1
|
Lemeshko VV. Is the mitochondrial ATP synthesis solely H +-driven, K +,H + symport-driven or K +/H + antiport-driven? BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184229. [PMID: 37704041 DOI: 10.1016/j.bbamem.2023.184229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Some recent literature experimental data indicate that the mitochondrial ATP synthesis might be not solely H+-driven, but K+,H+ symport-driven membrane potential-dependent, considered as a further development of Mitchell's chemiosmotic theory, in contrast to the anti-Mitchell's hypothesis of K+/H+ antiport-driven mechanism. In this short communication, the attention was pointed to a possible influence of the ionic strength of the used KCl incubation medium, versus of only K+ ions, and of the Mg2+-induced mitochondrial aggregation in the sucrose medium on the reported rates of the mitochondrial respiration and ATP synthesis. These observations were based on the own author's experimental works published earlier.
Collapse
Affiliation(s)
- Victor V Lemeshko
- Escuela de Física, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Carrera 65, Nro. 59A - 110, Medellín, Colombia.
| |
Collapse
|
2
|
Abramicheva PA, Andrianova NV, Babenko VA, Zorova LD, Zorov SD, Pevzner IB, Popkov VA, Semenovich DS, Yakupova EI, Silachev DN, Plotnikov EY, Sukhikh GT, Zorov DB. Mitochondrial Network: Electric Cable and More. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1596-1607. [PMID: 38105027 DOI: 10.1134/s0006297923100140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Mitochondria in a cell can unite and organize complex, extended structures that occupy the entire cellular volume, providing an equal supply with energy in the form of ATP synthesized in mitochondria. In accordance with the chemiosmotic concept, the oxidation energy of respiratory substrates is largely stored in the form of an electrical potential difference on the inner membrane of mitochondria. The theory of the functioning of extended mitochondrial structures as intracellular electrical wires suggests that mitochondria provide the fastest delivery of electrical energy through the cellular volume, followed by the use of this energy for the synthesis of ATP, thereby accelerating the process of ATP delivery compared to the rather slow diffusion of ATP in the cell. This analytical review gives the history of the cable theory, lists unsolved critical problems, describes the restructuring of the mitochondrial network and the role of oxidative stress in this process. In addition to the already proven functioning of extended mitochondrial structures as electrical cables, a number of additional functions are proposed, in particular, the hypothesis is put forth that mitochondrial networks maintain the redox potential in the cellular volume, which may vary depending on the physiological state, as a result of changes in the three-dimensional organization of the mitochondrial network (fragmentation/fission-fusion). A number of pathologies accompanied by a violation of the redox status and the participation of mitochondria in them are considered.
Collapse
Affiliation(s)
- Polina A Abramicheva
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nadezda V Andrianova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valentina A Babenko
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Ljubava D Zorova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Savva D Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina B Pevzner
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Vasily A Popkov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Dmitry S Semenovich
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elmira I Yakupova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Denis N Silachev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Egor Y Plotnikov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Dmitry B Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
3
|
Lemeshko VV. VDAC as a voltage-dependent mitochondrial gatekeeper under physiological conditions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184175. [PMID: 37201560 DOI: 10.1016/j.bbamem.2023.184175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Mitochondria, composed of two membranes, play a key role in energy production in eukaryotic cells. The main function of the inner membrane is oxidative phosphorylation, while the mitochondrial outer membrane (MOM) seems to control the energy flux and exchange of various charged metabolites between mitochondria and the cytosol. Metabolites cross MOM via the various isoforms of voltage-dependent anion channel (VDAC). In turn, VDACs interact with some enzymes, other proteins and molecules, including drugs. This work aimed to analyze various literature experimental data related to targeting mitochondrial VDACs and VDAC-kinase complexes on the basis of the hypothesis of generation of the outer membrane potential (OMP) and OMP-dependent reprogramming of cell energy metabolism. Our previous model of the VDAC-hexokinase-linked generation of OMP was further complemented in this study with an additional regulation of the MOM permeability by the OMP-dependent docking of cytosolic proteins like tubulin to VDACs. Computational analysis of the model suggests that OMP changes might be involved in the mechanisms of apoptosis promotion through the so-called transient hyperpolarization of mitochondria. The high concordance of the performed computational estimations with many published experimental data allows concluding that OMP generation under physiological conditions is highly probable and VDAC might function as an OMP-dependent gatekeeper of mitochondria, controlling cell life and death. The proposed model of OMP generation allows understanding in more detail the mechanisms of cancer death resistance and anticancer action of various drugs and treatments influencing VDAC voltage-gating properties, VDAC content, mitochondrial hexokinase activity and VDAC-kinase interactions in MOM.
Collapse
Affiliation(s)
- Victor V Lemeshko
- Universidad Nacional de Colombia, Sede Medellín, Carrera 65, Nro. 59A - 110, Medellín, Colombia.
| |
Collapse
|
4
|
Zorova LD, Pevzner IB, Khailova LS, Korshunova GA, Kovaleva MA, Kovalev LI, Serebryakova MV, Silachev DN, Sudakov RV, Zorov SD, Rokitskaya TI, Popkov VA, Plotnikov EY, Antonenko YN, Zorov DB. Mitochondrial ATP Synthase and Mild Uncoupling by Butyl Ester of Rhodamine 19, C4R1. Antioxidants (Basel) 2023; 12:antiox12030646. [PMID: 36978894 PMCID: PMC10044837 DOI: 10.3390/antiox12030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The homeostasis of the transmembrane potential of hydrogen ions in mitochondria is a prerequisite for the normal mitochondrial functioning. However, in different pathological conditions it is advisable to slightly reduce the membrane potential, while maintaining it at levels sufficient to produce ATP that will ensure the normal functioning of the cell. A number of chemical agents have been found to provide mild uncoupling; however, natural proteins residing in mitochondrial membrane can carry this mission, such as proteins from the UCP family, an adenine nucleotide translocator and a dicarboxylate carrier. In this study, we demonstrated that the butyl ester of rhodamine 19, C4R1, binds to the components of the mitochondrial ATP synthase complex due to electrostatic interaction and has a good uncoupling effect. The more hydrophobic derivative C12R1 binds poorly to mitochondria with less uncoupling activity. Mass spectrometry confirmed that C4R1 binds to the β-subunit of mitochondrial ATP synthase and based on molecular docking, a C4R1 binding model was constructed suggesting the binding site on the interface between the α- and β-subunits, close to the anionic amino acid residues of the β-subunit. The association of the uncoupling effect with binding suggests that the ATP synthase complex can provide induced uncoupling.
Collapse
Affiliation(s)
- Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Ljudmila S. Khailova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Galina A. Korshunova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marina A. Kovaleva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Leonid I. Kovalev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Marina V. Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Roman V. Sudakov
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
| | - Savva D. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Tatyana I. Rokitskaya
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.Y.P.); (Y.N.A.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| | - Yuri N. Antonenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: (E.Y.P.); (Y.N.A.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.Y.P.); (Y.N.A.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| |
Collapse
|
5
|
Nath S. The Need for Consistency with Physical Laws and Logic in Choosing Between Competing Molecular Mechanisms in Biological Processes: A Case Study in Modeling ATP Synthesis. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac054. [PMID: 36340246 PMCID: PMC9629475 DOI: 10.1093/function/zqac054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Traditionally, proposed molecular mechanisms of fundamental biological processes have been tested against experiment. However, owing to a plethora of reasons-difficulty in designing, carrying out, and interpreting key experiments, use of different experimental models and systems, conduct of studies under widely varying experimental conditions, fineness in distinctions between competing mechanisms, complexity of the scientific issues, and the resistance of some scientists to discoveries that are contrary to popularly held beliefs-this has not solved the problem despite decades of work in the field/s. The author would like to prescribe an alternative way: that of testing competing models/mechanisms for their adherence to scientific laws and principles, and checking for errors in logic. Such tests are fairly commonly carried out in the mathematics, physics, and engineering literature. Further, reported experimental measurements should not be smaller than minimum detectable values for the measurement technique employed and should truly reflect function of the actual system without inapplicable extrapolation. Progress in the biological fields would be greatly accelerated, and considerable scientific acrimony avoided by adopting this approach. Some examples from the fundamental field of ATP synthesis in oxidative phosphorylation (OXPHOS) have been reviewed that also serve to illustrate the approach. The approach has never let the author down in his 35-yr-long experience on biological mechanisms. This change in thinking should lead to a considerable saving of both time and resources, help channel research efforts toward solution of the right problems, and hopefully provide new vistas to a younger generation of open-minded biological scientists.
Collapse
Affiliation(s)
- Sunil Nath
- Address correspondence to S.N. (e-mail: ; )
| |
Collapse
|
6
|
Zorov DB. A Window to the Potassium World. The Evidence of Potassium Energetics in the Mitochondria and Identity of the Mitochondrial ATP-Dependent K + Channel. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:683-688. [PMID: 36171650 DOI: 10.1134/s0006297922080016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
The conclusions made in the three papers published in Function by Juhaszova et al. [Function, 3, 2022, zqab065, zqac001, zqac018], can be seen as a breakthrough in bioenergetics and mitochondrial medicine. For more than half a century, it has been believed that mitochondrial energetics is solely protonic and is based on the generation of electrochemical potential of hydrogen ions across the inner mitochondrial membrane upon oxidation of respiratory substrates, resulting in the generation of ATP via reverse transport of protons through the ATP synthase complex. Juhaszova et al. demonstrated that ATP synthase transfers not only protons, but also potassium ions, with the generation of ATP. This mechanism seems logical, given the fact that in eukaryotic cells, the concentration of potassium ions is several million times higher than the concentration of protons. The transport of K+ through the ATP synthase was enhanced by the activators of mitochondrial ATP-dependent K+ channel (mK/ATP), leading to the conclusion that ATP synthase is the material essence of mK/ATP. Beside ATP generation, the transport of osmotically active K+ to the mitochondrial matrix is accompanied by water entry to the matrix, leading to an increase in the matrix volume and activation of mitochondrial respiration with the corresponding increase in the ATP synthesis, which suggests an advantage of such transport for energy production. The driving force for K+ transport into the mitochondria is the membrane potential; an excess of K+ is exported from the matrix by the hypothetical K+/H+ exchangers. Inhibitory factor 1 (IF1) plays an important role in the activation of mK/ATP by increasing the chemo-mechanical efficiency of ATP synthase, which may be a positive factor in the protective anti-ischemic signaling.
Collapse
Affiliation(s)
- Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|