1
|
Wang Y, Jin Y, Wang Y, Li Y, Wang X, Li Z, Zhou J. Sow reproductive disorders: a key issue affecting the pig industry. Front Vet Sci 2025; 12:1535719. [PMID: 40110434 PMCID: PMC11920173 DOI: 10.3389/fvets.2025.1535719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
Pig farming is essential to global agricultural economies and food security. However, reproductive disorders in sows significantly impact the economic viability and sustainability of the pig industry. These disorders often result from complex interactions between pathogenic and non-pathogenic factors. Preventing abortions is typically more cost-effective than managing and treating them, particularly in intensive pig farming system. This highlights the importance of comprehensively understanding the underlying causes of abortion in sows. This review explores the factors contributing to sow reproductive disorders, including both non-infectious factors (environmental conditions and management practices) and infectious factors (viruses, bacteria, and parasites). We also outline preventive and control strategies, alongside integrated management approaches, by analyzing the underlying causes and pathogenic mechanisms of pregnancy disorders. Overall, implementing the "One Health" concept in large-scale farming provides an effective strategy to reduce the incidence of sow abortion rate, ensure stable livestock production, and maintain a reliable global pork supply.
Collapse
Affiliation(s)
- Yihan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Youshun Jin
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Yanyan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Yunhui Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
- Animal Pathology Laboratory, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiaoxue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
- College of Life Sciences, Yulin University, Yulin, China
| | - Zhaocai Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Boukthir S, Common H, Arvieux C, Cattoir V, Patrat-Delon S, Jolivet-Gougeon A. A recurrent prosthetic joint infection caused by Erysipelothrix rhusiopathiae: case report and literature review. J Med Microbiol 2022; 71. [PMID: 36094891 DOI: 10.1099/jmm.0.001580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prosthetic knee joint infection caused by Erysipelothrix rhusiopathiae is uncommon and only one case of recurrent infection has previously been described. Here, we describe the case of a 77-year-old male patient who was admitted to the teaching hospital of Rennes (France) with bilateral and nocturnal gonalgia evolving for 1 month. He had bilateral knee prosthesis 10 years ago, and a history of large B-cell lymphoma in remission. A diagnosis of infective endocarditis, with prosthetic knee infection, was made, with positive cultures of synovial fluids and blood; colonies of E. rhusiopathiae were identified by MALDI-TOF MS. Initial treatment involved debridement, implant retention surgery and intravenous amoxicillin (12 g day-1) for 6 weeks with gentamicin 3 mg kg-1 day-1 added for the first 4 days. One year later, a second episode of E. rhusiopathiae infection occurred, suggesting a recurrence or reinfection due to the same bacterial species. The patient was finally cured after a two-stage exchange with a cemented articulated spacer and a 3 month course of amoxicillin (12 g day-1, iv). Different characteristics of E. rhusiopathiae infection were discussed, with a review of all cases of prosthetic joint infections caused by Erysipelothrix species. This case highlights the need for a long-term survey of patients, and a good knowledge of their environment to avoid any risk of reinfection.
Collapse
Affiliation(s)
- Sarrah Boukthir
- Bacteriology and Hygiene Department, Teaching Hospital of Rennes, 2 rue Henri-Le-Guilloux, 35033 Rennes, France
| | - Harold Common
- CRIOGO Great West Reference Centers for Complex Bone and Joint Infections (CRIOGO), Rennes, France.,Department of Orthopedic Surgery and Traumatology, Teaching Hospital of Rennes, 2 rue Henri-Le-Guilloux, 11 35033 Rennes, France
| | - Cédric Arvieux
- CRIOGO Great West Reference Centers for Complex Bone and Joint Infections (CRIOGO), Rennes, France.,Teaching Hospital of Rennes, Department of Infectious Diseases and Intensive Care Medicine, Rennes University Hospital, 2, rue Henri-Le-Guilloux, 35033 Rennes, France
| | - Vincent Cattoir
- Bacteriology and Hygiene Department, Teaching Hospital of Rennes, 2 rue Henri-Le-Guilloux, 35033 Rennes, France.,CRIOGO Great West Reference Centers for Complex Bone and Joint Infections (CRIOGO), Rennes, France.,Inserm U1230 BMR, University of Rennes 1, Rennes, France
| | - Solène Patrat-Delon
- CRIOGO Great West Reference Centers for Complex Bone and Joint Infections (CRIOGO), Rennes, France.,Teaching Hospital of Rennes, Department of Infectious Diseases and Intensive Care Medicine, Rennes University Hospital, 2, rue Henri-Le-Guilloux, 35033 Rennes, France
| | - Anne Jolivet-Gougeon
- Bacteriology and Hygiene Department, Teaching Hospital of Rennes, 2 rue Henri-Le-Guilloux, 35033 Rennes, France.,CRIOGO Great West Reference Centers for Complex Bone and Joint Infections (CRIOGO), Rennes, France.,Univ Rennes, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), U1241 Microbiology, F-35000 Rennes, France
| |
Collapse
|
3
|
The C-Terminal Repeat Units of SpaA Mediate Adhesion of Erysipelothrix rhusiopathiae to Host Cells and Regulate Its Virulence. BIOLOGY 2022; 11:biology11071010. [PMID: 36101391 PMCID: PMC9311908 DOI: 10.3390/biology11071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Erysipelothrix rhusiopathiae is an important zoonotic pathogen, which poses a serious harm to the pig industry. We aimed to evaluate the genomic differences between virulent and avirulent strains to study the pathogenic mechanism of Erysipelothrix rhusiopathiae. The results showed that the spaA gene of avirulent strain lacked 120bp, encoding repeat units at the C-terminal of SpaA, the virulence of the virulent strain with this 120 bp deletion was attenuated, and the mutant strain decreased adhesion to porcine iliac artery endothelial cells. Abstract Erysipelothrix rhusiopathiae is a causative agent of erysipelas in animals and erysipeloid in humans. However, current information regarding E. rhusiopathiae pathogenesis remains limited. Previously, we identified two E. rhusiopathiae strains, SE38 and G4T10, which were virulent and avirulent in pigs, respectively. Here, to further study the pathogenic mechanism of E. rhusiopathiae, we sequenced and assembled the genomes of strains SE38 and G4T10, and performed a comparative genomic analysis to identify differences or mutations in virulence-associated genes. Next, we comparatively analyzed 25 E. rhusiopathiae virulence-associated genes in SE38 and G4T10. Compared with that of SE38, the spaA gene of the G4T10 strain lacked 120 bp, encoding repeat units at the C-terminal of SpaA. To examine whether these deletions or splits influence E. rhusiopathiae virulence, these 120 bp were successfully deleted from the spaA gene in strain SE38 by homologous recombination. The mutant strain ΔspaA displayed attenuated virulence in mice and decreased adhesion to porcine iliac artery endothelial cells, which was also observed using the corresponding mutant protein SpaA’. Our results demonstrate that SpaA-mediated adhesion between E. rhusiopathiae and host cells is dependent on its C-terminal repeat units.
Collapse
|
4
|
Morimoto M, Kato A, Akaike Y, Nogami K, Ono H, Furusawa T, Kojima H, Sasakawa C. Comparative study of the phenotype and virulence of recent serovar 1a, 1b, and 2a isolates of Erysipelothrix rhusiopathiae in Japan. Vet Microbiol 2022; 270:109458. [PMID: 35623133 DOI: 10.1016/j.vetmic.2022.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Erysipelothrix rhusiopathiae causes swine erysipelas (SE) and is classified -into 16 serovars based on cell surface antigens. Our previous study suggested that recent SE outbreaks were mostly caused by serovar 1a of E. rhusiopathiae with the surface protective antigen (Spa)A protein characterized by methionine and isoleucine at positions 203 and 257 (M203/I257 SpaA). In this study, four recent E. rhusiopathiae isolates comprising two serovar 1a with M203/I257 SpaA strains (2012 Miyazaki and 2012 Chiba), one serovar 1b strain (2015 Miyazaki), and one serovar 2a strain (2012 Nagano) were compared with each other and with the serovar 1a Fujisawa reference strain regarding in vitro phenotypes and in vivo virulence in mice and pigs. The serovar 1b and 2a strains, which are the less prevalent strains in the field in Japan, showed lower growth in liquid culture and lower virulence in animals than the serovar 1a variants. Adhesion of the serovar 2a strain to porcine endothelial cells was weaker than that of the serovar 1a and 1b strains. Several advantages of serovar 1a strains were found, but no plausible cause of the M203/I257 SpaA type variants to be selected for the most prevalent strains among serovar 1a strains was identified in this study.
Collapse
Affiliation(s)
- Misako Morimoto
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome, Tokyo 198-0024, Japan.
| | - Atsushi Kato
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome, Tokyo 198-0024, Japan; Biomedical Science Association, 2-20-8-3F Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yuta Akaike
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome, Tokyo 198-0024, Japan
| | - Kotoe Nogami
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome, Tokyo 198-0024, Japan
| | - Hiroki Ono
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome, Tokyo 198-0024, Japan
| | - Takaaki Furusawa
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome, Tokyo 198-0024, Japan
| | - Hiroe Kojima
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome, Tokyo 198-0024, Japan
| | - Chihiro Sasakawa
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome, Tokyo 198-0024, Japan; Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba 260-8673, Japan
| |
Collapse
|
5
|
Wu C, Lv C, Zhao Y, Zhu W, Liu L, Wang T, Kang C, Yang Y, Sun X, Zhang Q, Jin M. Characterization of Erysipelothrix rhusiopathiae Isolates from Diseased Pigs in 15 Chinese Provinces from 2012 to 2018. Microorganisms 2021; 9:microorganisms9122615. [PMID: 34946215 PMCID: PMC8704079 DOI: 10.3390/microorganisms9122615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Erysipelothrix rhusiopathiae can cause erysipelas in animals and erysipeloid in humans. Since its recurrence in 2012, swine erysipelas has caused serious losses within the pig industry in China. The aim of this study was to perform multilocus sequence typing and understand the virulence and antimicrobial susceptibility of E. rhusiopathiae isolates in China. Multilocus sequence typing (MLST) of a total of 120 strains was performed, and as a result, three different sequence types were identified, of which ST48 was the main one. Five isolates of each MLST type were randomly selected to be used to challenge mice. ST48 was associated with a higher virulence. Antimicrobial susceptibility was tested using a microdilution technique and, to analyze the resistance mechanism, six strains were selected for genome sequencing. A comparison of the six genomes indicated the presence of a suspected macrolide resistance gene, namely, Erm(A)-like, in erythromycin-resistant strains, which increased the minimum inhibitory concentration (MIC) of erythromycin against E. coli C600 at least four-fold. In addition, three mutations (gyrA86T-I, gyrA90D-N, and parC81S-I) were observed in the quinolone resistance-determining regions (QRDRs) of gyrA and parC in quinolone-resistant strains. After the gyrA gene with the 86T-I mutation or the parC gene with the 81S-I mutation was transfected into E. coli C600, the MIC of enrofloxacin against this strain increased at least two-fold. Our findings provide a theoretical basis for developing antibacterial drugs and may contribute to the clinical prevention and control of E. rhusiopathiae.
Collapse
Affiliation(s)
- Chao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Changjie Lv
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Weifeng Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Kang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (Q.Z.); (M.J.)
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (C.L.); (Y.Z.); (W.Z.); (L.L.); (T.W.); (C.K.); (Y.Y.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (Q.Z.); (M.J.)
| |
Collapse
|
6
|
Forde TL, Kollanandi Ratheesh N, Harvey WT, Thomson JR, Williamson S, Biek R, Opriessnig T. Genomic and Immunogenic Protein Diversity of Erysipelothrix rhusiopathiae Isolated From Pigs in Great Britain: Implications for Vaccine Protection. Front Microbiol 2020; 11:418. [PMID: 32231655 PMCID: PMC7083082 DOI: 10.3389/fmicb.2020.00418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/27/2020] [Indexed: 12/30/2022] Open
Abstract
Erysipelas, caused by the bacterium Erysipelothrix rhusiopathiae, is re-emerging in swine and poultry production systems worldwide. While the global genomic diversity of this species has been characterized, how much of this genomic and functional diversity is maintained at smaller scales is unclear. Specifically, while several key immunogenic surface proteins have been identified for E. rhusiopathiae, little is known about their presence among field strains and their divergence from vaccines, which could result in vaccine failure. Here, a comparative genomics approach was taken to determine the diversity of E. rhusiopathiae strains in pigs in Great Britain over nearly three decades, as well as to assess the field strains’ divergence from the vaccine strain most commonly used in British pigs. In addition, the presence/absence and variability of 13 previously described immunogenic surface proteins was determined, including SpaA which is considered a key immunogen. We found a high diversity of E. rhusiopathiae strains in British pigs, similar to the situation described in European poultry but in contrast to swine production systems in Asia. Of the four clades of E. rhusiopathiae found globally, three were represented among British pig isolates, with Clade 2 being the most common. All British pig isolates had one amino acid difference in the immunoprotective domain of the SpaA protein compared to the vaccine strain. However, we were able to confirm using in silico structural protein analyses that this difference is unlikely to compromise vaccine protection. Of 12 other known immunogenic surface proteins of E. rhusiopathiae examined, 11 were found to be present in all British pig isolates and the vaccine strain, but with highly variable degrees of conservation at the amino acid sequence level, ranging from 0.3 to 27% variant positions. Moreover, the phylogenetic incongruence of these proteins suggests that horizontal transfer of genes encoding for antigens is commonplace for this bacterium. We hypothesize that the sequence variants in these proteins could be responsible for differences in the efficacy of the immune response. Our results provide the necessary basis for testing this hypothesis through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Taya L Forde
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Nichith Kollanandi Ratheesh
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - William T Harvey
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jill R Thomson
- Disease Surveillance Centre, SAC Veterinary Services, Scotland's Rural College, Edinburgh, United Kingdom
| | - Susanna Williamson
- Surveillance Intelligence Unit, Animal and Plant Health Agency, Bury St Edmunds, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Tanja Opriessnig
- The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
7
|
Zhu W, Cai C, Li J, Zhang Q, Huang J, Jin M. Characterization of protective antigen CbpB as an adhesin and a plasminogen-binding protein of Erysipelothrix rhusiopathiae. Res Vet Sci 2019; 124:352-356. [PMID: 31060015 DOI: 10.1016/j.rvsc.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/31/2019] [Accepted: 04/07/2019] [Indexed: 10/27/2022]
Abstract
Erysipelothrix rhusiopathiae is the causative agent of animal erysipelas and human erysipeloid. E. rhusiopathiae CbpB has been reported to be a protective antigen, but its pathogenic roles are not known. The aim of this study was to evaluate the ability of CbpB to act as an adhesin in E. rhusiopathiae adhesion to porcine endothelial cells as well as a host plasminogen- and fibronectin- binding protein. Recombinant CbpB (rCbpB) was successfully obtained, and it was found that E. rhusiopathiae CbpB was located on the cell surface of E. rhusiopathiae. Moreover, CbpB exhibited binding activity to porcine endothelial cells. Recombinant CbpB successfully bound to host plasminogen but was unable to bind to fibronectin. In conclusion, our work suggested that CbpB is a virulence factor of E. rhusiopathiae.
Collapse
Affiliation(s)
- Weifeng Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengzhi Cai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Jingtao Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiang Zhang
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Meilin Jin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
8
|
Zhu W, Wei H, Chen L, Qiu R, Fan Z, Hu B, Chen M, Wang F. Characterization of host plasminogen exploitation of Pasteurella multocida. Microb Pathog 2019; 129:74-77. [DOI: 10.1016/j.micpath.2019.01.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 10/27/2022]
|
9
|
Zhu W, Wu C, Kang C, Cai C, Wang Y, Li J, Zhang Q, Sun X, Jin M. Evaluation of the protective efficacy of four newly identified surface proteins of Erysipelothrix rhusiopathiae. Vaccine 2018; 36:8079-8083. [PMID: 30446176 DOI: 10.1016/j.vaccine.2018.10.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 10/27/2022]
Abstract
Erysipelothrix rhusiopathiae is the causative agent of animal erysipelas and human erysipeloid. Bacterial surface proteins are promising vaccine candidates. We recently identified 3 E. rhusiopathiae surface proteins (GAPDH, HP0728, and HP1472) and characterized their roles as virulence factors. However, their efficacy as protective antigens is still unknown. The N-terminal region of a previously identified surface protein, CbpB (CbpB-N), is speculated to be a protective antigen, but this needs to be verified. The aim of this study was to evaluate the protective efficacy of GAPDH, HP0728, HP1472, and CbpB-N. Immunization with recombinant GAPDH provided complete protection in a mouse model, recombinant CbpB-N provided partial protection, while recombinant HP0728 and HP1472 provided no protection. Recombinant GAPDH also provided good protection in a pig model. GAPDH antiserum exhibited significant blood bactericidal activity against E. rhusiopathiae. In conclusion, GAPDH and CbpB-N were found to be protective antigens of E. rhusiopathiae, and GAPDH is a promising vaccine candidate.
Collapse
Affiliation(s)
- Weifeng Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chao Wu
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chao Kang
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengzhi Cai
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ya Wang
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jingtao Li
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiang Zhang
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Meilin Jin
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
10
|
Zhu W, Cai C, Huang J, Liu L, Xu Z, Sun X, Jin M. Characterization of pathogenic roles of two Erysipelothrix rhusiopathiae surface proteins. Microb Pathog 2017; 114:166-168. [PMID: 29196173 DOI: 10.1016/j.micpath.2017.11.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Erysipelothrix rhusiopathiae is the causative agent of animal erysipelas and human erysipeloid. E. rhusiopathiae HP0728 and HP1472 have been reported to be down regulated in low-virulence or avirulent strains, but their pathogenic roles are not known. In this study, it was found that E. rhusiopathiae HP0728 and HP1472 were displayed on the surface of E. rhusiopathiae. Moreover, recombinant HP1472 could adhere to pig vascular endothelial cells. Recombinant HP0728 could bind host plasminogen but could not bind fibronectin. In conclusion, our work suggested that HP0728 and HP1472 are virulence factors of E. rhusiopathiae.
Collapse
Affiliation(s)
- Weifeng Zhu
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengzhi Cai
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Huang
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liang Liu
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhongmin Xu
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Meilin Jin
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
11
|
Zhu W, Cai C, Wang Y, Li J, Wu C, Kang C, Sun X, Jin M. Characterization of roles of SpaA in Erysipelothrix rhusiopathiae adhesion to porcine endothelial cells. Microb Pathog 2017; 113:176-180. [PMID: 29038054 DOI: 10.1016/j.micpath.2017.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 11/26/2022]
Abstract
Erysipelothrix rhusiopathiae is the causative agent of animal erysipelas and human erysipeloid. The major protective antigen SpaA was suggested to play important roles in E. rhusiopathiae adhesion to host cells, but there is no specific study on SpaA pathogenic roles in adhesion. In this study we characterized direct and indirect roles of SpaA in E. rhusiopathiae adhesion to porcine endothelial cells. Recombinant E. rhusiopathiae SpaA (rSpaA) successfully binded to porcine iliac arterial endothelial cells. rSpaA protein pre-incubating endothelial cells or rSpaA antiserum pre-incubating E. rhusiopathiae significantly decreased E. rhusiopathiae adhesion to endothelial cells. rSpaA successfully binded host plasminogen and fibronectin, and rSpaA antiserum significantly decreased plasminogen-recruitment activity but not fibronectin-recruitment activity of E. rhusiopathiae. In conclusion, SpaA acts as adhesin in E. rhusiopathiae adhesion to host cells, and SpaA binding activity to host plasminogen highly likely play roles in this adhesion.
Collapse
Affiliation(s)
- Weifeng Zhu
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chengzhi Cai
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ya Wang
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jingtao Li
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chao Wu
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chao Kang
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Meilin Jin
- Animal Infectious Disease Unit, National State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China; Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|