1
|
Zhang L, Yu F, Zhang Y, Li P. Implications of lncRNAs in Helicobacter pylori-associated gastrointestinal cancers: underlying mechanisms and future perspectives. Front Cell Infect Microbiol 2024; 14:1392129. [PMID: 39035354 PMCID: PMC11257847 DOI: 10.3389/fcimb.2024.1392129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a harmful bacterium that is difficult to conveniently diagnose and effectively eradicate. Chronic H. pylori infection increases the risk of gastrointestinal diseases, even cancers. Despite the known findings, more underlying mechanisms are to be deeply explored to facilitate the development of novel prevention and treatment strategies of H. pylori infection. Long noncoding RNAs (lncRNAs) are RNAs with more than 200 nucleotides. They may be implicated in cell proliferation, inflammation and many other signaling pathways of gastrointestinal cancer progression. The dynamic expression of lncRNAs indicates their potential to be diagnostic or prognostic biomarkers. In this paper, we comprehensively summarize the processes of H. pylori infection and the treatment methods, review the known findings of lncRNA classification and functional mechanisms, elucidate the roles of lncRNAs in H. pylori-related gastrointestinal cancer, and discuss the clinical perspectives of lncRNAs.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Zhang J, Zhang Z, Shen D. Upregulated LncRNA-LINC00659 expression by H. pylori infection promoted the progression of gastritis to cancer by regulating PTBP1 expression. INDIAN J PATHOL MICR 2024; 67:510-517. [PMID: 38394397 DOI: 10.4103/ijpm.ijpm_48_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/23/2023] [Indexed: 02/25/2024] Open
Abstract
CONTEXT Helicobacter pylori ( H. pylori ), a spiral-shaped bacterium, is closely associated with chronic, progressive gastric mucosal damage, gastric atrophy, and even gastric cancer (GC). An increasing number of studies have addressed the correlation between long noncoding RNAs (lncRNAs) and H. pylori pathogenicity in GC. OBJECTIVE In this study, we found that the expression level of LINC00659 gradually increased in the progression from atrophic gastritis, intestinal metaplasia, and dysplasia to GC in H. pylori -infected patients. Thus, we aimed to further explore the function of LINC00659 in the progression of gastritis to cancer under H. pylori infection. MATERIALS AND METHODS StarBase predictions, ribonucleic acid (RNA)-binding protein immunoprecipitation assays, and gene ontology functional annotation (GO)/Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed to identify the RNA-binding proteins of LINC00659; moreover, qRT‒PCR, western blotting, RNA interference, and immunofluorescence assays were used to investigate the function of LINC00659. RESULTS LINC00659 bound directly to the RNA-binding protein polypyrimidine tract-binding protein (PTBP1). Importantly, qRT‒PCR and western blot assays demonstrated that PTBP1 expression increased in the progression from inflammation to cancer in the stomach of H. pylori -infected patients and H. pylori -infected GES-1 cells. However, LINC00659 knockdown downregulated PTBP1 expression and inhibited PTBP1 binding under H. pylori infection. Finally, LINC00659 knockdown significantly reduced H. pylori -induced human gastric epithelial cell senescence and suppressed interleukin (IL)-6 and IL-8 secretion by reducing the phosphorylation level of NF-κB p65. CONCLUSIONS This study indicated that LINC00659 may have the potential to be a novel promising prognostic and therapeutic marker for H. pylori -associated gastric diseases.
Collapse
Affiliation(s)
- Jiani Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Zhengbo Zhang
- Department of Gastroenterology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, P. R. China
| | - Danlei Shen
- Department of Gastroenterology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
3
|
Liu S, Rong Y, Tang M, Zhao Q, Li C, Gao W, Yang X. The Functions and Mechanisms of Long Non-coding RNA SNHGs in Gastric Cancer. Comb Chem High Throughput Screen 2024; 27:2639-2653. [PMID: 37842903 DOI: 10.2174/0113862073268591230928100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Despite significant advancements in surgical and adjuvant treatments, patient prognosis remains unsatisfactory. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that lack protein-coding capacity but can engage in the malignant biological behaviors of tumors through various mechanisms. Among them, small nucleolar host genes (SNHGs) represent a subgroup of lncRNAs. Studies have revealed their involvement not only in gastric cancer cell proliferation, invasion, migration, epithelial- mesenchymal transition (EMT), and apoptosis but also in chemotherapy resistance and tumor stemness. This review comprehensively summarizes the biological functions, molecular mechanisms, and clinical significance of SNHGs in gastric cancer. It provides novel insights into potential biomarkers and therapeutic targets for the exploration of gastric cancer.
Collapse
Affiliation(s)
- Songhua Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Mingzheng Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Qiqi Zhao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Chunyan Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Wenbin Gao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Xiaojun Yang
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
- Gansu key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Gansu Research Center of Prevention and Control Project for Digestive Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Key Laboratory of Gastrointestinal Tumor Diagnosis and Treatment of National Health and Health Commission, Lanzhou, 730000, China
| |
Collapse
|
4
|
Guo X, Zhang Y, Zhang Z, Lu L, Liu Y, Li Z, Zhou T, Zhang J, Li W, You W, Tao G, Chen W, Zeng H, Pan K. Gastric cancer-associated long non-coding RNA profiling and noninvasive biomarker screening based on a high-risk population cohort. Cancer Med 2023. [PMID: 37084181 DOI: 10.1002/cam4.5905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Effective noninvasive biomarkers of gastric cancer (GC) are critical for early detection and improvement of prognosis. We performed genome-wide long non-coding RNA (lncRNA) microarray analysis to identify and validate novel GC biomarkers depending on a high-risk population cohort. METHODS LncRNA profiles were described using the Human LncRNA Microarray between GC and control plasma samples. The differential candidate lncRNAs were validated in two stages by quantitative reverse transcription polymerase chain reaction (qRT-PCR). We further evaluated the joint effect between the GC-associated lncRNA and Helicobacter pylori (H. pylori) infection on the risk of cardia and non-cardia GC, respectively. RESULTS Different lncRNA expression profiles were identified between GC and control plasma with a total of 1206 differential lncRNAs including 470 upregulated and 736 downregulated in GC compared with the control group. The eight significantly upregulated lncRNAs (RP11-521D12.1, AC011995.3, RP11-5P4.3, RP11-244 K5.6, RP11-422 J15.1, CTD-2306 M5.1, CTC-428G20.2, and AC009133.20) in GC cases both in the present study and a similar microarray screening study by our collaborative team were selected for a two-stage validation. After the large sample size validation, the subjects with higher expression of RP11-244 K5.6 showed a significantly increased risk of GC with an adjusted odds ratio (OR) as 2.68 and 95% confidence interval (CI) as 1.15-6.24. Joint effects between RP11-244 K5.6 expression and H. pylori infection on the risk of GC were evaluated with no statistical significance. CONCLUSIONS Our study found different lncRNA expression profiles between GC and control plasma and preliminarily identified RP11-244 K5.6 as a potential noninvasive biomarker for GC screening.
Collapse
Affiliation(s)
- Xiaoying Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiyi Zhang
- Department of Gastroenterology, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Linzhi Lu
- Department of Gastroenterology, Gansu Wuwei Tumor Hospital, Wuwei, China
| | - Yuqin Liu
- Cancer Epidemiology Research Center, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Zhexuan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jingying Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenqing Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weicheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guoquan Tao
- Department of General Surgery, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Wanqing Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmei Zeng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaifeng Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
5
|
Gong YQ, Lu TL, Hou FT, Chen CW. Antisense long non-coding RNAs in gastric cancer. Clin Chim Acta 2022; 534:128-137. [PMID: 35872031 DOI: 10.1016/j.cca.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022]
Abstract
Gastric cancer is a global health problem with high mortality. The incidence of gastric cancer has significant regional differences. Helicobacter pylori (H. pylori) infection and its interaction with epigenetics are closely related to the occurrence of gastric cancer. It is of great significance to explore the early diagnosis and effective therapeutic targets of gastric cancer. Emerging evidence indicates that antisense long non-coding RNAs (lncRNAs) are closely associated with various biological and functional aspects of gastric cancer. However, diverse antisense lncRNAs in gastric cancer have not been compiled and discussed. In this review, we summarize the predisposing factors and compile the interaction between H. pylori and epigenetics in gastric cancer. Moreover, we focus on the underlying molecular mechanism and regulatory role of each antisense lncRNA in gastric cancer. In addition, we provide a new insight into the potential diagnosis and treatment of antisense lncRNAs in gastric cancer.
Collapse
Affiliation(s)
- Yong-Qiang Gong
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Tai-Liang Lu
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Fu-Tao Hou
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Chao-Wu Chen
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Suppression of lncRNA NORAD may affect cell migration and apoptosis in gastric cancer cells. Mol Biol Rep 2022; 49:3289-3296. [PMID: 35083614 DOI: 10.1007/s11033-022-07167-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Gastric cancer (GC) is a major malignancy that threatens people's lives worldwide. Long noncoding RNA (lncRNA) non-coding RNA activated by DNA damage (NORAD) is known to be a potential oncogene in many cancers and may promote cell migration and metastasis, and decrease apoptosis rate. MATERIAL AND METHODS NORAD expression was measured in 70 pairs of GC tissues and their adjacent normal tissues (ANTs) by quantitative real-time polymerase chain reaction. Si-NORAD gene knockdown study and cellular assays were conducted to assess the correlation between NORAD expression and cell viability, apoptosis, migration, and metastasis. RESULTS NORAD was significantly overexpressed in GC tissues compared to ANTs (P value < 0.0001). The receiver operating characteristic curve indicated the AUC of 0.721 with the sensitivity and specificity of 78.57 and 61.43, respectively (P value < 0.0001). NORAD downregulation leads to decreased cell viability (P value < 0.001) and migration (P value < 0.01), increased apoptosis rate (P value < 0.0001), and increased protein level for PTEN, E-cadherin, and Bax, but decreased protein level for Bcl-2. CONCLUSION Generally, NORAD may serve as a potential diagnostic biomarker in GC.
Collapse
|
7
|
Dastmalchi N, Safaralizadeh R, Teimourian S. An updated review of the contribution of noncoding RNAs to the progression of gastric cancer stem cells: Molecular mechanisms of viability, invasion, and chemoresistance of gastric cancer stem cells. Curr Stem Cell Res Ther 2022; 17:440-445. [PMID: 35081895 DOI: 10.2174/1574888x17666220126143302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/07/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
Gastric cancer (GC) is a leading cause of death and cancer mortality in the world, with poor survival for cases with higher stages of GC. During the past decade, GC stem cells (GCSCs) - a group of cancer cells- have been the focus of numerous cancer researches. GCSCs have the capability of self-renewal and are identified to be participated in GC development, invasion, chemoresistance, and tumor relapse. Research projects have indicated the main activities of noncoding RNAs in cellular pathways. Micro (mi)RNAs and lncRNAs play important functions in the modulation of different cellular pathways in the post-transcriptional form, through their dysregulated expression in several cancers, including GC. In this paper, we highlight the impact of dysregulated expression of micro-and lncRNAs and their downstream transcripts on GCSCs. Data collection about the progression of GCSCs may be beneficial for the introduction of new insights to the GC treatment.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Medical Genetics, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Medical Genetics, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
8
|
Liu Y, Ding W, Yu W, Zhang Y, Ao X, Wang J. Long non-coding RNAs: Biogenesis, functions, and clinical significance in gastric cancer. Mol Ther Oncolytics 2021; 23:458-476. [PMID: 34901389 PMCID: PMC8637188 DOI: 10.1016/j.omto.2021.11.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent malignant tumor types and the third leading cause of cancer-related death worldwide. Its morbidity and mortality are very high due to a lack of understanding about its pathogenesis and the slow development of novel therapeutic strategies. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with a length of more than 200 nt. They play crucial roles in a wide spectrum of physiological and pathological processes by regulating the expression of genes involved in proliferation, differentiation, apoptosis, cell cycle, invasion, metastasis, DNA damage, and carcinogenesis. The aberrant expression of lncRNAs has been found in various cancer types. A growing amount of evidence demonstrates that lncRNAs are involved in many aspects of GC pathogenesis, including its occurrence, metastasis, and recurrence, indicating their potential role as novel biomarkers in the diagnosis, prognosis, and therapeutic targets of GC. This review systematically summarizes the biogenesis, biological properties, and functions of lncRNAs and highlights their critical role and clinical significance in GC. This information may contribute to the development of better diagnostics and treatments for GC.
Collapse
Affiliation(s)
- Ying Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao 266003, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China
| | - Xiang Ao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jianxun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
9
|
Luo F, Wen Y, Zhao L, Su S, Zhao Y, Lei W, Li Z. Chlamydia trachomatis induces lncRNA MIAT upregulation to regulate mitochondria-mediated host cell apoptosis and chlamydial development. J Cell Mol Med 2021; 26:163-177. [PMID: 34859581 PMCID: PMC8742237 DOI: 10.1111/jcmm.17069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 01/12/2023] Open
Abstract
Chlamydia trachomatis persistent infection is the leading cause of male prostatitis and female genital tract diseases. Inhibition of host cell apoptosis is the key to maintaining Chlamydia survival in vivo, and long noncoding RNAs (lncRNAs) play important roles in its developmental cycle and pathogenesis. However, it is not clear how lncRNAs regulate persistent Chlamydia infection. Here, using a microarray method, we identified 1718 lncRNAs and 1741 mRNAs differentially expressed in IFN-γ-induced persistent C. trachomatis infection. Subsequently, 10 upregulated and 5 downregulated differentially expressed lncRNAs were verified by qRT-PCR to confirm the reliability of the chip data. The GO and KEGG analyses revealed that differentially regulated transcripts were predominantly involved in various signalling pathways related to host immunity and apoptosis response. Targeted silencing of three lncRNAs (MIAT, ZEB1-AS1 and IRF1) resulted in increased apoptosis rates. Furthermore, interference with lncRNA MIAT caused not only an obvious downregulation of the Bcl-2/Bax ratio but also a marked release of cytochrome c, resulting in a significantly elevated level of caspase-3 activation. Meanwhile, MIAT was involved in the regulation of chlamydial development during the persistent infection. Collectively, these observations shed light on the enormous complex lncRNA regulatory networks involved in mitochondria-mediated host cell apoptosis and the growth and development of C. trachomatis.
Collapse
Affiliation(s)
- Fangzhen Luo
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China.,Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Lanhua Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Shengmei Su
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Yuqi Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Wenbo Lei
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| |
Collapse
|
10
|
Mohammadzadeh A, Dastmalchi N, Hussen BM, Shadbad MA, Safaralizadeh R. An updated review on the therapeutic, diagnostic, and prognostic value of long non-coding RNAs in gastric cancer. Curr Med Chem 2021; 29:3471-3482. [PMID: 34781858 DOI: 10.2174/0929867328666211115121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 11/22/2022]
Abstract
As a novel group of non-coding RNAs, long non-coding RNA (lncRNAs) can substantially regulate various biological processes. Downregulated tumor-suppressive lncRNAs and upregulated oncogenic lncRNAs (onco-lncRNAs) have been implicated in gastric cancer (GC) development. These dysregulations have been associated with decreased chemosensitivity, inhibited apoptosis, and increased tumor migration in GC. Besides, growing evidence indicates that lncRNAs can be a valuable diagnostic and prognostic biomarker, and their expression levels are substantially associated with the clinicopathological features of affected patients. The current study aims to review the recent findings of the tumor-suppressive lncRNAs and onco-lncRNAs in GC development and highlight their therapeutic, diagnostic, and prognostic values in treating GC cells. Besides, it intends to highlight the future direction of lncRNAs in treating GC.
Collapse
Affiliation(s)
- Alemeh Mohammadzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Kurdistan Region. Iraq
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| |
Collapse
|
11
|
Ghodrati R, Safaralizadeh R, Dastmalchi N, Hosseinpourfeizi M, Asadi M, Shirmohammadi M, Baradaran B. Overexpression of lncRNA DLEU1 in Gastric Cancer Tissues Compared to Adjacent Non-Tumor Tissues. J Gastrointest Cancer 2021; 53:990-994. [PMID: 34738190 DOI: 10.1007/s12029-021-00733-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Gastric cancer (GC) is caused by environmental factors and genetic changes of protein-coding- and non-coding sequences, which entail short non-coding RNAs (microRNAs) and long non-coding RNAs (lncRNAs). DLEU1 (deleted in lymphocytic leukemia 1), as an effective lncRNA located on chromosome 14.3q 13, modulates the nuclear factor-kB (NF-kB) signaling pathway. This gene usually plays an oncogenic role in the tumorigenesis of multiple types of cancer. The present study examined the expression level of DLEU1 and its association with clinical-pathological characteristics in GC. METHODS Total RNA of 100 specimens was extracted by TRIzol reagent. After cDNA synthesis, qRT-PCR analysis was performed to measure the expression level of the DLEU1 gene and the obtained data were analyzed by SPSS 16.0. RESULTS The relative expression level of DLEU1 significantly increased in tumor specimens compared to the normal tumor margin specimens. The biomarker index of lncRNA DLEU1 was 0.7 in tumor tissues. The observed high expression level of DLEU1 was pertinent to the pathological progressive TNM stage, lymph node metastasis, differentiation degree, patient's age and lifestyle, and Helicobacter pylori infection in GC patients. CONCLUSION The obtained findings suggested that DLEU1 acts as an oncogene in GC and might be a new target for gene therapy of GC.
Collapse
Affiliation(s)
- Roghieh Ghodrati
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | | | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Shirmohammadi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
PVT1 and ZFAS1 lncRNAs expressions and their biomarker value in gastric cancer tissue sampling among Iranian population. Mol Biol Rep 2021; 48:7171-7177. [PMID: 34546507 DOI: 10.1007/s11033-021-06709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND lncRNAs are modulatory factors with critical function in the tumorigenesis pathways, introducing them as promising therapeutic and diagnostic biomarkers for different cancers. This study is thus aimed to evaluate the differences in PVT1 and ZFAS1 gene expression in tumorous tissues as compared with adjacent healthy non-tumorous biopsies of gastric cancer cases. METHODS One hundred two pairs of tumorous and adjacent non-tumorous biopsies of GC cases were sampled. RNA isolation and cDNA production were carried out. The qRT-PCR was performed to evaluate the expression of PVT1 and ZFAS1 genes. Moreover, the associations between PVT1 or ZFAS1 and clinicopathological characteristics as well as the biomarker roles of the lncRNAs were assessed. RESULTS The PVT1 and ZFAS1 expressions showed a significant increase and decrease in GC samples as compared with non-cancerous tissues, respectively. PVT1 expression was significantly associated with and lymph-node involvement (p = 0.0007). Moreover, ZFAS1 expression demonstrated a significant association with lymph-node involvement (p = 0.0005), and tumor size >5 cm (p = 0.003). The findings of the ROC curve revealed that PVT1 and ZFAS1 may act as a possible biomarker with AUC of 0.71 and 0.79, specificity of 78.43% and 79.41%, and sensitivity of 55.88% and 64.71%. CONCLUSIONS Regarding upregulation of PVT1 and downregulation of ZFAS1 in human GC samples, these genes may respectively act as oncogenic and tumor-suppressive factors in GC cases. Furthermore, PVT1 and ZFAS1 can be considered as possible biomarkers for the detection and treatment of GC cases.
Collapse
|
13
|
Dastmalchi N, Safaralizadeh R, Latifi-Navid S, Banan Khojasteh SM, Mahmud Hussen B, Teimourian S. An updated review of the role of lncRNAs and their contribution in various molecular subtypes of breast cancer. Expert Rev Mol Diagn 2021; 21:1025-1036. [PMID: 34334086 DOI: 10.1080/14737159.2021.1962707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Breast cancer (BC) is the most significant threat to women's life. To demonstrate its molecular mechanisms, which results in BC progression, it is crucial to develop approaches to enhance prognosis and survival in BC cases.Areas covered: In the current study, we aimed to highlight the updated data on the oncogenic and tumor suppressive roles of lncRNAs in the progression of various subtypes of BC by specifically putting importance on the functional characteristics, modulatory agents, therapeutic potential, future perspectives and challenges of lncRNAs in BC. We reviewed recent studies published between 2019 and 2020.Expert opinion: The latest investigations have demonstrated that the long non-coding RNAs (lncRNAs) participate in different BC molecular subtypes via different molecular mechanisms; however, the exact functional information of the lncRNAs has yet to be elucidated. The studied lncRNAs could be more applicable as therapeutic targets in BC treatment after pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Xin Z, Zhang L, Liu M, Wang Y, Zhang Y, Zhao W, Sun Y, Shi L, Xu N, Zhang N, Xu H. Helicobacter pylori Infection-Related Long Non-Coding RNA Signatures Predict the Prognostic Status for Gastric Cancer Patients. Front Oncol 2021; 11:709796. [PMID: 34386426 PMCID: PMC8353258 DOI: 10.3389/fonc.2021.709796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Helicobacter pylori (H. pylori) is a type I biological carcinogen, which may cause about 75% of the total incidence of gastric cancer worldwide. H. pylori infection can induce and activate the cancer-promoting signaling pathway and affect the occurrence and outcome of gastric cancer through controlling the regulatory functions of long non-coding RNAs (lncRNAs). However, we have no understanding of the prognostic worth of lncRNAs for gastric cancer patients infected with H. pylori. Method We screened differentially expressed lncRNAs using DESeq2 method among TCGA database. And we built the H. pylori infection-related lncRNAs regulatory patterns. Then, we constructed H. pylori infection-based lncRNAs prognostic signatures for gastric cancer patients together with H. pylori infection, via uni-variable and multi-variable COX regression analyses. Based on receiver operator characteristic curve (ROC) analysis, we evaluated the prediction effectiveness for this model. Results We identified 115 H. pylori infection-related genes were differentially expressed among H. pylori-infected gastric cancer tissues versus gastric cancer tissues. Functional enrichment analysis implies that H. pylori infection might interfere with the immune-related pathways among gastric cancer tissues. Then, we built H. pylori infection-related dys-regulated lncRNA regulatory networks. We also identified 13 differentially expressed lncRNAs were associated with prognosis for gastric cancer patients together with H. pylori infection. Kaplan-Meier analysis demonstrated that the lncRNA signatures were correlated with the poor prognosis. What is more, the AUC of the lncRNA signatures was 0.712. Also, this prognostic prediction model was superior to the traditional clinical characters. Conclusion We successfully constructed a H. pylori-related lncRNA risk signature and nomogram associated with H. pylori-infected gastric cancer patients prognosis, and the signature and nomogram can predict the prognosis of these patients.
Collapse
Affiliation(s)
- Zhuoyuan Xin
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China.,The Key Laboratory of Zoonosis Research, Chinese Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China.,Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Luping Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Mingqing Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yachen Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yingli Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Weidan Zhao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yongxiao Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Lei Shi
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Na Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Nan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Li Y, Lu L, Wu X, Li Q, Zhao Y, Du F, Chen Y, Shen J, Xiao Z, Wu Z, Hu W, Cho CH, Li M. The Multifaceted Role of Long Non-Coding RNA in Gastric Cancer: Current Status and Future Perspectives. Int J Biol Sci 2021; 17:2737-2755. [PMID: 34345204 PMCID: PMC8326121 DOI: 10.7150/ijbs.61410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Gastric cancer (GC) is one of the major public health concerns. Long non-coding RNAs (lncRNAs) have been increasingly demonstrated to possess a strong correlation with GC and play a critical role in GC occurrence, progression, metastasis and drug resistance. Many studies have shed light on the understanding of the underlying mechanisms of lncRNAs in GC. In this review, we summarized the updated research about lncRNAs in GC, focusing on their roles in Helicobacter pylori infection, GC metastasis, tumor microenvironment regulation, drug resistance and associated signaling pathways. LncRNAs may serve as novel biomarkers for diagnosis and prognosis of GC and potential therapeutic targets. The research gaps and future directions were also discussed.
Collapse
Affiliation(s)
- Yifan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province,Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.,Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| |
Collapse
|
16
|
Chen R, Yang M, Huang W, Wang B. Cascades between miRNAs, lncRNAs and the NF-κB signaling pathway in gastric cancer (Review). Exp Ther Med 2021; 22:769. [PMID: 34055068 PMCID: PMC8145527 DOI: 10.3892/etm.2021.10201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a common digestive tract malignancy that is mainly treated with surgery combined with perioperative adjuvant chemoradiotherapy and biological targeted therapy. However, the diagnosis rate of early gastric cancer is low and both postoperative recurrence and distant metastasis are thorny problems. Therefore, it is essential to study the pathogenesis of gastric cancer and search for more effective means of treatment. The nuclear factor-κB (NF-κB) signaling pathway has an important role in the occurrence and development of gastric cancer and recent studies have revealed that microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are able to regulate this pathway through a variety of mechanisms. Understanding these interrelated molecular mechanisms is helpful in guiding improvements in gastric cancer treatment. In the present review, the functional associations between miRNAs, lncRNAs and the NF-κB signaling pathway in the occurrence, development and prognosis of gastric cancer were discussed. It was concluded that miRNAs and lncRNAs have complex relations with the NF-κB signaling pathway in gastric cancer. miRNAs/target genes/NF-κB/target proteins, signaling molecules/NF-κB/miRNAs/target genes, lncRNAs/miRNAs/NF-κB/genes or mRNAs, lncRNAs/target genes/NF-Κb/target proteins, and lncRNAs/NF-κB/target proteins cascades are all important factors in the occurrence and development of gastric cancer.
Collapse
Affiliation(s)
- Risheng Chen
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mingxiu Yang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weiguo Huang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Baiyun Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
17
|
MicroRNA-424-5p enhances chemosensitivity of breast cancer cells to Taxol and regulates cell cycle, apoptosis, and proliferation. Mol Biol Rep 2021; 48:1345-1357. [PMID: 33555529 DOI: 10.1007/s11033-021-06193-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Combination therapy has been considered as a potential method to overcome the BC chemoresistance. MicroRNAs (miRs) have been suggested as a therapeutic factor in the combination therapy of BC. This project aimed at examining the possible activity and molecular function of miR-424-5p and Taxol combination in the human BC cell line. MDA-MB-231 cells were treated with miR-424-5p mimics and Taxol, in a combined manner or separately. We used the MTT test for assessing the cell proliferation. In addition, flow-cytometry was used for evaluating apoptosis and cell-cycle. Expression levels of underlying molecular factors of miR-424-5p were assessed using western-blotting and qRT-PCR. The obtained results demonstrated that miR-424-5p repressed BC cell proliferation and sensitized these cells to Taxol treatment through the induction of apoptosis. Further investigations showed that miR-424-5p might increase BC chemosensitivity through the regulation of apoptosis-related factors including P53, Caspase-3, Bcl-2, and Bax as well as the proliferation-related gene c-Myc. Moreover, miR-424-5p restoration in combination with Taxol treatment decreased the colony formation by regulating Oct-4 and led to G2 arrest via modulating Cdk-2 expression. Western-blotting demonstrated that miR-424-5p may perform its anti-chemoresistance role by regulating the PD-L1 expression and controlling PTEN/PI3K/AKT/mTOR. Overall, the upregulation of miR-424-5p was indicated to upregulate the sensitivity of BC cells to treatment with Taxol. MiR-424-5p might regulate the chemosensitivity of the BC cell line by modulating PD-L1 and controlling the PTEN/mTOR axis. Therefore, the combination of miR-424-5p with Taxol would represent a novel procedure to treat against BC.
Collapse
|
18
|
Rajabi A, Riahi A, Shirabadi-Arani H, Moaddab Y, Haghi M, Safaralizadeh R. Overexpression of HOXA-AS2 LncRNA in Patients with Gastric Cancer and Its Association with Helicobacter pylori Infection. J Gastrointest Cancer 2020; 53:72-77. [PMID: 33174119 DOI: 10.1007/s12029-020-00549-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE LncRNAs are regulatory factors that play a prominent role in the carcinogenesis processes and cancer cell ability to invade and metastasize. Hence, lncRNAs are considered as the potential diagnostic and therapeutic biomarkers in diverse malignancies. The present study was designed to assess the difference of HOXA-AS2 gene expression levels in cancerous tissues as compared to marginal noncancerous tissues of gastric cancer patients. METHODS Fifty pairs of cancerous and marginal noncancerous tissue of gastric cancer patients were collected in the present study. Then, RNA extraction and cDNA synthesis were performed for all specimens. The qRT-PCR was carried out to examine the difference of HOXA-AS2 gene expression. Furthermore, the association between HOXA-AS2 expression and the clinicopathological features as well as the function of HOXA-AS2 biomarkers was evaluated. RESULTS The HOXA-AS2 expression was significantly elevated in cancerous tissues as compared to marginal noncancerous tissues in gastric cancer patients (p < 0.0001). Analysis of gene expression data revealed that there was a significant association between an increased HOXA-AS2 gene expression and clinicopathological features such as tumor size ˃ 5 cm (p = 0.009), lymph node metastasis (p = 0.028), and H. pylori infection (p = 0.011). The results of ROC analysis indicated that HOXA-AS2 with AUC, sensitivity, and specificity of 0.816, 92%, and 70%, respectively, can act as a potential biomarker (CI 95% = 0.7297-0.9023). CONCLUSION With regard to the overexpression of HOXA-AS2 in gastric cancer tissues, the mentioned gene may serve as an oncogenic lncRNA in gastric cancer patients. Moreover, HOXA-AS2 can act as a potential biomarker in molecular targeted therapies to recognize and treat gastric cancer patients.
Collapse
Affiliation(s)
- Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Atousa Riahi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hanie Shirabadi-Arani
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Yaghoub Moaddab
- Liver and Gastroenterology Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|