1
|
Antoniolli LR, Filho EGA, Rodrigues THS, Garruti DS, Canuto KM. Volatile profile and potential predictors of astringency loss in fresh, whole 'Rama Forte' persimmon fruit. Food Chem 2025; 464:141797. [PMID: 39488050 DOI: 10.1016/j.foodchem.2024.141797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Volatile profile of fresh, whole 'Rama Forte' persimmons treated with CO2 or ethanol (EtOH) vapor for astringency removal, and the relationship of the main volatile organic compounds (VOCs) with the loss of astringency were investigated. Persimmons were harvested at the commercial maturity stage and treated with 70 % CO2, 18 h, or 1.70 mL kg-1 EtOH, 6 h. Headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry allowed the tentative identification of 34 VOCs, 15 of them are reported for the first time on persimmons. Ethanol was the relevant compound common to CO2 and EtOH-treated samples in the first days after treatment, while acetoin, hexanal, and trans-2-hexenal ((E)-hex-2-enal) were the relevant VOCs in samples from the last days after treatment. As the astringency reached its lowest levels, some of the main VOCs had their relative intensity increased. Pentadecanal, ethyl acetate, acetoin, and ethanol may be potential predictors of astringency loss in fresh, whole 'Rama Forte' persimmons.
Collapse
Affiliation(s)
| | | | | | - Deborah Santos Garruti
- Embrapa Tropical Agroindustry, 2270 Dr. Sara Mesquita St, 60511-110 Fortaleza, CE, Brazil..
| | - Kirley Marques Canuto
- Embrapa Tropical Agroindustry, 2270 Dr. Sara Mesquita St, 60511-110 Fortaleza, CE, Brazil..
| |
Collapse
|
2
|
Zhang Q, Liu Q, Xue H, Bi Y, Li X, Xu X, Liu Z, Prusky D. ROS mediated by TrPLD3 of Trichothecium roseum participated cell membrane integrity of apple fruit by influencing phosphatidic acid metabolism. Food Microbiol 2024; 120:104484. [PMID: 38431329 DOI: 10.1016/j.fm.2024.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Trichothecium roseum is a typical necrotrophic fungal pathogen that not only bring about postharvest disease, but contribute to trichothecenes contamination in fruit and vegetables. Phospholipase D (PLD), as an important membrane lipid degrading enzyme, can produce phosphatidic acid (PA) by hydrolyzing phosphatidylcholine (PC) and phosphatidylinositol (PI). PA can promote the production of reactive oxygen species (ROS) by activating the activity of NADPH oxidase (NOX), thereby increasing the pathogenicity to fruit. However, the ROS mediated by TrPLD3 how to influence T. roseum infection to fruit by modulating phosphatidic acid metabolism, which has not been reported. In this study, the knockout mutant and complement strain of TrPLD3 were constructed through homologous recombination, TrPLD3 was tested for its effect on the colony growth and pathogenicity of T. roseum. The experimental results showed that the knockout of TrPLD3 inhibited the colony growth of T. roseum, altered the mycelial morphology, completely inhibited the sporulation, and reduced the accumulation of T-2 toxin. Moreover, the knockout of TrPLD3 significantly decreased pathogenicity of T. roseum on apple fruit. Compared to inoculated apple fruit with the wide type (WT), the production of ROS in apple infected with ΔTrPLD3 was slowed down, the relative expression and enzymatic activity of NOX, and PA content decreased, and the enzymatic activity and gene expression of superoxide dismutase (SOD) increased. In addition, PLD, lipoxygenase (LOX) and lipase activities were considerably decreased in apple fruit infected with ΔTrPLD3, the changes of membrane lipid components were slowed down, the decrease of unsaturated fatty acid content was alleviated, and the accumulation of saturated fatty acid content was reduced, thereby maintaining the cell membrane integrity of the inoculated apple fruit. We speculated that the decreased PA accumulation in ΔTrPLD3-inoculated apple fruit further weakened the interaction between PA and NOX on fruit, resulting in the reduction of ROS accumulation of fruits, which decreased the damage to the cell membrane and maintained the cell membrane integrity, thus reducing the pathogenicity to apple. Therefore, TrPLD3-mediated ROS plays a critical regulatory role in reducing the pathogenicity of T. roseum on apple fruit by influencing phosphatidic acid metabolism.
Collapse
Affiliation(s)
- Qianqian Zhang
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Qili Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xiao Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xiaobin Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhiguang Liu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| |
Collapse
|
3
|
Li Q, Lin H, Lin HT, Lin MS, Wang H, Wei W, Chen JY, Lu WJ, Shao XF, Fan ZQ. The metabolism of membrane lipid participates in the occurrence of chilling injury in cold-stored banana fruit. Food Res Int 2023; 173:113415. [PMID: 37803753 DOI: 10.1016/j.foodres.2023.113415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Banana fruit is highly vulnerable to chilling injury (CI) during cold storage, which results in quality deterioration and commodity reduction. The purpose of this study was to investigate the membrane lipid metabolism mechanism underlying low temperature-induced CI in banana fruit. Chilling temperature significantly induced CI symptoms in banana fruit, compared to control temperature (22 °C). Using physiological experiments and transcriptomic analyses, we found that chilling temperature (7 °C) increased CI index, malondialdehyde content, and cell membrane permeability. Additionally, chilling temperature upregulated the genes encoding membrane lipid-degrading enzymes, such as lipoxygenase (LOX), phospholipase D (PLD), phospholipase C (PLC), phospholipase A (PLA), and lipase, but downregulated the genes encoding fatty acid desaturase (FAD). Moreover, chilling temperature raised the activities of LOX, PLD, PLC, PLA, and lipase, inhibited FAD activity, lowered contents of unsaturated fatty acids (USFAs) (γ-linolenic acid and linoleic acid), phosphatidylcholine, and phosphatidylinositol, but retained higher contents of saturated fatty acids (SFAs) (stearic acid and palmitic acid), free fatty acids, phosphatidic acid, lysophosphatidic acid, diacylglycerol, a lower USFAs index, and a lower ratio of USFAs to SFAs. Together, these results revealed that chilling temperature-induced chilling injury of bananas were caused by membrane integrity damage and were associated with the enzymatic and genetic manipulation of membrane lipid metabolism. These activities promoted the degradation of membrane phospholipids and USFAs in fresh bananas during cold storage.
Collapse
Affiliation(s)
- Qian Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Han Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - He-Tong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Meng-Shi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xing-Feng Shao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Zhong-Qi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
4
|
Kuang X, Chen Y, Lin H, Lin H, Chen G, Lin Y, Chen Y, Wang H, Fan Z. Comprehensive analyses of membrane lipids and phenolics metabolisms reveal the developments of chilling injury and browning in Chinese olives during cold storage. Food Chem 2023; 416:135754. [PMID: 36871509 DOI: 10.1016/j.foodchem.2023.135754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/22/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
The impacts of chilling injury (CI) temperature (2 °C) and non-CI temperature (8 °C) on the CI development, browning occurrence, and its underlying mechanism in Chinese olives were investigated. The results showed that, 2 °C induced higher levels of CI index, browning degree, chromaticity a* and b* values, but lower values of h°, chlorophyll and carotenoid contents in Chinese olives as compared to 8 °C. Furthermore, 2 °C raised cell membrane permeability, increased the activities of phospholipase D, lipase and lipoxygenase, accelerated the hydrolyses of phosphatidylcholine and phosphatidylinositol to phosphatidic acid, and promoted the conversions of unsaturated fatty acids to saturated fatty acids in Chinese olives. Moreover, 2 °C-stored Chinese olives showed higher activities of peroxidase and polyphenol oxidase, but lower contents of tanin, flavonoid and phenolics. These findings demonstrated that the CI and browning developments in Chinese olives were closely associated with the metabolisms of membrane lipid and phenolics.
Collapse
Affiliation(s)
- Xiaoyong Kuang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yazhen Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Han Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Guo Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Lin Y, Lin H, Zeng L, Lin M, Chen Y, Fan Z, Wang H, Lin Y. DNP and ATP regulate the breakdown occurrence in the pulp of Phomopsis longanae Chi-infected longan fruit through modulating the metabolism of membrane lipid. Food Chem 2023; 409:135330. [PMID: 36599287 DOI: 10.1016/j.foodchem.2022.135330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
This study aimed to illustrate how DNP and ATP affected the pulp breakdown occurrence in P. longanae-infected longan and their relationship with the membrane lipid metabolism. Compared with P. longanae-inoculated samples, the pulp of DNP-treated P. longanae-infected longan exhibited higher cellular membrane permeability, breakdown index, activities of PI-PLC, PLD, PC-PLC, LOX, and lipase, and values of SFAs, PA, and DAG, while lower levels of PI, PC, USFAs, IUFA and U/S. However, the opposite findings were observed in ATP-treated P. longanae-infected longan. The data manifested that DNP-increased the pulp breakdown occurrence in P. longanae-inoculated samples was due to the elevated MLDEs activities that reduced the contents of phospholipids (PI, PC) and USFAs, disrupting the cell membrane structures. Nevertheless, ATP decreased the pulp breakdown occurrence in P. longanae-inoculated samples, which was ascribed to the reduced MLDEs activities that raised phospholipids (PI, PC) and USFAs contents, thus maintaining the cell membrane structures.
Collapse
Affiliation(s)
- Yuzhao Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China; College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Lingzhen Zeng
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
6
|
Wang X, Yang Z, Cui J, Zhu S. Nitric Oxide Made a Major Contribution to the Improvement of Quality in Button Mushrooms ( Agaricus bisporus) by the Combined Treatment of Nitric Oxide with 1-MCP. Foods 2022; 11:foods11193147. [PMID: 36230224 PMCID: PMC9562864 DOI: 10.3390/foods11193147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Browning is one of the major effects of shelf-life responsible for the reduction in the commercial value of the button mushrooms (Agaricus bisporus). In this study, the individual and the combined effects of exogenous sodium nitroprusside (SNP, a nitric oxide donor) and 1-methylcyclopropene (1-MCP) on the quality of button mushrooms were evaluated. The results demonstrated that mushrooms treated with SNP+1-MCP promoted reactive oxygen species (ROS) metabolism thereby protecting cell membrane integrity, hindering polyphenol oxidase (PPO) binding to phenolic compounds, and downregulating the PPO activity. In addition, the SNP+1-MCP treatment effectively maintained quality (firmness, color, total phenol, and flavonoid) and mitigated oxidative damage by reducing ROS accumulation and malondialdehyde production through the stimulation of the antioxidant enzymes activities and the enhancement of ascorbic acid (AsA) and glutathione (GSH) contents. Moreover, the correlation analysis validated the above results. The SNP+1-MCP treatment was observed to be more prominent on maintaining quality than the individual effects of SNP followed by 1-MCP, suggesting that the combination of NO and 1-MCP had synergistic effects in retarding button mushrooms senescence, and NO signaling molecules might be predominant in the synergy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Shihezi 832003, China
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China
| | - Zhifeng Yang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Shihezi 832003, China
| | - Jinxia Cui
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Shihezi 832003, China
- Correspondence: (J.C.); (S.Z.)
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China
- Correspondence: (J.C.); (S.Z.)
| |
Collapse
|
7
|
Sinha A, Gill P, Jawandha S, Grewal S. Composite coating of chitosan with salicylic acid retards pear fruit softening under cold and supermarket storage. Food Res Int 2022; 160:111724. [DOI: 10.1016/j.foodres.2022.111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
|
8
|
Bata Gouda MH, Peng S, Yu R, Li J, Zhao G, Chen Y, Song H, Luo H. Transcriptomics and Metabolomics Reveal the Possible Mechanism by which 1-MCP Regulates the Postharvest Senescence of Zizania latifolia. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To understand the mechanism governing the postharvest senescence of Zizania latifolia, and the regulatory mechanism induced by 1-methylcyclopropene (1-MCP) during storage at 25°C, physiobiochemical and conjoint analyses of the transcriptome and metabolome were performed. The results indicated that 1-MCP treatment engendered changes in the expression of genes and metabolites during the postharvest storage of Z. latifolia. The 1-MCP treatment maintained a good visual appearance, preserved the cell structure, and membrane integrity of Z. latifolia by keeping the expression of membranes-related lipolytic enzymes (and related genes) low and the amount of phosphatidylethanolamine high. Compared to the control group, 1-MCP treatment enhanced the activities of antioxidant enzymes, resulting in a decrease of reactive oxygen species (ROS) and malondialdehyde (MDA) contents, and thus inhibition of oxidative damage and loss of membrane integrity. In addition, 1-MCP treatment retarded the senescence of Z. latifolia by down-regulating the expression of ethylene biosynthesis-related genes and promoting up-regulation of brassinosteroid insensitive 1 (BRI1) kinase inhibitor 1, calmodulin (CaM), glutathione reductase, jasmonate amino acid synthase, and mitogen-activated protein kinase (MAPK)-related genes. Moreover, 1-MCP retarded Z. latifolia senescence by inducing the activity of ATP-biosynthesis related genes and metabolites. Our findings should facilitate future research on the postharvest storage of Z. latifolia, and could help delay senescence and prolong the storage time for commercial applications.
Collapse
|
9
|
Zeng L, Shi L, Lin H, Lin Y, Lin Y, Wang H. Paper-containing 1-methylcyclopropene treatment suppresses fruit decay of fresh Anxi persimmons by enhancing disease resistance. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Objectives
The purpose of this work was to evaluate the potential application of papers containing 1-methylcyclopropene (1-MCP) postharvest treatment for suppressing fruit decay of fresh Anxi persimmons and its possible mechanism.
Materials and methods
Anxi persimmon fruit were treated with papers containing 1-MCP at the dosage of 1.35 μL/L and stored at 25 ± 1 °C and 85 per cent relative humidity for 35 days. During storage, the fruit decay rate and lignin content were evaluated, and the content of total phenolics, the activities of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), chitinase (CHI), and β-1,3-glucanase (GLU) were determined by spectrophotometry.
Results
The 1-MCP–treated persimmons displayed a lower fruit decay rate, but higher contents of lignin and total phenolics, higher activities of PAL, PPO, POD, CHI, and GLU.
Conclusions
The treatment with 1-MCP could inhibit the fruit decay of postharvest Anxi persimmons, which might be because 1-MCP enhanced fruit disease resistance by increasing the activities of disease resistance-associated enzymes and retaining higher contents of disease resistance-related substances in postharvest fresh Anxi persimmons. These findings indicate that papers containing 1-MCP at the dosage of 1.35 μL/L have potential application in suppressing fruit decay and extending storage life of postharvest fresh Anxi persimmons.
Collapse
|