1
|
Kotliarova MS, Shumkov MS, Goncharenko AV. Toward Mycobacterium tuberculosis Virulence Inhibition: Beyond Cell Wall. Microorganisms 2024; 13:21. [PMID: 39858789 PMCID: PMC11767696 DOI: 10.3390/microorganisms13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful bacterial pathogens in human history. Even in the antibiotic era, Mtb is widespread and causes millions of new cases of tuberculosis each year. The ability to disrupt the host's innate and adaptive immunity, as well as natural persistence, complicates disease control. Tuberculosis traditional therapy involves the long-term use of several antibiotics. Treatment failures are often associated with the development of resistance to one or more drugs. The development of medicines that act on new targets will expand treatment options for tuberculosis caused by multidrug-resistant or extensively drug-resistant Mtb. Therefore, the development of drugs that target virulence factors is an attractive strategy. Such medicines do not have a direct bacteriostatic or bactericidal effect, but can disarm the pathogen so that the host immune system becomes able to eliminate it. Although cell wall-associated targets are being actively studied for anti-TB drug development, other virulence factors important for adaptation and host interaction are also worth comprehensive analysis. In this review, specific Mtb virulence factors (such as secreted phosphatases, regulatory systems, and the ESX-1 secretion system) are identified as promising targets for novel anti-virulence drug development. Additionally, models for the search of virulence inhibitors are discussed, such as virtual screening in silico, in vitro enzyme inhibition assay, the use of recombinant Mtb strains with reporter constructs, phenotypic analysis using in vitro cell infection models and specific environments.
Collapse
Affiliation(s)
- Maria S. Kotliarova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology, Federal Research Center, Russian Academy of Sciences, Moscow 119071, Russia; (M.S.S.); (A.V.G.)
| | | | | |
Collapse
|
2
|
Sundaram K, Vajravelu LK. Functional Analysis of Genes in Mycobacterium tuberculosis Action Against Autophagosome-Lysosome Fusion. Indian J Microbiol 2024; 64:367-375. [PMID: 39011011 PMCID: PMC11246336 DOI: 10.1007/s12088-024-01227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/10/2024] [Indexed: 07/17/2024] Open
Abstract
Tuberculosis is a lethal disease that is one of the world's top ten death-associated infections in humans; Mycobacterium tuberculosis causes tuberculosis, and this bacterium is linked to the lysis of autophagolysosomal fusion action, a self-defense mechanism of its own. Thus, Cytoplasmic bacilli are sequestered by autophagy and transported to lysosomes to be inactivated to destroy intracellular bacteria. Besides this, a macrophage can limit intracellular Mycobacterium by using a type of autophagy, selective autophagy, a cell that marks undesirable ubiquitin existence in cytosolic cargo, acting as a "eat me" sensor in conjunction with cellular homeostasis. Mycobacterium tuberculosis genes of the PE_PGRS protein family inhibit autophagy, increase mycobacterial survival, and lead to latent tuberculosis infection associated with miRNAs. In addition, the family of autophagy-regulated (ATG) gene members are involved in autophagy and controls the initiation, expansion, maturation, and fusion of autophagosomes with lysosomes, among other signaling events that control autophagy flux and reduce inflammatory responses and forward to promote cellular proliferation. In line with the formation of caseous necrosis in macrophages by Mycobacterium tuberculosis and their action on the lysis of autophagosome fusion, it leads to latent tuberculosis infection. Therefore, we aimed to comprehensively analyses the autophagy and self-defense mechanism of Mycobacterium tuberculosis, which is to be gratified future research on novel therapeutic tools and diagnostic markers against tuberculosis.
Collapse
Affiliation(s)
- Karthikeyan Sundaram
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, Tamilnadu 603203 India
| | - Leela Kagithakara Vajravelu
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, Tamilnadu 603203 India
| |
Collapse
|
3
|
Meng M, Wang J, Li H, Wang J, Wang X, Li M, Gao X, Li W, Ma C, Wei L. Eliminating the invading extracellular and intracellular FnBp + bacteria from respiratory epithelial cells by autophagy mediated through FnBp-Fn-Integrin α5β1 axis. Front Cell Infect Microbiol 2024; 13:1324727. [PMID: 38264727 PMCID: PMC10803403 DOI: 10.3389/fcimb.2023.1324727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Background We previously found that the respiratory epithelial cells could eliminate the invaded group A streptococcus (GAS) through autophagy induced by binding a fibronectin (Fn) binding protein (FnBp) expressed on the surface of GAS to plasma protein Fn and its receptor integrin α5β1 of epithelial cells. Is autophagy initiated by FnBp+ bacteria via FnBp-Fn-Integrin α5β1 axis a common event in respiratory epithelial cells? Methods We chose Staphylococcus aureus (S. aureus/S. a) and Listeria monocytogenes (L. monocytogenes/L. m) as representatives of extracellular and intracellular FnBp+ bacteria, respectively. The FnBp of them was purified and the protein function was confirmed by western blot, viable bacteria count, confocal and pull-down. The key molecule downstream of the action axis was detected by IP, mass spectrometry and bio-informatics analysis. Results We found that different FnBp from both S. aureus and L. monocytogenes could initiate autophagy through FnBp-Fn-integrin α5β1 axis and this could be considered a universal event, by which host tries to remove invading bacteria from epithelial cells. Importantly, we firstly reported that S100A8, as a key molecule downstream of integrin β1 chain, is highly expressed upon activation of integrin α5β1, which in turn up-regulates autophagy. Conclusions Various FnBp from FnBp+ bacteria have the ability to initiate autophagy via FnBp-Fn-Integrin α5β1 axis to promote the removal of invading bacteria from epithelial cells in the presence of fewer invaders. S100A8 is a key molecule downstream of Integrin α5β1 in this autophagy pathway.
Collapse
Affiliation(s)
- Meiqi Meng
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Hongru Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Jiao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Xuan Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
- Clinical Laboratory, the Second Hospital of Hebei Medical University, Hebei Key Laboratory of Laboratory Medicine, Shijiazhuang, China
| | - Miao Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Xue Gao
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Wenjian Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Zhang QA, Ma S, Li P, Xie J. The dynamics of Mycobacterium tuberculosis phagosome and the fate of infection. Cell Signal 2023; 108:110715. [PMID: 37192679 DOI: 10.1016/j.cellsig.2023.110715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
Phagosomes are vesicles produced by phagocytosis of phagocytes, which are crucial in immunity against Mycobacterium tuberculosis (Mtb) infection. After the phagocyte ingests the pathogen, it activates the phagosomes to recruit a series of components and process proteins, to phagocytose, degrade and kill Mtb. Meanwhile, Mtb can resist acid and oxidative stress, block phagosome maturation, and manipulate host immune response. The interaction between Mtb and phagocytes leads to the outcome of infection. The dynamic of this process can affect the cell fate. This article mainly reviews the development and maturation of phagosomes, as well as the dynamics and modifications of Mtb effectors and phagosomes components, and new diagnostic and therapeutic markers involved in phagosomes.
Collapse
Affiliation(s)
- Qi-Ao Zhang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Shaying Ma
- Chongqing Emergency Medical Center, Chongqing the Fourth Hospital, Jiankang Road, Yuzhong, Chongqing 400014, China
| | - Peibo Li
- Chongqing Public Health Medical Center, Chongqing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China; Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
5
|
BORC complex specific components and Kinesin-1 mediate autophagy evasion by the autophagy-resistant Mycobacterium tuberculosis Beijing strain. Sci Rep 2023; 13:1663. [PMID: 36717601 PMCID: PMC9886903 DOI: 10.1038/s41598-023-28983-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Autophagy induction by starvation has been shown to enhance lysosomal delivery to mycobacterial phagosomes, resulting in the restriction of the Mycobacterium tuberculosis reference strain H37Rv. In contrast to H37Rv, our previous study showed that strains belonging to the notorious M. tuberculosis Beijing genotype could evade autophagic elimination. Our recent RNA-Seq analysis also discovered that the autophagy-resistant M. tuberculosis Beijing strain (BJN) evaded autophagic control by upregulating the expression of Kxd1, a BORC complex component, and Plekhm2, both of which function in lysosome positioning towards the cell periphery in host macrophages, thereby suppressing enhanced lysosomal delivery to its phagosome and sparing the BJN from elimination as a result. In this work, we further characterised the other specific components of the BORC complex, BORC5-8, and Kinesin proteins in autophagy resistance by the BJN. Depletion of BORCS5-8 and Kinesin-1, but not Kinesin-3, reverted autophagy avoidance by the BJN, resulting in increased lysosomal delivery to the BJN phagosomes. In addition, the augmented lysosome relocation towards the perinuclear region could now be observed in the BJN-infected host cells depleted in BORCS5-8 and Kinesin-1 expressions. Taken together, the data uncovered new roles for BORCS5-8 and Kinesin-1 in autophagy evasion by the BJN.
Collapse
|
6
|
Koirala N, Butnariu M, Panthi M, Gurung R, Adhikari S, Subba RK, Acharya Z, Popović-Djordjević J. Antibiotics in the management of tuberculosis and cancer. ANTIBIOTICS - THERAPEUTIC SPECTRUM AND LIMITATIONS 2023:251-294. [DOI: 10.1016/b978-0-323-95388-7.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Bo H, Moure UAE, Yang Y, Pan J, Li L, Wang M, Ke X, Cui H. Mycobacterium tuberculosis-macrophage interaction: Molecular updates. Front Cell Infect Microbiol 2023; 13:1062963. [PMID: 36936766 PMCID: PMC10020944 DOI: 10.3389/fcimb.2023.1062963] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of Tuberculosis (TB), remains a pathogen of great interest on a global scale. This airborne pathogen affects the lungs, where it interacts with macrophages. Acidic pH, oxidative and nitrosative stressors, and food restrictions make the macrophage's internal milieu unfriendly to foreign bodies. Mtb subverts the host immune system and causes infection due to its genetic arsenal and secreted effector proteins. In vivo and in vitro research have examined Mtb-host macrophage interaction. This interaction is a crucial stage in Mtb infection because lung macrophages are the first immune cells Mtb encounters in the host. This review summarizes Mtb effectors that interact with macrophages. It also examines how macrophages control and eliminate Mtb and how Mtb manipulates macrophage defense mechanisms for its own survival. Understanding these mechanisms is crucial for TB prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Haotian Bo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yuanmiao Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jun Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Li Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Miao Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Hongjuan Cui, ; Xiaoxue Ke,
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- *Correspondence: Hongjuan Cui, ; Xiaoxue Ke,
| |
Collapse
|
8
|
Sun M, Ge S, Li Z. The Role of Phosphorylation and Acylation in the Regulation of Drug Resistance in Mycobacterium tuberculosis. Biomedicines 2022; 10:biomedicines10102592. [PMID: 36289854 PMCID: PMC9599588 DOI: 10.3390/biomedicines10102592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis is a chronic and lethal infectious disease caused by Mycobacterium tuberculosis. In previous decades, most studies in this area focused on the pathogenesis and drug targets for disease treatments. However, the emergence of drug-resistant strains has increased the difficulty of clinical trials over time. Now, more post-translational modified proteins in Mycobacterium tuberculosis have been discovered. Evidence suggests that these proteins have the ability to influence tuberculosis drug resistance. Hence, this paper systematically summarizes updated research on the impacts of protein acylation and phosphorylation on the acquisition of drug resistance in Mycobacterium tuberculosis through acylation and phosphorylation protein regulating processes. This provides us with a better understanding of the mechanism of antituberculosis drugs and may contribute to a reduction the harm that tuberculosis brings to society, as well as aiding in the discovery of new drug targets and therapeutic regimen adjustments in the future.
Collapse
Affiliation(s)
- Manluan Sun
- School of Medicine, Shanxi Datong University, Datong 037009, China
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Correspondence:
| | - Sai Ge
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Center of Academic Journal, Shanxi Datong University, Datong 037009, China
| | - Zhaoyang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Wang X, Liu Y. Offense and Defense in Granulomatous Inflammation Disease. Front Cell Infect Microbiol 2022; 12:797749. [PMID: 35846773 PMCID: PMC9277142 DOI: 10.3389/fcimb.2022.797749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Granulomatous inflammation (GI) diseases are a group of chronic inflammation disorders characterized by focal collections of multinucleated giant cells, epithelioid cells and macrophages, with or without necrosis. GI diseases are closely related to microbes, especially virulent intracellular bacterial infections are important factors in the progression of these diseases. They employ a range of strategies to survive the stresses imposed upon them and persist in host cells, becoming the initiator of the fighting. Microbe-host communication is essential to maintain functions of a healthy host, so defense capacity of hosts is another influence factor, which is thought to combine to determine the result of the fighting. With the development of gene research technology, many human genetic loci were identified to be involved in GI diseases susceptibility, providing more insights into and knowledge about GI diseases. The current review aims to provide an update on the most recent progress in the identification and characterization of bacteria in GI diseases in a variety of organ systems and clinical conditions, and examine the invasion and escape mechanisms of pathogens that have been demonstrated in previous studies, we also review the existing data on the predictive factors of the host, mainly on genetic findings. These strategies may improve our understanding of the mechanisms underlying GI diseases, and open new avenues for the study of the associated conditions in the future.
Collapse
Affiliation(s)
- Xinwen Wang
- Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yuan Liu
- Shaanxi International Joint Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|