1
|
Velsko IM, Warinner C. Streptococcus abundance and oral site tropism in humans and non-human primates reflects host and lifestyle differences. NPJ Biofilms Microbiomes 2025; 11:19. [PMID: 39824852 PMCID: PMC11748738 DOI: 10.1038/s41522-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025] Open
Abstract
The genus Streptococcus is highly diverse and a core member of the primate oral microbiome. Streptococcus species are grouped into at least eight phylogenetically-supported clades, five of which are found almost exclusively in the oral cavity. We explored the dominant Streptococcus phylogenetic clades in samples from multiple oral sites and from ancient and modern-day humans and non-human primates and found that clade dominance is conserved across human oral sites, with most Streptococcus reads assigned to species falling in the Sanguinis or Mitis clades. However, minor differences in the presence and abundance of individual species within each clade differentiated human lifestyles, with loss of S. sinensis appearing to correlate with toothbrushing. Of the non-human primates, only baboons show clade abundance patterns similar to humans, suggesting that a habitat and diet similar to that of early humans may favor the growth of Sanguinis and Mitis clade species.
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Archaeogenetics Research Unit, Leibniz Institute for Natural Products Research and Infection Biology Hans Knöll Institute, Jena, Germany.
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Archaeogenetics Research Unit, Leibniz Institute for Natural Products Research and Infection Biology Hans Knöll Institute, Jena, Germany.
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
- Radcliffe Institute for Advanced Study, Cambridge, MA, USA.
- Department of Anthropology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Putrino A, Marinelli E, Galeotti A, Ferrazzano GF, Ciribè M, Zaami S. A Journey into the Evolution of Human Host-Oral Microbiome Relationship through Ancient Dental Calculus: A Scoping Review. Microorganisms 2024; 12:902. [PMID: 38792733 PMCID: PMC11123932 DOI: 10.3390/microorganisms12050902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
One of the most promising areas of research in palaeomicrobiology is the study of the human microbiome. In particular, ancient dental calculus helps to reconstruct a substantial share of oral microbiome composition by mapping together human evolution with its state of health/oral disease. This review aims to trace microbial characteristics in ancient dental calculus to describe the evolution of the human host-oral microbiome relationship in oral health or disease in children and adults. Following the PRISMA-Extension for Scoping Reviews guidelines, the main scientific databases (PubMed, Scopus, Lilacs, Cochrane Library) have been drawn upon. Eligibility criteria were established, and all the data collected on a purpose-oriented collection form were analysed descriptively. From the initial 340 records, only 19 studies were deemed comprehensive enough for the purpose of this review. The knowledge of the composition of ancient oral microbiomes has broadened over the past few years thanks to increasingly well-performing decontamination protocols and additional analytical avenues. Above all, metagenomic sequencing, also implemented by state-of-the-art bioinformatics tools, allows for the determination of the qualitative-quantitative composition of microbial species associated with health status and caries/periodontal disease. Some microbial species, especially periodontal pathogens, do not appear to have changed in history, while others that support caries disease or oral health could be connected to human evolution through lifestyle and environmental contributing factors.
Collapse
Affiliation(s)
- Alessandra Putrino
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| | - Angela Galeotti
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
- U.N.-E.U. INTERNATIONAL RESEARCH PROJECT ON HUMAN HEALTH-ORAL HEALTH SECTION, 1200 Géneve, Switzerland;
| | - Gianmaria Fabrizio Ferrazzano
- U.N.-E.U. INTERNATIONAL RESEARCH PROJECT ON HUMAN HEALTH-ORAL HEALTH SECTION, 1200 Géneve, Switzerland;
- UNESCO Chair in Health Education and Sustainable Development, Dentistry Section, University of Naples “Federico II”, 80138 Naples, Italy
- East-Asian-Pacific International Academic Consortium
| | - Massimiliano Ciribè
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
3
|
Gancz AS, Wright SL, Weyrich LS. Ancient human dental calculus metadata collection and sampling strategies: Recommendations for best practices. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24871. [PMID: 37994571 DOI: 10.1002/ajpa.24871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVES Ancient human dental calculus is a unique, nonrenewable biological resource encapsulating key information about the diets, lifestyles, and health conditions of past individuals and populations. With compounding calls its destructive analysis, it is imperative to refine the ways in which the scientific community documents, samples, and analyzes dental calculus so as to maximize its utility to the public and scientific community. MATERIALS AND METHODS Our research team conducted an IRB-approved survey of dental calculus researchers with diverse academic backgrounds, research foci, and analytical specializations. RESULTS This survey reveals variation in how metadata is collected and utilized across different subdisciplines and highlights how these differences have profound implications for dental calculus research. Moreover, the survey suggests the need for more communication between those who excavate, curate, and analyze biomolecular data from dental calculus. DISCUSSION Challenges in cross-disciplinary communication limit researchers' ability to effectively utilize samples in rigorous and reproducible ways. Specifically, the lack of standardized skeletal and dental metadata recording and contamination avoidance procedures hinder downstream anthropological applications, as well as the pursuit of broader paleodemographic and paleoepidemiological inquiries that rely on more complete information about the individuals sampled. To provide a path forward toward more ethical and standardized dental calculus sampling and documentation approaches, we review the current methods by which skeletal and dental metadata are recorded. We also describe trends in sampling and contamination-control approaches. Finally, we use that information to suggest new guidelines for ancient dental calculus documentation and sampling strategies that will improve research practices in the future.
Collapse
Affiliation(s)
- Abigail S Gancz
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sterling L Wright
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Laura S Weyrich
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Uchida-Fukuhara Y, Shimamura S, Sawafuji R, Nishiuchi T, Yoneda M, Ishida H, Matsumura H, Tsutaya T. Palaeoproteomic investigation of an ancient human skeleton with abnormal deposition of dental calculus. Sci Rep 2024; 14:5938. [PMID: 38467689 PMCID: PMC10928219 DOI: 10.1038/s41598-024-55779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Detailed investigation of extremely severe pathological conditions in ancient human skeletons is important as it could shed light on the breadth of potential interactions between humans and disease etiologies in the past. Here, we applied palaeoproteomics to investigate an ancient human skeletal individual with severe oral pathology, focusing our research on bacterial pathogenic factors and host defense response. This female skeleton, from the Okhotsk period (i.e., fifth to thirteenth century) of Northern Japan, poses relevant amounts of abnormal dental calculus deposition and exhibits oral dysfunction due to severe periodontal disease. A shotgun mass-spectrometry analysis identified 81 human proteins and 15 bacterial proteins from the calculus of the subject. We identified two pathogenic or bioinvasive proteins originating from two of the three "red complex" bacteria, the core species associated with severe periodontal disease in modern humans, as well as two additional bioinvasive proteins of periodontal-associated bacteria. Moreover, we discovered defense response system-associated human proteins, although their proportion was mostly similar to those reported in ancient and modern human individuals with lower calculus deposition. These results suggest that the bacterial etiology was similar and the host defense response was not necessarily more intense in ancient individuals with significant amounts of abnormal dental calculus deposition.
Collapse
Affiliation(s)
- Yoko Uchida-Fukuhara
- Department of Oral Morphology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan.
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, 240-0193, Japan.
| | - Shigeru Shimamura
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, 237-0061, Japan
| | - Rikai Sawafuji
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, 240-0193, Japan
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Takumi Nishiuchi
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Minoru Yoneda
- The University Museum, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
- Mt. Olive Hospital, Okinawa, 903-0804, Japan
| | - Hirofumi Matsumura
- School of Health Sciences, Sapporo Medical University, Hokkaido, 060-8556, Japan
| | - Takumi Tsutaya
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, 240-0193, Japan.
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, 237-0061, Japan.
| |
Collapse
|
5
|
Velsko IM, Semerau L, Inskip SA, García-Collado MI, Ziesemer K, Ruber MS, Benítez de Lugo Enrich L, Molero García JM, Valle DG, Peña Ruiz AC, Salazar-García DC, Hoogland MLP, Warinner C. Ancient dental calculus preserves signatures of biofilm succession and interindividual variation independent of dental pathology. PNAS NEXUS 2022; 1:pgac148. [PMID: 36714834 PMCID: PMC9802386 DOI: 10.1093/pnasnexus/pgac148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
Dental calculus preserves oral microbes, enabling comparative studies of the oral microbiome and health through time. However, small sample sizes and limited dental health metadata have hindered health-focused investigations to date. Here, we investigate the relationship between tobacco pipe smoking and dental calculus microbiomes. Dental calculus from 75 individuals from the 19th century Middenbeemster skeletal collection (Netherlands) were analyzed by metagenomics. Demographic and dental health parameters were systematically recorded, including the presence/number of pipe notches. Comparative data sets from European populations before and after the introduction of tobacco were also analyzed. Calculus species profiles were compared with oral pathology to examine associations between microbiome community, smoking behavior, and oral health status. The Middenbeemster individuals exhibited relatively poor oral health, with a high prevalence of periodontal disease, caries, heavy calculus deposits, and antemortem tooth loss. No associations between pipe notches and dental pathologies, or microbial species composition, were found. Calculus samples before and after the introduction of tobacco showed highly similar species profiles. Observed interindividual microbiome differences were consistent with previously described variation in human populations from the Upper Paleolithic to the present. Dental calculus may not preserve microbial indicators of health and disease status as distinctly as dental plaque.
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Lena Semerau
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07743, Germany
| | - Sarah A Inskip
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Maite I García-Collado
- GIPYPAC, Department of Geography, Prehistory and Archaeology, University of the Basque Country, Leioa 48940, Spain
- BioArCh, Department of Archaeology, University of York, York YO10 5NG, UK
| | - Kirsten Ziesemer
- University Library, Vrije Universiteit, Einsteinweg 2, Amsterdam 1081 HV, The Netherlands
| | - Maria Serrano Ruber
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Luis Benítez de Lugo Enrich
- Departmento de Prehistoria, Historia Antigua y Arqueología, Universidad Complutense de Madrid, Madrid 28040, Spain
| | | | - David Gallego Valle
- Facultad de Letras, Universidad de Castilla-La Mancha, Ciudad Real 13004, Spain
| | | | - Domingo C Salazar-García
- Departament de Prehistòria, Historia i Arqueología, Universitat de València, València 46010, Spain
- Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Menno L P Hoogland
- Faculty of Archaeology, Leiden University, Einsteinweg, Leiden 2333 CC, The Netherlands
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07743, Germany
- Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|