1
|
Picazo I, Espeso EA. Interconnections between the Cation/Alkaline pH-Responsive Slt and the Ambient pH Response of PacC/Pal Pathways in Aspergillus nidulans. Cells 2024; 13:651. [PMID: 38607089 PMCID: PMC11011638 DOI: 10.3390/cells13070651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
In the filamentous ascomycete Aspergillus nidulans, at least three high hierarchy transcription factors are required for growth at extracellular alkaline pH: SltA, PacC and CrzA. Transcriptomic profiles depending on alkaline pH and SltA function showed that pacC expression might be under SltA regulation. Additional transcriptional studies of PacC and the only pH-regulated pal gene, palF, confirmed both the strong dependence on ambient pH and the function of SltA. The regulation of pacC expression is dependent on the activity of the zinc binuclear (C6) cluster transcription factor PacX. However, we found that the ablation of sltA in the pacX- mutant background specifically prevents the increase in pacC expression levels without affecting PacC protein levels, showing a novel specific function of the PacX factor. The loss of sltA function causes the anomalous proteolytic processing of PacC and a reduction in the post-translational modifications of PalF. At alkaline pH, in a null sltA background, PacC72kDa accumulates, detection of the intermediate PacC53kDa form is extremely low and the final processed form of 27 kDa shows altered electrophoretic mobility. Constitutive ubiquitination of PalF or the presence of alkalinity-mimicking mutations in pacC, such as pacCc14 and pacCc700, resembling PacC53kDa and PacC27kDa, respectively, allowed the normal processing of PacC but did not rescue the alkaline pH-sensitive phenotype caused by the null sltA allele. Overall, data show that Slt and PacC/Pal pathways are interconnected, but the transcription factor SltA is on a higher hierarchical level than PacC on regulating the tolerance to the ambient alkalinity in A. nidulans.
Collapse
Affiliation(s)
| | - Eduardo A. Espeso
- Department of Molecular and Cellular Biology, Centro de Investigaciones Biológicas (CIB) Margarita Salas, Spanish Research Council (CSIC), Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| |
Collapse
|
2
|
Schneider K, Farr T, Pinter N, Schmitt K, Valerius O, Braus GH, Kämper J. The Nma1 protein promotes long distance transport mediated by early endosomes in Ustilago maydis. Mol Microbiol 2021; 117:334-352. [PMID: 34817894 DOI: 10.1111/mmi.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 11/28/2022]
Abstract
Early endosomes (EEs) are part of the endocytic transport pathway and resemble the earliest class of transport vesicles between the internalization of extracellular material, their cellular distribution or vacuolar degradation. In filamentous fungi, EEs fulfill important functions in long distance transport of cargoes as mRNAs, ribosomes, and peroxisomes. Formation and maturation of early endosomes is controlled by the specific membrane-bound Rab-GTPase Rab5 and tethering complexes as CORVET (class C core vacuole/endosome tethering). In the basidiomycete Ustilago maydis, Rab5a is the prominent GTPase to recruit CORVET to EEs; in rab5a deletion strains, this function is maintained by the second EE-associated GTPase Rab5b. The tethering- and core-subunits of CORVET are essential, buttressing a central role for EE transport in U. maydis. The function of EEs in long distance transport is supported by the Nma1 protein that interacts with the Vps3 subunit of CORVET. The interaction stabilizes the binding of Vps3 to the CORVET core complex that is recruited to Rab5a via Vps8. Deletion of nma1 leads to a significantly reduced number of EEs, and an increased conversion rate of EEs to late endosomes. Thus, Nma1 modulates the lifespan of EEs to ensure their availability for the various long distance transport processes.
Collapse
Affiliation(s)
- Karina Schneider
- Institute of Applied Biosciences, Department of Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Theresa Farr
- Institute of Applied Biosciences, Department of Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Niko Pinter
- Institute of Applied Biosciences, Department of Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Jörg Kämper
- Institute of Applied Biosciences, Department of Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
3
|
Hu G, Bakkeren E, Caza M, Horianopoulos L, Sánchez-León E, Sorensen M, Jung W, Kronstad JW. Vam6/Vps39/TRAP1-domain proteins influence vacuolar morphology, iron acquisition and virulence in Cryptococcus neoformans. Cell Microbiol 2021; 23:e13400. [PMID: 34800311 DOI: 10.1111/cmi.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans must overcome iron limitation to cause disease in mammalian hosts. Previously, we reported a screen for insertion mutants with poor growth on haem as the sole iron source. In this study, we characterised one such mutant and found that the defective gene encoded a Vam6/Vps39/TRAP1 domain-containing protein required for robust growth on haem, an important iron source in host tissue. We designated this protein Vps3 based on reciprocal best matches with the corresponding protein in Saccharomyces cerevisiae. C. neoformans encodes a second Vam6/Vps39/TRAP1 domain-containing protein designated Vam6/Vlp1, and we found that this protein is also required for robust growth on haem as well as on inorganic iron sources. This protein is predicted to be a component of the homotypic fusion and vacuole protein sorting complex involved in endocytosis. Further characterisation of the vam6Δ and vps3Δ mutants revealed perturbed trafficking of iron acquisition functions (e.g., the high affinity iron permease Cft1) and impaired processing of the transcription factor Rim101, a regulator of haem and iron acquisition. The vps3Δ and vam6Δ mutants also had pleiotropic phenotypes including loss of virulence in a mouse model of cryptococcosis, reduced virulence factor elaboration and increased susceptibility to stress, indicating pleiotropic roles for Vps3 and Vam6 beyond haem use in C. neoformans. TAKE AWAYS: Two Vam6/Vps39/TRAP1-domain proteins, Vps3 and Vam6, support the growth of Cryptococcus neoformans on haem. Loss of Vps3 and Vam6 influences the trafficking and expression of iron uptake proteins. Loss of Vps3 or Vam6 eliminates the ability of C. neoformans to cause disease in a mouse model of cryptococcosis.
Collapse
Affiliation(s)
- Guanggan Hu
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erik Bakkeren
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Zoology, University of Oxford, Oxford, UK
| | - Mélissa Caza
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Larissa Yarr Medical Microbiology Laboratory, Kelowna General Hospital, Kelowna, British Columbia, Canada
| | - Linda Horianopoulos
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy Sánchez-León
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melanie Sorensen
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wonhee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - James W Kronstad
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Hernández‐González M, Pantazopoulou A, Spanoudakis D, Seegers CL, Peñalva MA. Genetic dissection of the secretory route followed by a fungal extracellular glycosyl hydrolase. Mol Microbiol 2018; 109:781-800. [DOI: 10.1111/mmi.14073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Miguel Hernández‐González
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Areti Pantazopoulou
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
- Department of Molecular Genetics and Cell Biology The University of Chicago Chicago IL USA
| | - Dimitris Spanoudakis
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Christel L.C. Seegers
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
- Avebe UA Foxhol The Netherlands
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
| |
Collapse
|
6
|
Hernández-González M, Bravo-Plaza I, Pinar M, de los Ríos V, Arst HN, Peñalva MA. Endocytic recycling via the TGN underlies the polarized hyphal mode of life. PLoS Genet 2018; 14:e1007291. [PMID: 29608571 PMCID: PMC5880334 DOI: 10.1371/journal.pgen.1007291] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Intracellular traffic in Aspergillus nidulans hyphae must cope with the challenges that the high rates of apical extension (1μm/min) and the long intracellular distances (>100 μm) impose. Understanding the ways in which the hyphal tip cell coordinates traffic to meet these challenges is of basic importance, but is also of considerable applied interest, as fungal invasiveness of animals and plants depends critically upon maintaining these high rates of growth. Rapid apical extension requires localization of cell-wall-modifying enzymes to hyphal tips. By combining genetic blocks in different trafficking steps with multidimensional epifluorescence microscopy and quantitative image analyses we demonstrate that polarization of the essential chitin-synthase ChsB occurs by indirect endocytic recycling, involving delivery/exocytosis to apices followed by internalization by the sub-apical endocytic collar of actin patches and subsequent trafficking to TGN cisternae, where it accumulates for ~1 min before being re-delivered to the apex by a RAB11/TRAPPII-dependent pathway. Accordingly, ChsB is stranded at the TGN by Sec7 inactivation but re-polarizes to the apical dome if the block is bypassed by a mutation in geaAgea1 that restores growth in the absence of Sec7. That polarization is independent of RAB5, that ChsB predominates at apex-proximal cisternae, and that upon dynein impairment ChsB is stalled at the tips in an aggregated endosome indicate that endocytosed ChsB traffics to the TGN via sorting endosomes functionally located upstream of the RAB5 domain and that this step requires dynein-mediated basipetal transport. It also requires RAB6 and its effector GARP (Vps51/Vps52/Vps53/Vps54), whose composition we determined by MS/MS following affinity chromatography purification. Ablation of any GARP component diverts ChsB to vacuoles and impairs growth and morphology markedly, emphasizing the important physiological role played by this pathway that, we propose, is central to the hyphal mode of growth. Filamentous fungi form long tubular cells, called hyphae, which grow rapidly by apical extension, enabling these sessile organisms to explore substrates and facilitating tissue invasion in the case of pathogenic species. Because the shape of the hyphae is determined by an external cell wall, hyphal growth requires that cell-wall sculpting enzymes polarize to the tips. Endocytosis is essential for hyphal growth, and it was suspected that this results from its participation in a recycling pathway that takes up cell-wall enzymes from the plasma membrane and re-delivers them to the apex. Here we track the trafficking of a chitin synthase (a cell-wall modifying enzyme) to demonstrate that it is polarized by endocytic recycling. This chitin synthase is delivered by exocytosis to the apex, but diffuses away until being captured by a subapical collar of actin patches (sites of endocytosis) from where it reaches a sorting endosome before undergoing transport to the nearest trans-Golgi cisternae and incorporating into secretory vesicles that re-deliver the enzyme to the apex. Because impairing transit across this pathway compromises apical extension markedly and results in severe morphological defects, the pathway could be manipulated to prevent fungal pathogenicity of plants and humans, an enormous burden on human welfare.
Collapse
Affiliation(s)
- Miguel Hernández-González
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Mario Pinar
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Herbert N. Arst
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, United Kingdom
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
- * E-mail:
| |
Collapse
|