PMC10588210 DOI: 10.1186/s42523-023-00275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND The nasal microbiota of the piglet is a reservoir for opportunistic pathogens that can cause polyserositis, such as Glaesserella parasuis, Mycoplasma hyorhinis or Streptococcus suis. Antibiotic treatment is a strategy to control these diseases, but it has a detrimental effect on the microbiota. We followed the piglets of 60 sows from birth to 8 weeks of age, to study the effect of ceftiofur on the nasal microbiota and the colonization by pathogens when the treatment was administered to sows or their litters. We also aimed to revert the effect of the antibiotic on the nasal microbiota by the inoculation at birth of nasal colonizers selected from healthy piglets. Nasal swabs were collected at birth, and at 7, 15, 21 and 49 days of age, and were used for pathogen detection by PCR and bacterial culture, 16S rRNA amplicon sequencing and whole shotgun metagenomics. Weights, clinical signs and production parameters were also recorded during the study. RESULTS The composition of the nasal microbiota of piglets changed over time, with a clear increment of Clostridiales at the end of nursery. The administration of ceftiofur induced an unexpected temporary increase in alpha diversity at day 7 mainly due to colonization by environmental taxa. Ceftiofur had a longer impact on the nasal microbiota of piglets when administered to their sows before farrowing than directly to them. This effect was partially reverted by the inoculation of nasal colonizers to newborn piglets and was accompanied by a reduction in the number of animals showing clinical signs (mainly lameness). Both interventions altered the colonization pattern of different strains of the above pathogens. In addition, the prevalence of resistance genes increased over time in all the groups but was significantly higher at weaning when the antibiotic was administered to the sows. Also, ceftiofur treatment induced the selection of more beta-lactams resistance genes when it was administered directly to the piglets. CONCLUSIONS This study shed light on the effect of the ceftiofur treatment on the piglet nasal microbiota over time and demonstrated for the first time the possibility of modifying the piglets' nasal microbiota by inoculating natural colonizers of the upper respiratory tract.
Collapse
Affiliation(s)
- Miguel Blanco-Fuertes
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
- Ciber in Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Sibila
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, PD, Italy
| | - Pau Obregon-Gutierrez
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Francesc Illas
- Selección Batallé, Avinguda dels Segadors, 17421, Riudarenes, Spain
| | - Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
| | - Virginia Aragón
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
2
|
Castro J, Barros MM, Araújo D, Campos AM, Oliveira R, Silva S, Almeida C. Swine enteric colibacillosis: Current treatment avenues and future directions. Front Vet Sci 2022; 9:981207. [PMID: 36387374 PMCID: PMC9650617 DOI: 10.3389/fvets.2022.981207] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 09/10/2023] Open
Abstract
Enteric colibacillosis is a common disease in nursing and weanling pigs. It is caused by the colonization of the small intestine by enterotoxigenic strains of Escherichia coli (ETEC) that make use of specific fimbria or pili to adhere to the absorptive epithelial cells of the jejunum and ileum. Once attached, and when both the immunological systems and the gut microbiota are poorly developed, ETEC produce one or more enterotoxins that can have local and, further on, systemic effects. These enterotoxins cause fluid and electrolytes to be secreted into the intestinal lumen of animals, which results in diarrhea, dehydration, and acidosis. From the diversity of control strategies, antibiotics and zinc oxide are the ones that have contributed more significantly to mitigating post-weaning diarrhea (PWD) economic losses. However, concerns about antibiotic resistance determined the restriction on the use of critically important antimicrobials in food-producing animals and the prohibition of their use as growth promoters. As such, it is important now to begin the transition from these preventive/control measures to other, more sustainable, approaches. This review provides a quick synopsis of the currently approved and available therapies for PWD treatment while presenting an overview of novel antimicrobial strategies that are being explored for the control and treatment of this infection, including, prebiotics, probiotics, synbiotics, organic acids, bacteriophages, spray-dried plasma, antibodies, phytogenic substances, antisense oligonucleotides, and aptamers.
Collapse
Affiliation(s)
- Joana Castro
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Maria Margarida Barros
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Daniela Araújo
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Ana Maria Campos
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Ricardo Oliveira
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sónia Silva
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
- Centre of Biological Engineering, Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Centre of Biological Engineering, Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Singh V, Son H, Lee G, Lee S, Unno T, Shin JH. Role, Relevance, and Possibilities of In vitro fermentation models in human dietary, and gut-microbial studies. Biotechnol Bioeng 2022; 119:3044-3061. [PMID: 35941765 DOI: 10.1002/bit.28206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/11/2022]
Abstract
Dietary studies play a crucial role in determining the health-benefiting effects of most food substances, including prebiotics, probiotics, functional foods, and bioactive compounds. Such studies involve gastrointestinal digestion and colonic fermentation of dietary substances. In colonic fermentation, any digested food is further metabolized in the gut by the residing colonic microbiota, causing a shift in the gut microenvironment and production of various metabolites, such as short-chain fatty acids (SCFA). These diet-induced shifts in the microbial community and metabolite production, which can be assessed through in vitro fermentation models using a donor's fecal microbiota, are well known to impact the health of the host. Although in vivo or animal experiments are the gold standard in dietary studies, recent advancements using different in vitro systems, like artificial colon (ARCOL), mini bioreactor array (MBRA), TNO in vitro model of the colon (TIM), Simulator of the Human Intestinal Microbial Ecosystem (SHIME), M-SHIME, CoMiniGut, and Dynamic Gastrointestinal Simulator (SIMGI) make it easy to study the dietary impact in terms of the gut microbiota and metabolites. Such a continuous in vitro system can have multiple compartments corresponding to different parts of the colon, i.e., proximal, transverse, and distal colon, making the findings physiologically more significant. Further, post-fermentation samples can be analyzed using metagenomic, metabolomic, qPCR and flow cytometry approaches. Moreover, studies have shown that in vitro results are in accordance with the in vivo findings, supporting their relevance in dietary studies and giving confidence that shifts in metabolites are only due to microbes. This review meticulously describes the recent advancements in various fermentation models and their relevance in dietary studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sunwoo Lee
- Department of Biotechnology,, School of Life Sciences, SARI, Jeju National University, Jeju, South Korea
| | - Tatsuya Unno
- Department of Biotechnology,, School of Life Sciences, SARI, Jeju National University, Jeju, South Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
4
|
Hansen EB, Nielsen DS, LaPointe G. Editorial: microbial food and feed ingredients - functionality and health. FEMS Microbiol Lett 2021; 368:6374167. [PMID: 34551069 DOI: 10.1093/femsle/fnab120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Egon Bech Hansen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Gisèle LaPointe
- Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, 43 McGilvray St, Guelph, ON N1G 2W1, Canada
| |
Collapse
|