1
|
Ciuchcinski K, Kaczorowska AK, Biernacka D, Dorawa S, Kaczorowski T, Park Y, Piekarski K, Stanowski M, Ishikawa T, Stokke R, Steen IH, Dziewit L. Computational pipeline for sustainable enzyme discovery through (re)use of metagenomic data. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125381. [PMID: 40252419 DOI: 10.1016/j.jenvman.2025.125381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Enzymes derived from extremophilic organisms, also known as extremozymes, offer sustainable and efficient solutions for industrial applications. Valued for their resilience and low environmental impact, extremozymes have found use as catalysts in various processes, ranging from dairy production to pharmaceutical manufacturing. However, discovery of novel extremozymes is often hindered by challenges such as culturing difficulties, underrepresentation of extreme environments in reference databases, and limitations of traditional sequence-based screening methods. In this work, we present a computational pipeline designed to discover novel enzymes from metagenomic data derived from extreme environments. This pipeline represents a versatile and sustainable approach that promotes reuse and recycling of existing datasets and minimises the need for additional environmental sampling. In its core, the algorithm integrates both traditional bioinformatic techniques and recent advances in structural prediction, enabling rapid and accurate identification of enzymes. However, due to its design, the algorithm relies heavily on existing databases, which can limit its effectiveness in situations where reference data is scarce or when encountering novel protein families. As a proof-of-concept, we applied the pipeline to metagenomic data from deep-sea hydrothermal vents, with a focus on β-galactosidases. The pipeline identified 11 potential candidate proteins, out of which 10 showed in vitro activity. One of the selected enzymes, βGal_UW07, showed strong potential for industrial applications. The enzyme exhibited optimal activity at 70 °C and was exceptionally resistant to high pH and the presence of metal ions and reducing agents. Overall, our results indicate that the pipeline is highly accurate and can play a key role in sustainable bioprospecting, leveraging existing metagenomic datasets and minimising in situ interventions in pristine regions.
Collapse
Affiliation(s)
- Karol Ciuchcinski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms | KPD, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Daria Biernacka
- Collection of Plasmids and Microorganisms | KPD, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland; Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.
| | - Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Younginn Park
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Karol Piekarski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Michal Stanowski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Takao Ishikawa
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Runar Stokke
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Postboks 7803, N-5020, Bergen, Norway.
| | - Ida Helene Steen
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Postboks 7803, N-5020, Bergen, Norway.
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
2
|
Dorawa S, Kaczorowski T. Precise and Accurate DNA-3'/5-Ends Polishing with Thermus thermophilus Phage vb_Tt72 DNA Polymerase. Int J Mol Sci 2024; 25:13544. [PMID: 39769307 PMCID: PMC11677593 DOI: 10.3390/ijms252413544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Tt72 DNA polymerase is a newly characterized PolA-type thermostable enzyme derived from the Thermus thermophilus phage vB_Tt72. The enzyme demonstrates strong 3'→5' exonucleolytic proofreading activity, even in the presence of 1 mM dNTPs. In this study, we examined how the exonucleolytic activity of Tt72 DNA polymerase affects the fidelity of DNA synthesis. Using a plasmid-based lacZα gene complementation assay, we determined that the enzyme's mutation frequency was 2.06 × 10-3, corresponding to an error rate of 1.41 × 10-5. For the exonuclease-deficient variant, the mutation frequency increased to 6.23 × 10-3, with an associated error rate of 4.29 × 10-5. The enzyme retained 3'→5' exonucleolytic activity at temperatures up to 70 °C but lost it after 10 min of incubation at temperatures above 75 °C. Additionally, we demonstrated that Tt72 DNA polymerase efficiently processes 3'/5'-overhangs and removes a single-nucleotide 3'-dA overhang from PCR products at 55 °C. These characteristics make Tt72 DNA polymerase well suited for specialized molecular cloning applications.
Collapse
Affiliation(s)
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| |
Collapse
|
3
|
Mazur-Marzec H, Andersson AF, Błaszczyk A, Dąbek P, Górecka E, Grabski M, Jankowska K, Jurczak-Kurek A, Kaczorowska AK, Kaczorowski T, Karlson B, Kataržytė M, Kobos J, Kotlarska E, Krawczyk B, Łuczkiewicz A, Piwosz K, Rybak B, Rychert K, Sjöqvist C, Surosz W, Szymczycha B, Toruńska-Sitarz A, Węgrzyn G, Witkowski A, Węgrzyn A. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol Rev 2024; 48:fuae024. [PMID: 39366767 PMCID: PMC11500664 DOI: 10.1093/femsre/fuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Anders F Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, SE-171 65 Solna, Stockholm, Sweden
| | - Agata Błaszczyk
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Michał Grabski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Agata Jurczak-Kurek
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Anna K Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute
, Research and Development, Oceanography, Göteborgseskaderns plats 3, Västra Frölunda SE-426 71, Sweden
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania
| | - Justyna Kobos
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Ewa Kotlarska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, PL-81-332 Gdynia, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23A, PL-80-204 Gdansk, Poland
| | - Krzysztof Rychert
- Pomeranian University in Słupsk, Arciszewskiego 22a, PL-76-200 Słupsk, Poland
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, FI-20500 Åbo, Finland
| | - Waldemar Surosz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Alicja Węgrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
4
|
Kozlova AP, Muntyan VS, Vladimirova ME, Saksaganskaia AS, Kabilov MR, Gorbunova MK, Gorshkov AN, Grudinin MP, Simarov BV, Roumiantseva ML. Soil Giant Phage: Genome and Biological Characteristics of Sinorhizobium Jumbo Phage. Int J Mol Sci 2024; 25:7388. [PMID: 39000497 PMCID: PMC11242549 DOI: 10.3390/ijms25137388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. The rhizobiophage host strains are nitrogen-fixing bacteria of the genus Sinorhizobium spp., symbionts of leguminous forage grasses. The phage particles have a myovirus virion structure. The genome of rhizobiophage AP-J-162 is double-stranded DNA of 471.5 kb in length; 711 ORFs are annotated and 41 types of tRNAs are detected. The closest phylogenetic relative of phage AP-J-162 is Agrobacterium phage Atu-ph07, but no rhizobiophages are known. The replicative machinery, capsid, and baseplate proteins of phage AP-J-162 are structurally similar to those of Escherichia phage T4, but there is no similarity between their tail protein subunits. Amino acid sequence analysis shows that 339 of the ORFs encode hypothetical or functionally relevant products, while the remaining 304 ORFs are unique. Additionally, 153 ORFs are similar to those of Atu_ph07, with one-third of the ORFs encoding different enzymes. The biological properties and genomic characteristics of phage AP-J-162 distinguish it as a unique model for exploring phage-microbe interactions with nitrogen-fixing symbiotic microorganisms.
Collapse
Affiliation(s)
- Alexandra P Kozlova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Victoria S Muntyan
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Maria E Vladimirova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Alla S Saksaganskaia
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Marsel R Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Maria K Gorbunova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Andrey N Gorshkov
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Mikhail P Grudinin
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Boris V Simarov
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Marina L Roumiantseva
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| |
Collapse
|
5
|
Doss RK, Palmer M, Mead DA, Hedlund BP. Functional biology and biotechnology of thermophilic viruses. Essays Biochem 2023; 67:671-684. [PMID: 37222046 PMCID: PMC10423840 DOI: 10.1042/ebc20220209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Viruses have developed sophisticated biochemical and genetic mechanisms to manipulate and exploit their hosts. Enzymes derived from viruses have been essential research tools since the first days of molecular biology. However, most viral enzymes that have been commercialized are derived from a small number of cultivated viruses, which is remarkable considering the extraordinary diversity and abundance of viruses revealed by metagenomic analysis. Given the explosion of new enzymatic reagents derived from thermophilic prokaryotes over the past 40 years, those obtained from thermophilic viruses should be equally potent tools. This review discusses the still-limited state of the art regarding the functional biology and biotechnology of thermophilic viruses with a focus on DNA polymerases, ligases, endolysins, and coat proteins. Functional analysis of DNA polymerases and primase-polymerases from phages infecting Thermus, Aquificaceae, and Nitratiruptor has revealed new clades of enzymes with strong proofreading and reverse transcriptase capabilities. Thermophilic RNA ligase 1 homologs have been characterized from Rhodothermus and Thermus phages, with both commercialized for circularization of single-stranded templates. Endolysins from phages infecting Thermus, Meiothermus, and Geobacillus have shown high stability and unusually broad lytic activity against Gram-negative and Gram-positive bacteria, making them targets for commercialization as antimicrobials. Coat proteins from thermophilic viruses infecting Sulfolobales and Thermus strains have been characterized, with diverse potential applications as molecular shuttles. To gauge the scale of untapped resources for these proteins, we also document over 20,000 genes encoded by uncultivated viral genomes from high-temperature environments that encode DNA polymerase, ligase, endolysin, or coat protein domains.
Collapse
Affiliation(s)
- Ryan K Doss
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, U.S.A
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, U.S.A
| | | | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, U.S.A
- Nevada Institute of Personalized Medicine, Las Vegas, Nevada, U.S.A
| |
Collapse
|
6
|
Jasilionis A, Plotka M, Wang L, Dorawa S, Lange J, Watzlawick H, van den Bergh T, Vroling B, Altenbuchner J, Kaczorowska A, Pohl E, Kaczorowski T, Nordberg Karlsson E, Freitag‐Pohl S. AmiP from hyperthermophilic Thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase. Protein Sci 2023; 32:e4585. [PMID: 36721347 PMCID: PMC9929850 DOI: 10.1002/pro.4585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Bacteriophages encode a wide variety of cell wall disrupting enzymes that aid the viral escape in the final stages of infection. These lytic enzymes have accumulated notable interest due to their potential as novel antibacterials for infection treatment caused by multiple-drug resistant bacteria. Here, the detailed functional and structural characterization of Thermus parvatiensis prophage peptidoglycan lytic amidase AmiP, a globular Amidase_3 type lytic enzyme adapted to high temperatures is presented. The sequence and structure comparison with homologous lytic amidases reveals the key adaptation traits that ensure the activity and stability of AmiP at high temperatures. The crystal structure determined at a resolution of 1.8 Å displays a compact α/β-fold with multiple secondary structure elements omitted or shortened compared with protein structures of similar proteins. The functional characterization of AmiP demonstrates high efficiency of catalytic activity and broad substrate specificity toward thermophilic and mesophilic bacteria strains containing Orn-type or DAP-type peptidoglycan. The here presented AmiP constitutes the most thermoactive and ultrathermostable Amidase_3 type lytic enzyme biochemically characterized with a temperature optimum at 85°C. The extraordinary high melting temperature Tm 102.6°C confirms fold stability up to approximately 100°C. Furthermore, AmiP is shown to be more active over the alkaline pH range with pH optimum at pH 8.5 and tolerates NaCl up to 300 mM with the activity optimum at 25 mM NaCl. This set of beneficial characteristics suggests that AmiP can be further exploited in biotechnology.
Collapse
Affiliation(s)
- Andrius Jasilionis
- Division of Biotechnology, Department of ChemistryLund UniversityLundSweden
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of BiologyUniversity of GdanskGdanskPoland
| | - Lei Wang
- Institute of Biomedical GeneticsUniversity of StuttgartStuttgartGermany
| | - Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of BiologyUniversity of GdanskGdanskPoland
| | | | | | | | | | | | - Anna‐Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of BiologyUniversity of GdanskGdanskPoland
| | - Ehmke Pohl
- Department of BiosciencesDurham UniversityDurhamUK
- Department of ChemistryDurham UniversityDurhamUK
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of BiologyUniversity of GdanskGdanskPoland
| | | | | |
Collapse
|
7
|
Olo Ndela É, Cobigo LM, Roux S, Enault F. [A better understanding of Earth's viruses thanks to metagenomes]. Med Sci (Paris) 2022; 38:999-1007. [PMID: 36692279 DOI: 10.1051/medsci/2022166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite their large number, viruses present in the environment remain largely unknown. Metagenomic approaches, targeting viruses specifically or not, have allowed us a better understanding of the composition of natural viral communities, with Caudoviricetes, Microviridae, Cressdnaviricota or Phycodnaviridae being the most frequently found viral groups. Metagenomes are gradually revealing the extent of the diversity of these groups and their structure, highlighting the large number of species, genera and even viral families, most of which being seen for the first time. Within these groups, the gene content, infected hosts and inhabited ecosystems are often consistent with the evolutionary history traced with marker genes. Thus, the diversity of viruses and their genes is more a reflection of their ancient origin and long coevolution with their hosts than of their ability to mutate rapidly.
Collapse
Affiliation(s)
- Éric Olo Ndela
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Louis-Marie Cobigo
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, États-Unis
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Ahlqvist J, Linares-Pastén JA, Jasilionis A, Welin M, Håkansson M, Svensson LA, Wang L, Watzlawick H, Ævarsson A, Friðjónsson ÓH, Hreggviðsson GÓ, Ketelsen Striberny B, Glomsaker E, Lanes O, Al-Karadaghi S, Nordberg Karlsson E. Crystal structure of DNA polymerase I from Thermus phage G20c. Acta Crystallogr D Struct Biol 2022; 78:1384-1398. [PMID: 36322421 PMCID: PMC9629493 DOI: 10.1107/s2059798322009895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
This study describes the structure of DNA polymerase I from Thermus phage G20c, termed PolI_G20c. This is the first structure of a DNA polymerase originating from a group of related thermophilic bacteriophages infecting Thermus thermophilus, including phages G20c, TSP4, P74-26, P23-45 and phiFA and the novel phage Tth15-6. Sequence and structural analysis of PolI_G20c revealed a 3'-5' exonuclease domain and a DNA polymerase domain, and activity screening confirmed that both domains were functional. No functional 5'-3' exonuclease domain was present. Structural analysis also revealed a novel specific structure motif, here termed SβαR, that was not previously identified in any polymerase belonging to the DNA polymerases I (or the DNA polymerase A family). The SβαR motif did not show any homology to the sequences or structures of known DNA polymerases. The exception was the sequence conservation of the residues in this motif in putative DNA polymerases encoded in the genomes of a group of thermophilic phages related to Thermus phage G20c. The structure of PolI_G20c was determined with the aid of another structure that was determined in parallel and was used as a model for molecular replacement. This other structure was of a 3'-5' exonuclease termed ExnV1. The cloned and expressed gene encoding ExnV1 was isolated from a thermophilic virus metagenome that was collected from several hot springs in Iceland. The structure of ExnV1, which contains the novel SβαR motif, was first determined to 2.19 Å resolution. With these data at hand, the structure of PolI_G20c was determined to 2.97 Å resolution. The structures of PolI_G20c and ExnV1 are most similar to those of the Klenow fragment of DNA polymerase I (PDB entry 2kzz) from Escherichia coli, DNA polymerase I from Geobacillus stearothermophilus (PDB entry 1knc) and Taq polymerase (PDB entry 1bgx) from Thermus aquaticus.
Collapse
Affiliation(s)
- Josefin Ahlqvist
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Javier A. Linares-Pastén
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Andrius Jasilionis
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Martin Welin
- SARomics Biostructures (Sweden), Medicon Village, 223 81 Lund, Sweden
| | - Maria Håkansson
- SARomics Biostructures (Sweden), Medicon Village, 223 81 Lund, Sweden
| | | | - Lei Wang
- Institute of Biomedical Genetics, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Hildegard Watzlawick
- Institute of Biomedical Genetics, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | - Guðmundur Ó. Hreggviðsson
- Matís, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Biology, School of Engineering and Natural Sciences, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland
| | | | | | - Olav Lanes
- ArcticZymes Technologies, PO Box 6463, 9294 Tromsø, Norway
| | | | - Eva Nordberg Karlsson
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| |
Collapse
|
9
|
Szadkowska M, Olewniczak M, Kloska A, Jankowska E, Kapusta M, Rybak B, Wyrzykowski D, Zmudzinska W, Gieldon A, Kocot A, Kaczorowska AK, Nierzwicki L, Makowska J, Kaczorowski T, Plotka M. A Novel Cryptic Clostridial Peptide That Kills Bacteria by a Cell Membrane Permeabilization Mechanism. Microbiol Spectr 2022; 10:e0165722. [PMID: 36094301 PMCID: PMC9602519 DOI: 10.1128/spectrum.01657-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 12/31/2022] Open
Abstract
This work reports detailed characteristics of the antimicrobial peptide Intestinalin (P30), which is derived from the LysC enzyme of Clostridium intestinale strain URNW. The peptide shows a broader antibacterial spectrum than the parental enzyme, showing potent antimicrobial activity against clinical strains of Gram-positive staphylococci and Gram-negative pathogens and causing between 3.04 ± 0.12 log kill for Pseudomonas aeruginosa PAO1 and 7.10 ± 0.05 log kill for multidrug-resistant Acinetobacter baumannii KPD 581 at a 5 μM concentration. Moreover, Intestinalin (P30) prevents biofilm formation and destroys 24-h and 72-h biofilms formed by Acinetobacter baumannii CRAB KPD 205 (reduction levels of 4.28 and 2.62 log CFU/mL, respectively). The activity of Intestinalin is combined with both no cytotoxicity and little hemolytic effect against mammalian cells. The nuclear magnetic resonance and molecular dynamics (MD) data show a high tendency of Intestinalin to interact with the bacterial phospholipid cell membrane. Although positively charged, Intestinalin resides in the membrane and aggregates into small oligomers. Negatively charged phospholipids stabilize peptide oligomers to form water- and ion-permeable pores, disrupting the integrity of bacterial cell membranes. Experimental data showed that Intestinalin interacts with negatively charged lipoteichoic acid (logK based on isothermal titration calorimetry, 7.45 ± 0.44), causes membrane depolarization, and affects membrane integrity by forming large pores, all of which result in loss of bacterial viability. IMPORTANCE Antibiotic resistance is rising rapidly among pathogenic bacteria, becoming a global public health problem that threatens the effectiveness of therapies for many infectious diseases. In this respect, antimicrobial peptides appear to be an interesting alternative to combat bacterial pathogens. Here, we report the characteristics of an antimicrobial peptide (of 30 amino acids) derived from the clostridial LysC enzyme. The peptide showed killing activity against clinical strains of Gram-positive and Gram-negative pathogens. Experimental data and computational modeling showed that this peptide forms transmembrane pores, directly engaging the negatively charged phospholipids of the bacterial cell membrane. Consequently, dissipation of the electrochemical gradient across cell membranes affects many vital processes, such as ATP synthesis, motility, and transport of nutrients. This kind of dysfunction leads to the loss of bacterial viability. Our firm conviction is that the presented study will be a helpful resource in searching for novel antimicrobial peptides that could have the potential to replace conventional antibiotics.
Collapse
Affiliation(s)
- Monika Szadkowska
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Michal Olewniczak
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Elzbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Malgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Wioletta Zmudzinska
- Laboratory of Biopolymer Structure, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Artur Gieldon
- Laboratory of Simulation of Polymers, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Aleksandra Kocot
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Lukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
10
|
Sieg J, Sandmeier CC, Lieske J, Meents A, Lemmen C, Streit WR, Rarey M. Analyzing structural features of proteins from deep-sea organisms. Proteins 2022; 90:1521-1537. [PMID: 35313380 DOI: 10.1002/prot.26337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/31/2022]
Abstract
Protein adaptations to extreme environmental conditions are drivers in biotechnological process optimization and essential to unravel the molecular limits of life. Most proteins with such desirable adaptations are found in extremophilic organisms inhabiting extreme environments. The deep sea is such an environment and a promising resource that poses multiple extremes on its inhabitants. Conditions like high hydrostatic pressure and high or low temperature are prevalent and many deep-sea organisms tolerate multiple of these extremes. While molecular adaptations to high temperature are comparatively good described, adaptations to other extremes like high pressure are not well-understood yet. To fully unravel the molecular mechanisms of individual adaptations it is probably necessary to disentangle multifactorial adaptations. In this study, we evaluate differences of protein structures from deep-sea organisms and their respective related proteins from nondeep-sea organisms. We created a data collection of 1281 experimental protein structures from 25 deep-sea organisms and paired them with orthologous proteins. We exhaustively evaluate differences between the protein pairs with machine learning and Shapley values to determine characteristic differences in sequence and structure. The results show a reasonable discrimination of deep-sea and nondeep-sea proteins from which we distinguish correlations previously attributed to thermal stability from other signals potentially describing adaptions to high pressure. While some distinct correlations can be observed the overall picture appears intricate.
Collapse
Affiliation(s)
- Jochen Sieg
- Universität Hamburg, ZBH - Center for Bioinformatics, Hamburg, Germany
| | | | - Julia Lieske
- Deutsches Elektronen-Synchrotron DESY, Center for Free-Electron Laser Science, Hamburg, Germany
| | - Alke Meents
- Deutsches Elektronen-Synchrotron DESY, Center for Free-Electron Laser Science, Hamburg, Germany
| | | | - Wolfgang R Streit
- Universität Hamburg, Department of Microbiology and Biotechnology, Hamburg, Germany
| | - Matthias Rarey
- Universität Hamburg, ZBH - Center for Bioinformatics, Hamburg, Germany
| |
Collapse
|
11
|
Dorawa S, Werbowy O, Plotka M, Kaczorowska AK, Makowska J, Kozlowski LP, Fridjonsson OH, Hreggvidsson GO, Aevarsson A, Kaczorowski T. Molecular Characterization of a DNA Polymerase from Thermus thermophilus MAT72 Phage vB_Tt72: A Novel Type-A Family Enzyme with Strong Proofreading Activity. Int J Mol Sci 2022; 23:ijms23147945. [PMID: 35887293 PMCID: PMC9324360 DOI: 10.3390/ijms23147945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of T. thermophilus phages: φYS40 (91%) and φTMA (90%). The Tt72 polA gene does not complement the Escherichia colipolA− mutant in replicating polA-dependent plasmid replicons. It encodes a 703-aa protein with a predicted molecular weight of 80,490 and an isoelectric point of 5.49. The enzyme contains a nucleotidyltransferase domain and a 3′-5′ exonuclease domain that is engaged in proofreading. Recombinant enzyme with His-tag at the N-terminus was overproduced in E. coli, subsequently purified by immobilized metal affinity chromatography, and biochemically characterized. The enzyme exists in solution in monomeric form and shows optimum activity at pH 8.5, 25 mM KCl, and 0.5 mM Mg2+. Site-directed analysis proved that highly-conserved residues D15, E17, D78, D180, and D184 in 3′-5′ exonuclease and D384 and D615 in the nucleotidyltransferase domain are critical for the enzyme’s activity. Despite the source of origin, the Tt72 DNA polymerase has not proven to be highly thermoresistant, with a temperature optimum at 55 °C. Above 60 °C, the rapid loss of function follows with no activity > 75 °C. However, during heat treatment (10 min at 75 °C), trehalose, trimethylamine N-oxide, and betaine protected the enzyme against thermal inactivation. A midpoint of thermal denaturation at Tm = 74.6 °C (ΔHcal = 2.05 × 104 cal mol−1) and circular dichroism spectra > 60 °C indicate the enzyme’s moderate thermal stability.
Collapse
Affiliation(s)
- Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Olesia Werbowy
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Lukasz P. Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland;
| | | | - Gudmundur O. Hreggvidsson
- Matis, 113 Reykjavik, Iceland; (O.H.F.); (G.O.H.); (A.A.)
- Department of Biology, School of Engineering and Natural Sciences, University of Iceland, 102 Reykjavik, Iceland
| | | | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
- Correspondence:
| |
Collapse
|
12
|
Cornish KAS, Lange J, Aevarsson A, Pohl E. CPR-C4 is a highly conserved novel protease from the Candidate Phyla Radiation with remote structural homology to human vasohibins. J Biol Chem 2022; 298:101919. [PMID: 35405098 PMCID: PMC9108980 DOI: 10.1016/j.jbc.2022.101919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
The Candidate Phyla Radiation is a recently uncovered and vast expansion of the bacterial domain of life, made up of largely uncharacterized phyla that lack isolated representatives. This unexplored territory of genetic diversity presents an abundance of novel proteins with potential applications in the life-science sectors. Here, we present the structural and functional elucidation of CPR-C4, a hypothetical protein from the genome of a thermophilic Candidate Phyla Radiation organism, identified through metagenomic sequencing. Our analyses revealed that CPR-C4 is a member of a family of highly conserved proteins within the Candidate Phyla Radiation. The function of CPR-C4 as a cysteine protease was predicted through remote structural similarity to the Homo sapiens vasohibins and subsequently confirmed experimentally with fluorescence-based activity assays. Furthermore, detailed structural and sequence alignment analysis enabled identification of a noncanonical cysteine-histidine-leucine(carbonyl) catalytic triad. The unexpected structural and functional similarities between CPR-C4 and the human vasohibins suggest an evolutionary relationship undetectable at the sequence level alone.
Collapse
Affiliation(s)
- Katy A S Cornish
- Department of Chemistry, Durham University, Lower Mountjoy, Durham, County Durham, United Kingdom
| | | | | | - Ehmke Pohl
- Department of Chemistry, Durham University, Lower Mountjoy, Durham, County Durham, United Kingdom; Department of Biosciences, Durham University, Upper Mountjoy, Durham, County Durham, United Kingdom.
| |
Collapse
|
13
|
Yang P, Ning K. How much metagenome data is needed for protein structure prediction: The advantages of targeted approach from the ecological and evolutionary perspectives. IMETA 2022; 1:e9. [PMID: 38867727 PMCID: PMC10989767 DOI: 10.1002/imt2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2024]
Abstract
It has been proven that three-dimensional protein structures could be modeled by supplementing homologous sequences with metagenome sequences. Even though a large volume of metagenome data is utilized for such purposes, a significant proportion of proteins remain unsolved. In this review, we focus on identifying ecological and evolutionary patterns in metagenome data, decoding the complicated relationships of these patterns with protein structures, and investigating how these patterns can be effectively used to improve protein structure prediction. First, we proposed the metagenome utilization efficiency and marginal effect model to quantify the divergent distribution of homologous sequences for the protein family. Second, we proposed that the targeted approach effectively identifies homologous sequences from specified biomes compared with the untargeted approach's blind search. Finally, we determined the lower bound for metagenome data required for predicting all the protein structures in the Pfam database and showed that the present metagenome data is insufficient for this purpose. In summary, we discovered ecological and evolutionary patterns in the metagenome data that may be used to predict protein structures effectively. The targeted approach is promising in terms of effectively extracting homologous sequences and predicting protein structures using these patterns.
Collapse
Affiliation(s)
- Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology Center of AI Biology, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan Hubei China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology Center of AI Biology, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
14
|
Wang F, Xiao Y, Lu Y, Deng ZY, Deng XY, Lin LB. Bacteriophage Lytic Enzyme P9ly as an Alternative Antibacterial Agent Against Antibiotic-Resistant Shigella dysenteriae and Staphylococcus aureus. Front Microbiol 2022; 13:821989. [PMID: 35237249 PMCID: PMC8882861 DOI: 10.3389/fmicb.2022.821989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
Developing new strategies to replace or supplement antibiotics to combat bacterial infection is a pressing task in the field of microbiological research. In this study, we report a lytic enzyme named P9ly deriving from the bacteriophage PSD9 that could infect multidrug-resistant Shigella. This enzyme was identified through whole-genome sequencing of PSD9. The results show that P9ly contains a conserved T4-like_lys domain and belongs to the phage lysozyme family. Recombinant P9ly obtained from protein purification presented biological activity and could digest bacterial cell walls (CW), resulting in the destruction of cell structure and leakage of intracellular components. Furthermore, P9ly exhibited bacteriolytic and bactericidal activity on different strains, especially multidrug-resistant Gram-negative Shigella dysenteriae and Gram-positive Staphylococcus aureus. Additionally, combined use of P9ly with ceftriaxone sodium (CRO) could decrease necessary dose of the antibiotic used and improve the antibacterial effect. In summary, under the current backdrop of extensive antibiotic usage and the continuous emergence of bacterial resistance, this study provides an insight into developing bacteriophage-based antibacterial agents against both Gram-negative and Gram-positive pathogens.
Collapse
Affiliation(s)
- Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yao Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yao Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zheng-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
- *Correspondence: Lian-Bing Lin,
| |
Collapse
|
15
|
Ahlqvist J, Linares-Pastén JA, Håkansson M, Jasilionis A, Kwiatkowska-Semrau K, Friðjónsson ÓH, Kaczorowska AK, Dabrowski S, Ævarsson A, Hreggviðsson GÓ, Al-Karadaghi S, Kaczorowski T, Nordberg Karlsson E. Crystal structure and initial characterization of a novel archaeal-like Holliday junction-resolving enzyme from Thermus thermophilus phage Tth15-6. Acta Crystallogr D Struct Biol 2022; 78:212-227. [PMID: 35102887 PMCID: PMC8805305 DOI: 10.1107/s2059798321012298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
This study describes the production, characterization and structure determination of a novel Holliday junction-resolving enzyme. The enzyme, termed Hjc_15-6, is encoded in the genome of phage Tth15-6, which infects Thermus thermophilus. Hjc_15-6 was heterologously produced in Escherichia coli and high yields of soluble and biologically active recombinant enzyme were obtained in both complex and defined media. Amino-acid sequence and structure comparison suggested that the enzyme belongs to a group of enzymes classified as archaeal Holliday junction-resolving enzymes, which are typically divalent metal ion-binding dimers that are able to cleave X-shaped dsDNA-Holliday junctions (Hjs). The crystal structure of Hjc_15-6 was determined to 2.5 Å resolution using the selenomethionine single-wavelength anomalous dispersion method. To our knowledge, this is the first crystal structure of an Hj-resolving enzyme originating from a bacteriophage that can be classified as an archaeal type of Hj-resolving enzyme. As such, it represents a new fold for Hj-resolving enzymes from phages. Characterization of the structure of Hjc_15-6 suggests that it may form a dimer, or even a homodimer of dimers, and activity studies show endonuclease activity towards Hjs. Furthermore, based on sequence analysis it is proposed that Hjc_15-6 has a three-part catalytic motif corresponding to E-SD-EVK, and this motif may be common among other Hj-resolving enzymes originating from thermophilic bacteriophages.
Collapse
Affiliation(s)
- Josefin Ahlqvist
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| | | | - Maria Håkansson
- SARomics Biostructures, Medicon Village, 223 81 Lund, Sweden
| | - Andrius Jasilionis
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Karolina Kwiatkowska-Semrau
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, ul. Wita Stwosza 59, 80-308 Gdansk, Poland
| | | | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, ul. Wita Stwosza 59, Gdansk 80-308, Poland
| | | | | | - Guðmundur Ó. Hreggviðsson
- Matís, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Biology, School of Engineering and Natural Sciences, University of Iceland, Sturlugata 7, IS-102 Reykjavik, Iceland
| | | | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, ul. Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Eva Nordberg Karlsson
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| |
Collapse
|
16
|
Morzywolek A, Plotka M, Kaczorowska AK, Szadkowska M, Kozlowski LP, Wyrzykowski D, Makowska J, Waters JJ, Swift SM, Donovan DM, Kaczorowski T. Novel Lytic Enzyme of Prophage Origin from Clostridium botulinum E3 Strain Alaska E43 with Bactericidal Activity against Clostridial Cells. Int J Mol Sci 2021; 22:ijms22179536. [PMID: 34502443 PMCID: PMC8430805 DOI: 10.3390/ijms22179536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/13/2023] Open
Abstract
Clostridium botulinum is a Gram-positive, anaerobic, spore-forming bacterium capable of producing botulinum toxin and responsible for botulism of humans and animals. Phage-encoded enzymes called endolysins, which can lyse bacteria when exposed externally, have potential as agents to combat bacteria of the genus Clostridium. Bioinformatics analysis revealed in the genomes of several Clostridium species genes encoding putative N-acetylmuramoyl-l-alanine amidases with anti-clostridial potential. One such enzyme, designated as LysB (224-aa), from the prophage of C. botulinum E3 strain Alaska E43 was chosen for further analysis. The recombinant 27,726 Da protein was expressed and purified from E. coli Tuner(DE3) with a yield of 37.5 mg per 1 L of cell culture. Size-exclusion chromatography and analytical ultracentrifugation experiments showed that the protein is dimeric in solution. Bioinformatics analysis and results of site-directed mutagenesis studies imply that five residues, namely H25, Y54, H126, S132, and C134, form the catalytic center of the enzyme. Twelve other residues, namely M13, H43, N47, G48, W49, A50, L73, A75, H76, Q78, N81, and Y182, were predicted to be involved in anchoring the protein to the lipoteichoic acid, a significant component of the Gram-positive bacterial cell wall. The LysB enzyme demonstrated lytic activity against bacteria belonging to the genera Clostridium, Bacillus, Staphylococcus, and Deinococcus, but did not lyse Gram-negative bacteria. Optimal lytic activity of LysB occurred between pH 4.0 and 7.5 in the absence of NaCl. This work presents the first characterization of an endolysin derived from a C. botulinum Group II prophage, which can potentially be used to control this important pathogen.
Collapse
Affiliation(s)
- Agnieszka Morzywolek
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-822 Gdansk, Poland; (A.M.); (M.S.)
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-822 Gdansk, Poland; (A.M.); (M.S.)
- Correspondence: (M.P.); (T.K.)
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Monika Szadkowska
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-822 Gdansk, Poland; (A.M.); (M.S.)
| | - Lukasz P. Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland;
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (D.W.); (J.M.)
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (D.W.); (J.M.)
| | - Jerel J. Waters
- Animal Biosciences and Biotechnology Laboratory, ARS, NEA, USDA, Beltsville, MD 20705-2350, USA; (J.J.W.); (S.M.S.); (D.M.D.)
| | - Steven M. Swift
- Animal Biosciences and Biotechnology Laboratory, ARS, NEA, USDA, Beltsville, MD 20705-2350, USA; (J.J.W.); (S.M.S.); (D.M.D.)
| | - David M. Donovan
- Animal Biosciences and Biotechnology Laboratory, ARS, NEA, USDA, Beltsville, MD 20705-2350, USA; (J.J.W.); (S.M.S.); (D.M.D.)
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-822 Gdansk, Poland; (A.M.); (M.S.)
- Correspondence: (M.P.); (T.K.)
| |
Collapse
|
17
|
Medvedeva S, Brandt D, Cvirkaite-Krupovic V, Liu Y, Severinov K, Ishino S, Ishino Y, Prangishvili D, Kalinowski J, Krupovic M. New insights into the diversity and evolution of the archaeal mobilome from three complete genomes of Saccharolobus shibatae. Environ Microbiol 2021; 23:4612-4630. [PMID: 34190379 DOI: 10.1111/1462-2920.15654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022]
Abstract
Saccharolobus (formerly Sulfolobus) shibatae B12, isolated from a hot spring in Beppu, Japan in 1982, is one of the first hyperthermophilic and acidophilic archaeal species to be discovered. It serves as a natural host to the extensively studied spindle-shaped virus SSV1, a prototype of the Fuselloviridae family. Two additional Sa. shibatae strains, BEU9 and S38A, sensitive to viruses of the families Lipothrixviridae and Portogloboviridae, respectively, have been isolated more recently. However, none of the strains has been fully sequenced, limiting their utility for studies on archaeal biology and virus-host interactions. Here, we present the complete genome sequences of all three Sa. shibatae strains and explore the rich diversity of their integrated mobile genetic elements (MGE), including transposable insertion sequences, integrative and conjugative elements, plasmids, and viruses, some of which were also detected in the extrachromosomal form. Analysis of related MGEs in other Sulfolobales species and patterns of CRISPR spacer targeting revealed a complex network of MGE distributions, involving horizontal spread and relatively frequent host switching by MGEs over large phylogenetic distances, involving species of the genera Saccharolobus, Sulfurisphaera and Acidianus. Furthermore, we characterize a remarkable case of a virus-to-plasmid transition, whereby a fusellovirus has lost the genes encoding for the capsid proteins, while retaining the replication module, effectively becoming a plasmid.
Collapse
Affiliation(s)
- Sofia Medvedeva
- Archaeal Virology Unit, Institut Pasteur, Paris, 75015, France.,Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - David Brandt
- Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany
| | | | - Ying Liu
- Archaeal Virology Unit, Institut Pasteur, Paris, 75015, France
| | - Konstantin Severinov
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.,Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - David Prangishvili
- Archaeal Virology Unit, Institut Pasteur, Paris, 75015, France.,Ivane Javakhishvili Tbilisi State University, Tbilisi, 0179, Georgia
| | - Jörn Kalinowski
- Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, 75015, France
| |
Collapse
|
18
|
Arsın H, Jasilionis A, Dahle H, Sandaa RA, Stokke R, Nordberg Karlsson E, Steen IH. Exploring Codon Adjustment Strategies towards Escherichia coli-Based Production of Viral Proteins Encoded by HTH1, a Novel Prophage of the Marine Bacterium Hypnocyclicus thermotrophus. Viruses 2021; 13:v13071215. [PMID: 34201869 PMCID: PMC8310279 DOI: 10.3390/v13071215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/15/2023] Open
Abstract
Marine viral sequence space is immense and presents a promising resource for the discovery of new enzymes interesting for research and biotechnology. However, bottlenecks in the functional annotation of viral genes and soluble heterologous production of proteins hinder access to downstream characterization, subsequently impeding the discovery process. While commonly utilized for the heterologous expression of prokaryotic genes, codon adjustment approaches have not been fully explored for viral genes. Herein, the sequence-based identification of a putative prophage is reported from within the genome of Hypnocyclicus thermotrophus, a Gram-negative, moderately thermophilic bacterium isolated from the Seven Sisters hydrothermal vent field. A prophage-associated gene cluster, consisting of 46 protein coding genes, was identified and given the proposed name Hypnocyclicus thermotrophus phage H1 (HTH1). HTH1 was taxonomically assigned to the viral family Siphoviridae, by lowest common ancestor analysis of its genome and phylogeny analyses based on proteins predicted as holin and DNA polymerase. The gene neighbourhood around the HTH1 lytic cassette was found most similar to viruses infecting Gram-positive bacteria. In the HTH1 lytic cassette, an N-acetylmuramoyl-L-alanine amidase (Amidase_2) with a peptidoglycan binding motif (LysM) was identified. A total of nine genes coding for enzymes putatively related to lysis, nucleic acid modification and of unknown function were subjected to heterologous expression in Escherichia coli. Codon optimization and codon harmonization approaches were applied in parallel to compare their effects on produced proteins. Comparison of protein yields and thermostability demonstrated that codon optimization yielded higher levels of soluble protein, but codon harmonization led to proteins with higher thermostability, implying a higher folding quality. Altogether, our study suggests that both codon optimization and codon harmonization are valuable approaches for successful heterologous expression of viral genes in E. coli, but codon harmonization may be preferable in obtaining recombinant viral proteins of higher folding quality.
Collapse
Affiliation(s)
- Hasan Arsın
- Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; (R.-A.S.); (R.S.)
- Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway;
- Correspondence: (H.A.); (I.H.S.); Tel.: +47-555-88-375 (I.H.S.)
| | - Andrius Jasilionis
- Division of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (A.J.); (E.N.K.)
| | - Håkon Dahle
- Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway;
- Computational Biology Unit, University of Bergen, N-5020 Bergen, Norway
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; (R.-A.S.); (R.S.)
| | - Runar Stokke
- Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; (R.-A.S.); (R.S.)
- Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway;
| | - Eva Nordberg Karlsson
- Division of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (A.J.); (E.N.K.)
| | - Ida Helene Steen
- Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; (R.-A.S.); (R.S.)
- Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway;
- Correspondence: (H.A.); (I.H.S.); Tel.: +47-555-88-375 (I.H.S.)
| |
Collapse
|