1
|
Schalamun M, Schmoll M. Trichoderma - genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1002161. [PMID: 37746224 PMCID: PMC10512326 DOI: 10.3389/ffunb.2022.1002161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 09/26/2023]
Abstract
The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Habschied K, Krstanović V, Zdunić Z, Babić J, Mastanjević K, Šarić GK. Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products. J Fungi (Basel) 2021; 7:348. [PMID: 33946920 PMCID: PMC8145935 DOI: 10.3390/jof7050348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
Contamination of crops with phytopathogenic genera such as Fusarium, Aspergillus, Alternaria, and Penicillium usually results in mycotoxins in the stored crops or the final products (bread, beer, etc.). To reduce the damage and suppress the fungal growth, it is common to add antifungal substances during growth in the field or storage. Many of these antifungal substances are also harmful to human health and the reduction of their concentration would be of immense importance to food safety. Many eminent researchers are seeking a way to reduce the use of synthetic antifungal compounds and to implement more eco-friendly and healthier bioweapons against fungal proliferation and mycotoxin synthesis. This paper aims to address the recent advances in the effectiveness of biological antifungal compounds application against the aforementioned fungal genera and their species to enhance the protection of ecological and environmental systems involved in crop growing (water, soil, air) and to reduce fungicide contamination of food derived from these commodities.
Collapse
Affiliation(s)
- Kristina Habschied
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Vinko Krstanović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Zvonimir Zdunić
- Agricultural Institute Osijek, Južno predgrađe 17, 31000 Osijek, Croatia;
| | - Jurislav Babić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Krešimir Mastanjević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Gabriella Kanižai Šarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia;
| |
Collapse
|
3
|
Kubicek CP, Steindorff AS, Chenthamara K, Manganiello G, Henrissat B, Zhang J, Cai F, Kopchinskiy AG, Kubicek EM, Kuo A, Baroncelli R, Sarrocco S, Noronha EF, Vannacci G, Shen Q, Grigoriev IV, Druzhinina IS. Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics 2019; 20:485. [PMID: 31189469 PMCID: PMC6560777 DOI: 10.1186/s12864-019-5680-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The growing importance of the ubiquitous fungal genus Trichoderma (Hypocreales, Ascomycota) requires understanding of its biology and evolution. Many Trichoderma species are used as biofertilizers and biofungicides and T. reesei is the model organism for industrial production of cellulolytic enzymes. In addition, some highly opportunistic species devastate mushroom farms and can become pathogens of humans. A comparative analysis of the first three whole genomes revealed mycoparasitism as the innate feature of Trichoderma. However, the evolution of these traits is not yet understood. RESULTS We selected 12 most commonly occurring Trichoderma species and studied the evolution of their genome sequences. Trichoderma evolved in the time of the Cretaceous-Palaeogene extinction event 66 (±15) mya, but the formation of extant sections (Longibrachiatum, Trichoderma) or clades (Harzianum/Virens) happened in Oligocene. The evolution of the Harzianum clade and section Trichoderma was accompanied by significant gene gain, but the ancestor of section Longibrachiatum experienced rapid gene loss. The highest number of genes gained encoded ankyrins, HET domain proteins and transcription factors. We also identified the Trichoderma core genome, completely curated its annotation, investigated several gene families in detail and compared the results to those of other fungi. Eighty percent of those genes for which a function could be predicted were also found in other fungi, but only 67% of those without a predictable function. CONCLUSIONS Our study presents a time scaled pattern of genome evolution in 12 Trichoderma species from three phylogenetically distant clades/sections and a comprehensive analysis of their genes. The data offer insights in the evolution of a mycoparasite towards a generalist.
Collapse
Affiliation(s)
- Christian P Kubicek
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- , Vienna, Austria
| | - Andrei S Steindorff
- Departamento de Biologia Celular, Universidade de Brasília, Brasíla, DF, Brazil
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Komal Chenthamara
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Gelsomina Manganiello
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", Naples, Portici, Italy
| | - Bernard Henrissat
- CNRS, Aix-Marseille Université, Marseille, France
- INRA, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jian Zhang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Feng Cai
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Alexey G Kopchinskiy
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | | | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Riccardo Baroncelli
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Campus de Villamayor, Calle Del Duero, Villamayor, España
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Giovanni Vannacci
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Campus de Villamayor, Calle Del Duero, Villamayor, España
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.
| | - Irina S Druzhinina
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria.
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Kredics L, Chen L, Kedves O, Büchner R, Hatvani L, Allaga H, Nagy VD, Khaled JM, Alharbi NS, Vágvölgyi C. Molecular Tools for Monitoring Trichoderma in Agricultural Environments. Front Microbiol 2018; 9:1599. [PMID: 30090089 PMCID: PMC6068273 DOI: 10.3389/fmicb.2018.01599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Various Trichoderma species possess significance in agricultural systems as biofertilizers or biocontrol agents (BCAs). Besides these beneficial features, certain Trichoderma species can also act as agricultural pests, causing the green mold disease of cultivated mushrooms. This double-faced nature of the genus in agricultural environments points at the importance of proper monitoring tools, which can be used to follow the presence and performance of candidate as well as patented and/or registered biocontrol strains, to assess the possible risks arising from their application, but also to track harmful, unwanted Trichoderma species like the green molds in mushroom growing facilities. The objective of this review is to discuss the molecular tools available for the species- and strain-specific monitoring of Trichoderma, ranging from immunological approaches and fingerprinting tools to exogenous markers, specific primers used in polymerase chain reaction (PCR) as well as "omics" approaches.
Collapse
Affiliation(s)
- László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Liqiong Chen
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Rita Büchner
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Lóránt Hatvani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Henrietta Allaga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Viktor D Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Choi J, Lee GW, Kim KT, Jeon J, Détry N, Kuo HC, Sun H, Asiegbu FO, Lee YH. Comparative analysis of genome sequences of the conifer tree pathogen, Heterobasidion annosum s.s. GENOMICS DATA 2017; 14:106-113. [PMID: 29085779 PMCID: PMC5654758 DOI: 10.1016/j.gdata.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/21/2017] [Accepted: 10/15/2017] [Indexed: 01/09/2023]
Abstract
The causal agent of root and butt rot of conifer trees, Heterobasidion annosum, is widespread in boreal forests and economically responsible for annual loss of approximately 50 million euros to forest industries in Finland alone and much more at European level. In order to further understand the pathobiology of this fungus at the genome level, a Finnish isolate of H. annosum sensu stricto (isolate 03012) was sequenced and analyzed with the genome sequences of 23 white-rot and 13 brown-rot fungi. The draft genome assembly of H. annosum has a size of 31.01 Mb, containing 11,453 predicted genes. Whole genome alignment showed that 84.38% of H. annosum genome sequences were aligned with those of previously sequenced H. irregulare TC 32-1 counterparts. The result is further supported by the protein sequence clustering analysis which revealed that the two genomes share 6719 out of 8647 clusters. When sequencing reads of H. annosum were aligned against the genome sequences of H. irregulare, six single nucleotide polymorphisms were found in every 1 kb, on average. In addition, 98.68% of SNPs were found to be homo-variants, suggesting that the two species have long evolved from different niches. Gene family analysis revealed that most of the white-rot fungi investigated had more gene families involved in lignin degradation or modification, including laccases and peroxidase. Comparative analysis of the two Heterobasidion spp. as well as white-/brown-rot fungi would provide new insights for understanding the pathobiology of the conifer tree pathogen.
Collapse
Affiliation(s)
- Jaeyoung Choi
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Gir-Won Lee
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongbum Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Nicolas Détry
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Hsiao-Che Kuo
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Hui Sun
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Yong-Hwan Lee
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland.,Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.,Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|