1
|
Galyamina MA, Pobeguts OV, Bogomiakova ME, Smirnov IP, Sikamov KV, Gorbachev AY. Mycoplasma hominis as an Infectious Agent of the Human Prostate Carcinoma Cell Line LNCaP. Bull Exp Biol Med 2025; 178:637-642. [PMID: 40299130 DOI: 10.1007/s10517-025-06389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 04/30/2025]
Abstract
Previously, a link between mycoplasmas and the development of malignant neoplasms, particularly prostate cancer, had been shown. However, the mechanisms responsible for the oncogenic properties of mycoplasmas remain poorly understood. We have developed an infectious model of LNCaP prostate lymph node carcinoma cell line infection with Mycoplasma hominis (MHO). It has been shown that MHO can easily attach and invade into cells without reducing the growth rate or affecting morphology of LNCaP cells. Proteomic analysis has shown that during infection, MHO undergoes a significant functional restructuring decelerating its growth and leading to formation of mini colonies. This reorganization is associated with a shift in energy metabolism a less energy-efficient nucleoside utilization pathway. To adapt within LNCaP, MHO changes its repertoire of membrane proteins, variable antigens involved in adhesion and protection from host immunity. It is hypothesized that the transcription factor YebC plays a role in MHO survival within the eukaryotic cell.
Collapse
Affiliation(s)
- M A Galyamina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - O V Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - M E Bogomiakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - I P Smirnov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - K V Sikamov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - A Y Gorbachev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
2
|
Xiu F, Li X, Liu L, Xi Y, Yi X, Li Y, You X. Mycoplasma invasion into host cells: An integrated model of infection strategy. Mol Microbiol 2024; 121:814-830. [PMID: 38293733 DOI: 10.1111/mmi.15232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Mycoplasma belong to the genus Mollicutes and are notable for their small genome sizes (500-1300 kb) and limited biosynthetic capabilities. They exhibit pathogenicity by invading various cell types to survive as intracellular pathogens. Adhesion is a crucial prerequisite for successful invasion and is orchestrated by the interplay between mycoplasma surface adhesins and specific receptors on the host cell membrane. Invasion relies heavily on clathrin- and caveolae-mediated internalization, accompanied by multiple activated kinases, cytoskeletal rearrangement, and a myriad of morphological alterations, such as membrane invagination, nuclear hypertrophy and aggregation, cytoplasmic edema, and vacuolization. Once mycoplasma successfully invade host cells, they establish resilient sanctuaries in vesicles, cytoplasm, perinuclear regions, and the nucleus, wherein specific environmental conditions favor long-term survival. Although lysosomal degradation and autophagy can eliminate most invading mycoplasmas, some viable bacteria can be released into the extracellular environment via exocytosis, a crucial factor in the prolonging infection persistence. This review explores the intricate mechanisms by which mycoplasma invades host cells and perpetuates their elusive survival, with the aim of highlighting the challenge of eradicating this enigmatic bacterium.
Collapse
Affiliation(s)
- Feichen Xiu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinru Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Yixuan Xi
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinchao Yi
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoxing You
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
3
|
Galyamina MA, Pobeguts OV, Gorbachev AY. The role of mycoplasmas as an infectious agent in carcinogenesis. ADVANCES IN MOLECULAR ONCOLOGY 2023; 10:36-49. [DOI: 10.17650/2313-805x-2023-10-3-36-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review presents data on studies of the role of mycoplasmas as infectious agents in carcinogenesis, as well as their participation in cancer drug therapy and the impact on the outcome of treatment. Mycoplasmas are of particular interest because they have unique abilities to readily attach to and enter eukaryotic cells, modulate their functional state, and induce chronic inflammation while evading the host’s immune system. The review will highlight the data confirming the increased colonization of tumor tissue by mycoplasmas compared to healthy ones, describe the molecular mechanisms by which mycoplasmas activate the expression of oncogenes and growth factors, inactivate tumor suppressors, promote NF-κB-dependent migration of cancer cells and modulate apoptosis, which results in abnormal growth and transformation of host cells. The review also presents data on the effectiveness of anticancer drugs in mycoplasmal infections.
Collapse
Affiliation(s)
- M. A. Galyamina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| | - O. V. Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| | - A. Yu. Gorbachev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| |
Collapse
|
4
|
Domrazek K, Kaszak I, Kanafa S, Sacharczuk M, Jurka P. The influence of Mycoplasma species on human and canine semen quality: a review. Asian J Androl 2023; 25:29-37. [PMID: 35259783 PMCID: PMC9933968 DOI: 10.4103/aja2021124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/20/2021] [Indexed: 01/19/2023] Open
Abstract
Mycoplasma species (spp.) are bacteria that are difficult to detect. Currently, the polymerase chain reaction (PCR) is considered the most effective diagnostic tool to detect these microorganisms in both human and veterinary medicine. There are 13 known species of human Mycoplasma and 15 species of canine Mycoplasma. Owing to the difficulties in identifying the individual species of Mycoplasma, there is a lack of information regarding which species are saprophytic and which are pathogenic. The prevalence of the individual species is also unknown. In addition, in both humans and dogs, the results of some studies on the impact of Mycoplasma are conflicting. The presence of Mycoplasma spp. on the epithelium of reproductive tract is often associated with infertility, although they are also detected in healthy individuals. The occurrence of Mycoplasma spp. is more common in dogs (even 89%) than in humans (1.3%-4%). This is probably because the pH of a dog's genital is more conducive to the growth of Mycoplasma spp. than that of humans. Phylogenetically, human and canine Mycoplasma are related, and majority of them belong to the same taxonomic group. Furthermore, 40% of canine Mycoplasma spp. are placed in common clusters with those of human. This suggests that species from the same cluster can play a similar role in the canine and human reproductive tracts. This review summarizes the current state of knowledge about the impact of Mycoplasma on canine and human male fertility as well as the prospects of further development in this field.
Collapse
Affiliation(s)
- Kinga Domrazek
- Laboratory of Small Animal Reproduction, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C Street, Warsaw 02-787, Poland
| | - Ilona Kaszak
- Laboratory of Small Animal Reproduction, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C Street, Warsaw 02-787, Poland
| | - Szymon Kanafa
- Laboratory of Small Animal Reproduction, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C Street, Warsaw 02-787, Poland
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences Jastrzębiec, Postepu Street 36A, Magdalenka 05-552, Poland
| | - Piotr Jurka
- Laboratory of Small Animal Reproduction, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C Street, Warsaw 02-787, Poland
| |
Collapse
|
5
|
Eating the Enemy: Mycoplasma Strategies to Evade Neutrophil Extracellular Traps (NETs) Promoting Bacterial Nucleotides Uptake and Inflammatory Damage. Int J Mol Sci 2022; 23:ijms232315030. [PMID: 36499356 PMCID: PMC9740415 DOI: 10.3390/ijms232315030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Neutrophils are effector cells involved in the innate immune response against infection; they kill infectious agents in the intracellular compartment (phagocytosis) or in the extracellular milieu (degranulation). Moreover, neutrophils release neutrophil extracellular traps (NETs), complex structures composed of a scaffold of decondensed DNA associated with histones and antimicrobial compounds; NETs entrap infectious agents, preventing their spread and promoting their clearance. NET formation is triggered by microbial compounds, but many microorganisms have evolved several strategies for NET evasion. In addition, the dysregulated production of NETs is associated with chronic inflammatory diseases. Mycoplasmas are reduced genome bacteria, able to induce chronic infections with recurrent inflammatory symptoms. Mycoplasmas' parasitic lifestyle relies on metabolite uptake from the host. Mycoplasmas induce NET release, but their surface or secreted nucleases digest the NETs' DNA scaffold, allowing them to escape from entrapment and providing essential nucleotide precursors, thus promoting the infection. The presence of Mycoplasma species has been associated with chronic inflammatory disorders, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, and cancer. The persistence of mycoplasma infection and prolonged NET release may contribute to the onset of chronic inflammatory diseases and needs further investigation and insights.
Collapse
|
6
|
Lesiak-Markowicz I, Tscherwizek C, Pöppl W, Mooseder G, Walochnik J, Fürnkranz U. Prevalence of selected sexually transmitted infectious agents in a cohort of asymptomatic soldiers in Austria. Parasit Vectors 2022; 15:424. [PMID: 36372885 PMCID: PMC9661754 DOI: 10.1186/s13071-022-05508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/17/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND According to the World Health Organization (WHO), more than one million sexually transmitted infections (STIs) are acquired every day worldwide. Although STIs may be asymptomatic in many cases, they can cause severe symptoms and can also lead to adverse pregnancy outcomes and both male and female infertility. Asymptomatic carriers seem to play an important role in terms of the distribution of STIs; however, studies revealing the prevalence of STIs in asymptomatic individuals are rare. METHODS In the current study, 654 leftovers of standard urine samples from healthy, asymptomatic Austrian soldiers were investigated for the prevalence of Trichomonas vaginalis, Chlamydia trachomatis, and genital mycoplasmas (Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma urealyticum, Ureaplasma parvum, and Candidatus Mycoplasma girerdii) by specific PCRs. RESULTS We detected T. vaginalis, M. hominis, U. urealyticum, U. parvum, and C. trachomatis in the investigated samples with prevalence of 7.6%, 4%, 2.4%, 5.4%, and 3.2%, respectively; neither M. genitalium nor Ca. Mycoplasma girerdii was found in our sample collection. CONCLUSIONS Our study introduces data on STIs of a mainly male cohort, which are scarce because most of the available information on sexually transmitted infectious agents arises from fertility clinics (mainly women) or symptomatic patients.
Collapse
Affiliation(s)
- Iwona Lesiak-Markowicz
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Claudia Tscherwizek
- Division of Dermatology and Tropical Medicine, Sanitätszentrum Ost, Van Swieten Kaserne, 1210 Vienna, Austria
| | - Wolfgang Pöppl
- Division of Dermatology and Tropical Medicine, Sanitätszentrum Ost, Van Swieten Kaserne, 1210 Vienna, Austria
| | - Gerhard Mooseder
- Division of Dermatology and Tropical Medicine, Sanitätszentrum Ost, Van Swieten Kaserne, 1210 Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ursula Fürnkranz
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
Zhang Y, Chen J, Yi X, Chen Z, Yao T, Tang Z, Zang G, Cao X, Lian X, Chen X. Evaluation of the metagenomic next-generation sequencing performance in pathogenic detection in patients with spinal infection. Front Cell Infect Microbiol 2022; 12:967584. [PMID: 36389162 PMCID: PMC9646980 DOI: 10.3389/fcimb.2022.967584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/03/2022] [Indexed: 12/01/2023] Open
Abstract
Spinal infection is a rarely occurred pathology, whose diagnosis remains a major challenge due to the low sensitivity of culturing techniques. Metagenomic next-generation sequencing (mNGS) is a novel approach to identify the pathogenic organisms in infectious diseases. In this study, mNGS technology was adopted for pathogenic detection in spinal infection from the tissue and pus samples. Additionally, the diagnostic performance of mNGS for spinal infection was evaluated, by comparing it with that of the conventional microbial culture, with the histopathological results as the gold standard. Overall, 56 samples from 38 patients were enrolled for mNGS testing, and 69 samples were included for microbial culture. 30 patients (78.95%) were identified to be positive by the mNGS method, which was higher than that of microbial culture (17, 44.74%). The sensitivity and specificity of mNGS with pus samples were 84.2% and 100.0%, respectively, which outperformed those of microbial culture (42.1% and 100.0%). The pathogen identification results were applied to medication guidance, and all 38 patients experienced favorable outcomes at three months, followed-up post-treatment, without any adverse effects. These findings proved that mNGS was superior to microbial culture in pathogenic identification of the spinal infection, thereby showing great promise in guiding drug administration and improving clinical outcomes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jinmei Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaoli Yi
- Genoxor Medical Science and Technology Inc., Shanghai, China
| | - Zhiheng Chen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ting Yao
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhenghao Tang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Guoqing Zang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xuejie Cao
- Genoxor Medical Science and Technology Inc., Shanghai, China
| | - Xiaofeng Lian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaohua Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
8
|
Lesiak-Markowicz I, Walochnik J, Stary A, Fürnkranz U. Characterisation of Trichomonas vaginalis Isolates Collected from Patients in Vienna between 2019 and 2021. Int J Mol Sci 2022; 23:12422. [PMID: 36293276 PMCID: PMC9604477 DOI: 10.3390/ijms232012422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022] Open
Abstract
Trichomonas vaginalis (TV) is the causative agent of trichomoniasis, the most common nonviral sexually transmitted disease. TV can carry symbionts such as Trichomonas vaginalis virus (TVV) or Mycoplasma hominis. Four distinct strains of TV are known: TVV1, TVV2, TVV3, and TVV4. The aim of the current study was to characterise TV isolates from Austrian patients for the presence of symbionts, and to determine their effect on metronidazole susceptibility and cytotoxicity against HeLa cells. We collected 82 TV isolates and detected presence of TVV (TVV1, TVV2, or TVV3) in 29 of them (35%); no TVV4 was detected. M. hominis was detected in vaginal/urethral swabs by culture in 37% of the TV-positive patients; M. hominis DNA was found in 28% of the TV isolates by PCR. In 15% of the patients, M. hominis was detected in the clinical samples as well as within the respective TV isolates. In 22% of the patients, M. hominis was detected by culture only. In 11 patients, M. hominis was detected only within the respective cultured TV isolates (13%), while the swab samples were negative for M. hominis. Our results provide a first insight into the distribution of symbionts in TV isolates from Austrian patients. We did not observe significant effects of the symbionts on metronidazole susceptibility, cytotoxicity, or severity of symptoms.
Collapse
Affiliation(s)
- Iwona Lesiak-Markowicz
- Intitute for Specific Prophylaxis and Tropical Medicine (ISPTM), Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Walochnik
- Intitute for Specific Prophylaxis and Tropical Medicine (ISPTM), Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Angelika Stary
- Pilzambulatorium Schloesselgasse, Oupatients Centre for Diagnosis of Venero-Dermatological Diseases, 1080 Vienna, Austria
| | - Ursula Fürnkranz
- Pilzambulatorium Schloesselgasse, Oupatients Centre for Diagnosis of Venero-Dermatological Diseases, 1080 Vienna, Austria
| |
Collapse
|
9
|
Lawson JS, Glenn WK. Multiple pathogens and prostate cancer. Infect Agent Cancer 2022; 17:23. [PMID: 35637508 PMCID: PMC9150368 DOI: 10.1186/s13027-022-00427-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/18/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The aim of this review is to consider whether multiple pathogens have roles in prostate cancer. METHODS We have reviewed case control studies in which infectious pathogens in prostate cancer were compared to normal and benign prostate tissues. We also reviewed additional evidence from relevant published articles. RESULTS We confirmed that high risk human papilloma viruses are a probable cause of prostate cancer. We judged Escherichia coli, Cutibacterium acnes, Neisseria gonorrhoea, Herpes simplex, Epstein Barr virus and Mycoplasmas as each having possible but unproven roles in chronic prostatic inflammation and prostate cancer. We judged Cytomegalovirus, Chlamydia trachomatis, Trichomonas vaginalis and the Polyoma viruses as possible but unlikely to have a role in prostate cancer. CONCLUSIONS AND ACTIONS The most influential cause of prostate cancer appears to be infection induced chronic inflammation. Given the high prevalence of prostate cancer it is important for action to can be taken without waiting for additional conclusive evidence. These include: 1. Encouragement of all boys (as well as girls) to have HPV vaccines 2. The vigorous use of antibiotics to treat all bacterial pathogens identified in the urogenital tract 3. The use of antiviral medications to control herpes infections 4. Education about safe sexual practices.
Collapse
Affiliation(s)
- James S. Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 Australia
| | - Wendy K. Glenn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 Australia
| |
Collapse
|
10
|
Prasad SK, Bhat S, Shashank D, C R A, R S, Rachtanapun P, Devegowda D, Santhekadur PK, Sommano SR. Bacteria-Mediated Oncogenesis and the Underlying Molecular Intricacies: What We Know So Far. Front Oncol 2022; 12:836004. [PMID: 35480118 PMCID: PMC9036991 DOI: 10.3389/fonc.2022.836004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancers are known to have multifactorial etiology. Certain bacteria and viruses are proven carcinogens. Lately, there has been in-depth research investigating carcinogenic capabilities of some bacteria. Reports indicate that chronic inflammation and harmful bacterial metabolites to be strong promoters of neoplasticity. Helicobacter pylori-induced gastric adenocarcinoma is the best illustration of the chronic inflammation paradigm of oncogenesis. Chronic inflammation, which produces excessive reactive oxygen species (ROS) is hypothesized to cause cancerous cell proliferation. Other possible bacteria-dependent mechanisms and virulence factors have also been suspected of playing a vital role in the bacteria-induced-cancer(s). Numerous attempts have been made to explore and establish the possible relationship between the two. With the growing concerns on anti-microbial resistance and over-dependence of mankind on antibiotics to treat bacterial infections, it must be deemed critical to understand and identify carcinogenic bacteria, to establish their role in causing cancer.
Collapse
Affiliation(s)
- Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Dharini Shashank
- Department of General Surgery, Adichunchanagiri Institute of Medical Sciences, Mandya, India
| | - Akshatha C R
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sindhu R
- Department of Microbiology, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Prasanna K Santhekadur
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Su F, Zhang J, Zhu Y, Lv H, Ge Y. Identification of sacrococcygeal and pelvic abscesses infected with invasive
Mycoplasma hominis
by MALDI‐TOF MS. J Clin Lab Anal 2022; 36:e24329. [PMID: 35285086 PMCID: PMC8993641 DOI: 10.1002/jcla.24329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 01/02/2023] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Fang Su
- Center of Clinical Laboratory Medicine the Zhejiang Provincial People’s Hospital People’s Hospital of Hangzhou Medical College Zhejiang China
| | - Junwu Zhang
- Department of Clinical Laboratory Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Wenzhou China
| | - Yongze Zhu
- Center of Clinical Laboratory Medicine the Zhejiang Provincial People’s Hospital People’s Hospital of Hangzhou Medical College Zhejiang China
| | - Huoyang Lv
- Center of Clinical Laboratory Medicine the Zhejiang Provincial People’s Hospital People’s Hospital of Hangzhou Medical College Zhejiang China
| | - Yumei Ge
- Center of Clinical Laboratory Medicine the Zhejiang Provincial People’s Hospital People’s Hospital of Hangzhou Medical College Zhejiang China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province Zhejiang China
| |
Collapse
|
12
|
Nucleic acid aptamer controls mycoplasma infection for inhibiting the malignancy of esophageal squamous cell carcinoma. Mol Ther 2022; 30:2224-2241. [DOI: 10.1016/j.ymthe.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
|
13
|
Tantengco OAG, Aquino IMC, de Castro Silva M, Rojo RD, Abad CLR. Association of mycoplasma with prostate cancer: A systematic review and meta-analysis. Cancer Epidemiol 2021; 75:102021. [PMID: 34517226 DOI: 10.1016/j.canep.2021.102021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022]
Abstract
Mycoplasmas are emerging sexually transmitted pathogens usually associated with male urinary tract infection, non-gonococcal urethritis (NGU), infertility, and prostate cancer. In this study, we review the evidence linking mycoplasma infection and prostate cancer. We conducted a systematic review and meta-analysis based on PRISMA guidelines. Four electronic databases were reviewed through January 31, 2021. Studies were eligible for inclusion if odds ratio for prevalence or incidence of colonization and/or infection were provided or calculable. All included studies were evaluated independently by three reviewers. The quality of the included studies was assessed using the Newcastle-Ottawa Scale for Case-Control Studies. Statistical analysis was done using Review Manager Version 5.4. A total of 183/744 (24.6 %) patients with prostate cancer compared to 87/495 (17.58 %) patients with benign prostatic hyperplasia (BPH) tested positive for Mycoplasma spp., while 86/666 (12.91 %) and 11/388 (2.84 %) prostate cancer patients and BPH patients, respectively, had Ureaplasma spp. infections. This meta-analysis showed that prostate cancer patients had 2.24 times higher odds (p = 0.0005) of being colonized with any species of Mycoplasma spp. and 3.6 times increased odds (p = 0.008) of being colonized with any species of Ureaplasma spp. In conclusion, patients with prostate cancer were more likely to be colonized with Mycoplasma spp. or Ureaplasma spp. compared to patients with BPH, which highlights the potential association between chronic infection and cancer. However, more studies are needed to determine the specific role that mycoplasma plays in the pathogenesis of prostate cancer.
Collapse
Affiliation(s)
| | - Inah Marie C Aquino
- College of Medicine, University of the Philippines Manila, Ermita, Manila, Philippines
| | - Mariana de Castro Silva
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Raniv D Rojo
- College of Medicine, University of the Philippines Manila, Ermita, Manila, Philippines
| | - Cybele Lara R Abad
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil; Division of Infectious Diseases, Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Taft Avenue, Manila, Philippines.
| |
Collapse
|
14
|
The Relationship between Mycoplasmas and Cancer: Is It Fact or Fiction ? Narrative Review and Update on the Situation. JOURNAL OF ONCOLOGY 2021; 2021:9986550. [PMID: 34373693 PMCID: PMC8349275 DOI: 10.1155/2021/9986550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
More than one million new cancer cases occur worldwide every year. Although many clinical trials are applied and recent diagnostic tools are employed, curing cancer disease is still a great challenge for mankind. Heredity and epigenetics are the main risk factors often related to cancer. Although, the infectious etiological role in carcinogenesis was also theorized. By establishing chronic infection and inflammation in their hosts, several microorganisms were suggested to cause cell transformation. Of these suspicious microorganisms, mycoplasmas were well regarded because of their intimate parasitism with host cells, as well as their silent and insidious role during infections. This assumption has opened many questions about the real role played by mycoplasmas in oncogenesis. Herein, we presented a sum up of many studies among the hundreds which had addressed the Mycoplasma-cancer topic over the past 50 years. Research studies in this field have first started by approving the mycoplasmas malignancy potential. Indeed, using animal models and in vitro experiments in various cell lines from human and other mammalians, many mycoplasmas were proven to cause varied modifications leading to cell transformation. Moreover, many studies have looked upon the Mycoplasma-cancer subject from an epidemiological point of view. Diverse techniques were used to assess the mycoplasmas prevalence in patients with cancer from different countries. Not less than 10 Mycoplasma species were detected in the context of at least 15 cancer types affecting the brain, the breast, the lymphatic system, and different organs in the genitourinary, respiratory, gastrointestinal, and urinary tracts. Based on these revelations, one should concede that detection of mycoplasmas often linked to ‘‘wolf in sheep's clothing” is not a coincidence and might have a role in cancer. Thorough investigations are needed to better elucidate this role. This would have a substantial impact on the improvement of cancer diagnosis and its prevention.
Collapse
|