1
|
Zhang S, Liu Q, Zhong L, Jiang J, Luo X, Hu X, Liu Q, Lu Y. Geobacter sulfurreducens promoted the biosynthesis of reduced graphene oxide and coupled it for nitrobenzene reduction. J Environ Sci (China) 2024; 138:458-469. [PMID: 38135411 DOI: 10.1016/j.jes.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 12/24/2023]
Abstract
In order to explore an efficient and green method to deal with nitrobenzene (NB) pollutant, reduced graphene oxide (rGO) as an electron shuttle was applied to enhance the extracellular electron transfer (EET) process of Geobacter sulfurreducens, which was a typical electrochemically active bacteria (EAB). In this study, rGO biosynthesis was achieved via the reduction of graphene oxide (GO) by G. sulfurreducens PCA within 3 days. Also, the rGO-PCA combining system completely reduced 50-200 µmol/L of NB to aniline as end product within one day. SEM characterization revealed that PCA cells were partly wrapped by rGO, and therefore the distance of electron transfer between strain PCA and rGO material was reduced. Beside, the ID/IG of GO, rGO, and rGO-PCA combining system were 0.990, 1.293 and 1.31, respectively. Moreover, highest currents were observed in rGO-PCA-NB as 12.950 µA/-12.560 µA at -408 mV/156 mV, attributing to the faster electron transfer efficiency in EET process. Therefore, the NB reduction was mainly due to: (I) direct EET process from G. sulfurreducens PCA to NB; (II) rGO served as electron shuttle and accelerated electron transfer to NB, which was the main degradation pathway. Overall, the biosynthesis of rGO via GO reduction by Geobacter promoted the NB removal process, which provided a facile strategy to alleviate the problematic nitroaromatic pollution in the environment.
Collapse
Affiliation(s)
- Shoujuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen 510082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Qi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jianhong Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha 410007, China; Hunan Engineering Research Center for Water Treatment Process & Equipment, Changsha 410007, China
| | - Xiaozhe Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Xingxin Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Qian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen 510082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| |
Collapse
|
2
|
Zhong H, Lyu H, Wang Z, Tian J, Wu Z. Application of dissimilatory iron-reducing bacteria for the remediation of soil and water polluted with chlorinated organic compounds: Progress, mechanisms, and directions. CHEMOSPHERE 2024; 352:141505. [PMID: 38387660 DOI: 10.1016/j.chemosphere.2024.141505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Chlorinated organic compounds are widely used as solvents, but they are pollutants that can have adverse effects on the environment and human health. Dissimilatory iron-reducing bacteria (DIRB) such as Shewanella and Geobacter have been applied to treat a wide range of halogenated organic compounds due to their specific biological properties. Until now, there has been no systematic review on the mechanisms of direct or indirect degradation of halogenated organic compounds by DIRB. This work summarizes the discussion of DIRB's ability to enhance the dechlorination of reaction systems through different pathways, both biological and biochemical. For biological dechlorination, some DIRB have self-dechlorination capabilities that directly dechlorinate by hydrolysis. Adjustment of dechlorination genes through genetic engineering can improve the dechlorination capabilities of DIRB. DIRB can also adjust the capacity for the microbial community to dechlorinate and provide nutrients to enhance the expression of dechlorination genes in other bacteria. In biochemical dechlorination, DIRB bioconverts Fe(III) to Fe(II), which is capable of dichlorination. On this basis, the DIRB-driven Fenton reaction can efficiently degrade chlorinated organics by continuously maintaining anoxic conditions to generate Fe(II) and oxic conditions to generate H2O2. DIRB can drive microbial fuel cells due to their electroactivity and have a good dechlorination capacity at low levels of energy consumption. The contribution of DIRB to the removal of pesticides, antibiotics and POPs is summarized. Then the DIRB electron transfer mechanism is discussed, which is core to their ability to dechlorinate. Finally, the prospect of future work on the removal of chlorine-containing organic pollutants by DIRB is presented, and the main challenges and further research directions are suggested.
Collapse
Affiliation(s)
- Hua Zhong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
3
|
Duc HD. Anaerobic degradation of thiobencarb by mixed culture of isolated bacteria. FEMS Microbiol Lett 2023; 370:6912244. [PMID: 36521844 DOI: 10.1093/femsle/fnac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Thiobencarb is a highly effective thiocarbamate herbicide frequently used in rice fields globally. In this study, three bacterial strains (Dechloromonas sp. Th1, Thauera sp. Th2, and Azoarcus sp. Th3) isolated from immobilized biomass were analyzed for thiobencarb degradation under anaerobic conditions, with nitrate serving as an electron acceptor. The experimental results showed that thiobencarb was transformed by Dechloromonas sp. Th1 and Thauera sp. Th2 to produce high concentrations of metabolites in a mineral medium. Dechloromonas sp. Th1 dechlorinated the herbicide to benzyl mercaptan, which was then degraded by Thauera sp. Th2 and Azoarcus sp. Th3. Azoarcus sp. Th3 effectively degraded intermediates, i.e. 4-chlorobenzyl alcohol, 4-chlorobenzoic acid, and benzoic acid, produced from the degradation by Dechloromonas sp. Th1 and Thauera sp. Th2. The cross-feeding, nutrient sharing, and cooperation of all isolates in the degradation process decreased the concentrations of intermediate products. The determination of the degradation kinetics showed that the utilization in the exponential phase of the mixed bacteria was consistent with the Michaelis-Menten model, with a maximum degradation rate of 1.56 ± 0.16 µM day-1. This study showed the degradation mechanisms in bacteria and the synergistic process in the degradation of thiobencarb and its metabolites.
Collapse
Affiliation(s)
- Ha Danh Duc
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, 81100, Viet Nam
| |
Collapse
|
4
|
Composition of bacterial community and isolation of bacteria responsible for diuron degradation in sediment and soil under anaerobic condition. Arch Microbiol 2022; 204:418. [PMID: 35737117 DOI: 10.1007/s00203-022-03040-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The herbicide diuron is extensively used in the agriculture sector and is detected widely in the environment. Although several studies on the degradation of diuron by aerobic microorganisms have been reported, the degradation of diuron by anaerobic microorganisms has not been received much attention. Also, no pure culture that can degrade diuron under anaerobic conditions has yet been reported. The evaluation of diuron degradation in the soil and sediment slurries showed that diuron led to a decrease in the biodiversity of the bacterial communities. Two mixed bacterial cultures, one from the soil and the other from sediment slurries, were isolated from the enrichment media under anaerobic conditions. After 30 days of incubation at 30 °C, the mixed bacterial culture from the soil degraded 84.5 ± 5.5%, and that from the sediment slurry degraded 94.5 ± 3.0% of diuron in liquid mineral medium at an initial concentration of 20 mg/L. 1-(3,4-dichlorophenylurea (DCPU), 3-(3-chlorophenyl)-1,1-dimethylurea (CPDMU), and 3,4-dichloroaniline (3,4-DCA) were the major diuron metabolites produced by both the indigenous microorganisms and the isolated bacteria.
Collapse
|
5
|
Duc HD, Thuy NTD, Truc HTT, Nhu NTH, Oanh NT. Degradation of butachlor and propanil by Pseudomonas sp. strain But2 and Acinetobacter baumannii strain DT. FEMS Microbiol Lett 2021; 367:5902848. [PMID: 32897322 DOI: 10.1093/femsle/fnaa151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Herbicides have been extensively used globally, resulting in severe environmental pollution. Novel butachlor-degrading Pseudomonas sp. strain But2 isolated from soil can degrade butachlor regardless of the concentration and grows without a lag phase. Specific degradation was increased at 0.01-0.1 mM, and did not change significantly at higher concentrations. During degradation, 2-chloro-N-(2,6-diethylphenyl) acetamide, 2,6-diethylaniline, and 1,3-diethylbenzene were formed, which indicated that deamination occurred. Moreover, Pseudomonas sp. strains could tolerate propanil at up to 0.8 mM. The mixed bacterial culture of Pseudomonas sp. But2 and Acinetobacter baumannii DT (a propanil-degrading bacterial strain) showed highly effective biodegradation of both butachlor and propanil in liquid media and soil. For example, under treatment with the mixed culture, the half-lives of propanil and butachlor were 1 and 5 days, respectively, whereas those for the control were 3 and 15 days. The adjuvants present in herbicides reduced degradation in liquid media, but did not influence herbicide removal from the soil. The results showed that the mixed bacteria culture is a good candidate for the removal of butachlor and propanil from contaminated soils.
Collapse
Affiliation(s)
- Ha Danh Duc
- Faculty of Engineering and Technology, Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Viet Nam
| | - Nguyen Thi Dieu Thuy
- Center for Chemical analysis, Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Viet Nam
| | - Huynh Thi Thanh Truc
- Faculty of Engineering and Technology, Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Viet Nam
| | - Nguyen Thi Huynh Nhu
- Faculty of Engineering and Technology, Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Viet Nam
| | - Nguyen Thi Oanh
- Faculty of Engineering and Technology, Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Viet Nam
| |
Collapse
|
6
|
Bilal M, Bagheri AR, Bhatt P, Chen S. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112685. [PMID: 33930637 DOI: 10.1016/j.jenvman.2021.112685] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Nitroaromatic compounds (NACs) are considered important groups of chemicals mainly produced by human and industrial activities. The large-scale application of these xenobiotics creates contamination of the water and soil environment. Despite applicability, NACs have been caused severe hazardous side effects in animals and human systems like different cancers, anemia, skin irritation, liver damage and mutagenic effects. The effective remediation of the NACs from the environment is a significant concern. Researchers have implemented physicochemical and biological methods for the remediation of NACs from the environment. Most of the applied methods are based on adsorption and degradation approaches. Among these methods, degradation is considered a versatile method for the subsequent removal of NACs due to its exceptional properties like simplicity, easy operation, cost-effectiveness, and availability. Most importantly, the degradation process does not generate hazardous side products and wastes compared to other methods. Hence, the importance of NACs, their remediation, and supreme attributes of the degradation method have encouraged us to review the recent progress and development for the removal of these perilous materials using degradation as a versatile method. Therefore, in this review, (i) NACs, physicochemical properties, and their hazardous side effects on humans and animals are discussed; (ii) Physicochemical methods, microbial, anaerobic bioremediation, mycoremediation, and aerobic degradation approaches for the degradation of NACs were thoroughly vetted; (iii) The possible mechanisms for degradation of NACs were investigated and discussed. (iv) The applied kinetic models for evaluation of the rate of degradation were also assessed and discussed. Finally, (vi) current challenges and future prospects of proposed methods for degradation and removal of NACs were also directed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | | | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Liu H, Lin H, Song B, Sun X, Xu R, Kong T, Xu F, Li B, Sun W. Stable-isotope probing coupled with high-throughput sequencing reveals bacterial taxa capable of degrading aniline at three contaminated sites with contrasting pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144807. [PMID: 33548700 DOI: 10.1016/j.scitotenv.2020.144807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The biodegradation of aniline is an important process related to the attenuation of aniline pollution at contaminated sites. Aniline contamination could occur in various pH (i.e., acidic, neutral, and alkaline) environments. However, little is known about preferred pH conditions of diverse aniline degraders at different sites. This study investigated the active aniline degraders present under contrasting pH environments using three aniline-contaminated cultures, namely, acidic sludge (ACID-S, pH 3.1), neutral river sediment (NEUS, pH 6.6), and alkaline paddy soil (ALKP, pH 8.7). Here, DNA-based stable isotope probing coupled with high-throughput sequencing revealed that aniline degradation was associated with Armatimonadetes sp., Tepidisphaerales sp., and Rhizobiaceae sp. in ACID-S; Thauera sp., Zoogloea sp., and Acidovorax sp. in NEUS; Delftia sp., Thauera sp., and Nocardioides sp. in ALKP. All the putative aniline-degrading bacteria identified were present in the "core" microbiome of these three cultures; however, only an appropriate pH may facilitate their ability to metabolize aniline. In addition, the biotic interactions between putative aniline-degrading bacteria and non-direct degraders showed different characteristics in three cultures, suggesting aniline-degrading bacteria employ diverse survival strategies in different pH environments. These findings expand our current knowledge regarding the diversity of aniline degraders and the environments they inhabit, and provide guidance related to the bioremediation of aniline contaminated sites with complex pH environments.
Collapse
Affiliation(s)
- Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Benru Song
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fuqing Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
8
|
Madeira CL, Menezes O, Park D, Jog KV, Hatt JK, Gavazza S, Krzmarzick MJ, Sierra-Alvarez R, Spain JC, Konstantinidis KT, Field JA. Bacteria Make a Living Breathing the Nitroheterocyclic Insensitive Munitions Compound 3-Nitro-1,2,4-triazol-5-one (NTO). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5806-5814. [PMID: 33835790 DOI: 10.1021/acs.est.0c07161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The nitroheterocyclic 3-nitro-1,2,4-triazol-5-one (NTO) is an ingredient of insensitive explosives increasingly used by the military, becoming an emergent environmental pollutant. Cometabolic biotransformation of NTO occurs in mixed microbial cultures in soils and sludges with excess electron-donating substrates. Herein, we present the unusual energy-yielding metabolic process of NTO respiration, in which the NTO reduction to 3-amino-1,2,4-triazol-5-one (ATO) is linked to the anoxic acetate oxidation to CO2 by a culture enriched from municipal anaerobic digester sludge. Cell growth was observed simultaneously with NTO reduction, whereas the culture was unable to grow in the presence of acetate only. Extremely low concentrations (0.06 mg L-1) of the uncoupler carbonyl cyanide m-chlorophenyl hydrazone inhibited NTO reduction, indicating that the process was linked to respiration. The ultimate evidence of NTO respiration was adenosine triphosphate production due to simultaneous exposure to NTO and acetate. Metagenome sequencing revealed that the main microorganisms (and relative abundances) were Geobacter anodireducens (89.3%) and Thauera sp. (5.5%). This study is the first description of a nitroheterocyclic compound being reduced by anaerobic respiration, shedding light on creative microbial processes that enable bacteria to make a living reducing NTO.
Collapse
Affiliation(s)
- Camila L Madeira
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| | - Osmar Menezes
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, Pernambuco 50740-530, Brazil
| | - Doyoung Park
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | - Kalyani V Jog
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | - Savia Gavazza
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, Pernambuco 50740-530, Brazil
| | - Mark J Krzmarzick
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| | - Jim C Spain
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
- Center for Environmental Diagnostics & Bioremediation, University of West Florida, Pensacola, Florida 32514, United States
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | - Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| |
Collapse
|
9
|
Duc HD, Hung NV, Oanh NT. Anaerobic Degradation of Endosulfans by a Mixed Culture of Pseudomonas sp. and Staphylococcus sp. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821030030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Oanh NT, Duc HD. Anaerobic Degradation of Propanil in Soil and Sediment Using Mixed Bacterial Culture. Curr Microbiol 2021; 78:1499-1508. [PMID: 33666750 DOI: 10.1007/s00284-021-02419-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
The widespread use of the herbicide, propanil, causes severe environmental problems. In this study, the effects of propanil on the bacterial community in a sediment slurry were determined. Moreover, the degradation of the herbicide by pure and mixed cultures was first conducted under anaerobic conditions. The results showed that propanil caused significant changes in the bacterial community under anaerobic conditions. Four bacterial strains, i.e., Geobacter sp. Pr-1, Paracoccus denitrificans Pr-2, Pseudomonas sp. Pr-3, and Rhodococcus sp. Pr-4, isolated from the an enrichment sediment slurry were the first pure cultures that degraded propanil and 3,4-dichloroaniline (3,4-DCA) under anaerobic conditions. Some individual isolates showed the slow degradation of propanil and 3,4-DCA, but the mixture of the four strains increased the degradation rates of both compounds. The mixed culture of these isolates transformed more than 90% of propanil within 10 days in liquid media with the amendment of dextrose, glucose, or acetate. The determination of degradation pathway showed that propanil was transformed to 3,4-DCA and some other products before degrading completely. This study provides valuable information on the effects of propanil on the bacterial community and the synergistic degradation of propanil under anaerobic conditions.
Collapse
Affiliation(s)
- Nguyen Thi Oanh
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Vietnam.
| | - Ha Danh Duc
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Vietnam
| |
Collapse
|
11
|
Chen M, Tong H, Qiao J, Lv Y, Jiang Q, Gao Y, Liu C. Microbial community response to the toxic effect of pentachlorophenol in paddy soil amended with an electron donor and shuttle. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111328. [PMID: 32950805 DOI: 10.1016/j.ecoenv.2020.111328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Understanding the degradation of pentachlorophenol (PCP) by indigenous microorganisms stimulated by an electron donor and shuttle in paddy soil, and the influences of PCP/electron donor/shuttle on the native microbial community are important for biodegradation and ecological and environmental safety. Previous studies focused on the kinetics and the microbial actions of PCP degradation, however, the effects of toxic and antimicrobial PCP and electron donor/shuttle on the microbial community diversity and composition in paddy soil are poorly understood. In this study, the effects of PCP, an electron donor (lactate), and the electron shuttle (anthraquinone-2, 6-disulfonate, AQDS) on the microbial community in paddy soil were investigated. The results showed that the presence of PCP reduced the microbial diversity compared to the control during PCP degradation, while increased the microbial diversity was observed in response to lactate and AQDS. The addition of PCP stimulated the microorganisms involved in PCP dechlorination, including Clostridium, Desulfitobacterium, Pandoraea, and unclassified Veillonellaceae, which were dormant in raw soil without PCP stress. In all of the treatments with PCP, the addition of lactate or AQDS enhanced PCP dechlorination by stimulating the growth of functional groups involved in PCP dechlorination and by changing the microbial community during dechlorination process. The microbial community tended to be uniform after complete PCP degradation (28 days). However, when lactate and AQDS were present simultaneously in PCP-contaminated soil, lactate acted as a carbon source or electron donor to promote the activities of microbial community, and AQDS changed the redox potential because of the production of reduced AQDS. These findings enhance our understanding of the effect of PCP and a biostimulation method for PCP biodegradation in soil ecosystems at the microbial community level, and suggest the appropriate selection of an electron donor/shuttle for accelerating the bioremediation of PCP-contaminated soils.
Collapse
Affiliation(s)
- Manjia Chen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Hui Tong
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Jiangtao Qiao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Yahui Lv
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Qi Jiang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Yuanxue Gao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Chengshuai Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
12
|
Zhou LJ, Rong ZY, Gu W, Fan DL, Liu JN, Shi LL, Xu YH, Liu ZY. Integrated fate assessment of aromatic amines in aerobic sewage treatment plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:278. [PMID: 32277289 PMCID: PMC7148277 DOI: 10.1007/s10661-020-8111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/21/2020] [Indexed: 06/11/2023]
Abstract
The fate and exposure of chemicals in sewage treatment plants (STPs) are major considerations in risk assessment and environmental regulation. The biodegradability and removal of seven aromatic amines were systematically evaluated using a three-tiered integrated method: a standard ready biodegradability test, an aerobic sewage treatment simulation method, and model prediction. In tier 1, the seven aromatic amines were not readily biodegraded after 28 days. In adapted aerobic active sludge, 4-isopropyl aniline, 2,4-diaminotoluene, and 4-nitroaniline among them exhibited the degradation half-life time less than 20 h, the other four aromatic amines exhibited persistent with degradation half-life of > 60 h. In tier 2 of the aerobic sewage treatment simulation testing, 2,4-diaminotoluene, 4-nitroaniline, and 4-isopropylaniline demonstrated moderately to high overall removal. Hydraulic retention time (HRT) affects the removal with the optimum HRT was determined to be 12 h to 24. 2,6-Dimethyl aniline, 2-chloro-4-nitroaniline, 2,6-diethylaniline, and 3,4-dichloroaniline were not removed during the test, indicting these four aromatic amines will enter surface water and hence pose a potential risk to aquatic ecology. Considering the lack of an STP model in China for regulation purposes, in tier 3, we developed a Chinese STP (aerobic) (abbreviated as C-STP(O)) model that reflects a universal scenario for China to predict the fate. The predicted degradation, volatilization, and absorption showed a close relationship to the physicochemical properties of the chemicals, and had same tendency with tier 2 simulation test. The prediction showed that biodegradation rather than absorption or volatilization was the main removal process of aromatic amines in aerobic STP. With the combination of modified kinetics test with C-STP (O) model, the chemical fate can be more accurately predicted than using only the readily biodegradation result.
Collapse
Affiliation(s)
- Lin Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | | | - Wen Gu
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - De Ling Fan
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Ji Ning Liu
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China.
| | - Li Li Shi
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Yan Hua Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| | - Zhi Ying Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|