1
|
Arroum T, Hish GA, Burghardt KJ, Ghamloush M, Bazzi B, Mrech A, Morse PT, Britton SL, Koch LG, McCully JD, Hüttemann M, Malek MH. Mitochondria Transplantation: Rescuing Innate Muscle Bioenergetic Impairment in a Model of Aging and Exercise Intolerance. J Strength Cond Res 2024; 38:1189-1199. [PMID: 38900170 PMCID: PMC11192236 DOI: 10.1519/jsc.0000000000004793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
ABSTRACT Arroum, T, Hish, GA, Burghardt, KJ, Ghamloush, M, Bazzi, B, Mrech, A, Morse, PT, Britton, SL, Koch, LG, McCully, JD, Hüttemann, M, and Malek, MH. Mitochondria transplantation: Rescuing innate muscle bioenergetic impairment in a model of aging and exercise intolerance. J Strength Cond Res 38(7): 1189-1199, 2024-Mitochondria, through oxidative phosphorylation, are crucial for energy production. Disease, genetic impairment, or deconditioning can harm muscle mitochondria, affecting energy production. Endurance training enhances mitochondrial function but assumes mobility. Individuals with limited mobility lack effective treatments for mitochondrial dysfunction because of disease or aging. Mitochondrial transplantation replaces native mitochondria that have been damaged with viable, respiration-competent mitochondria. Here, we used a rodent model selectively bred for low-capacity running (LCR), which exhibits innate mitochondrial dysfunction in the hind limb muscles. Hence, the purpose of this study was to use a distinct breed of rats (i.e., LCR) that display hereditary skeletal muscle mitochondrial dysfunction to evaluate the consequences of mitochondrial transplantation. We hypothesized that the transplantation of mitochondria would effectively alleviate mitochondrial dysfunction in the hind limb muscles of rats when compared with placebo injections. In addition, we hypothesized that rats receiving the mitochondrial transplantation would experience an improvement in their functional capacity, as evaluated through incremental treadmill testing. Twelve aged LCR male rats (18 months old) were randomized into 2 groups (placebo or mitochondrial transplantation). One LCR rat of the same age and sex was used as the donor to isolate mitochondria from the hindlimb muscles. Isolated mitochondria were injected into both hindlimb muscles (quadriceps femoris, tibialis anterior (TA), and gastrocnemius complex) of a subset LCR (n = 6; LCR-M) rats. The remaining LCR (n = 5; LCR-P) subset received a placebo injection containing only the vehicle without the isolated mitochondria. Four weeks after mitochondrial transplantation, rodents were euthanized and hindlimb muscles harvested. The results indicated a significant (p < 0.05) increase in mitochondrial markers for glycolytic (plantaris and TA) and mixed (quadricep femoris) muscles, but not oxidative muscle (soleus). Moreover, we found significant (p < 0.05) epigenetic changes (i.e., hypomethylation) at the global and site-specific levels for a key mitochondrial regulator (transcription factor A mitochondrial) between the placebo and mitochondrial transplantation groups. To our knowledge, this is the first study to examine the efficacy of mitochondrial transplantation in a rodent model of aging with congenital skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201
| | - Gerald A. Hish
- Unit for Laboratory Animal Medicine (ULAM), University of Michigan, Ann Arbor, Ann Arbor, MI 48109
| | - Kyle J. Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, MI 48201
| | - Mohamed Ghamloush
- Physical Therapy Program, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
- Integrative Physiology of Exercise Laboratory, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
| | - Belal Bazzi
- Physical Therapy Program, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
- Integrative Physiology of Exercise Laboratory, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
| | - Abdallah Mrech
- Physical Therapy Program, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
- Integrative Physiology of Exercise Laboratory, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
| | - Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Ann Arbor, MI 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Ann Arbor, MI 48109
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, The University of Toledo, College of Medicine and Life Sciences, Toledo, OH 43606
| | - James D. McCully
- Department of Cardiac Surgery, Boston Children’s Hospital Harvard Medical School, Boston, MA 02115
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201
| | - Moh H. Malek
- Physical Therapy Program, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
- Integrative Physiology of Exercise Laboratory, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
| |
Collapse
|
2
|
Arroum T, Hish GA, Burghardt KJ, McCully JD, Hüttemann M, Malek MH. Mitochondrial Transplantation's Role in Rodent Skeletal Muscle Bioenergetics: Recharging the Engine of Aging. Biomolecules 2024; 14:493. [PMID: 38672509 PMCID: PMC11048484 DOI: 10.3390/biom14040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mitochondria are the 'powerhouses of cells' and progressive mitochondrial dysfunction is a hallmark of aging in skeletal muscle. Although different forms of exercise modality appear to be beneficial to attenuate aging-induced mitochondrial dysfunction, it presupposes that the individual has a requisite level of mobility. Moreover, non-exercise alternatives (i.e., nutraceuticals or pharmacological agents) to improve skeletal muscle bioenergetics require time to be effective in the target tissue and have another limitation in that they act systemically and not locally where needed. Mitochondrial transplantation represents a novel directed therapy designed to enhance energy production of tissues impacted by defective mitochondria. To date, no studies have used mitochondrial transplantation as an intervention to attenuate aging-induced skeletal muscle mitochondrial dysfunction. The purpose of this investigation, therefore, was to determine whether mitochondrial transplantation can enhance skeletal muscle bioenergetics in an aging rodent model. We hypothesized that mitochondrial transplantation would result in sustained skeletal muscle bioenergetics leading to improved functional capacity. METHODS Fifteen female mice (24 months old) were randomized into two groups (placebo or mitochondrial transplantation). Isolated mitochondria from a donor mouse of the same sex and age were transplanted into the hindlimb muscles of recipient mice (quadriceps femoris, tibialis anterior, and gastrocnemius complex). RESULTS The results indicated significant increases (ranging between ~36% and ~65%) in basal cytochrome c oxidase and citrate synthase activity as well as ATP levels in mice receiving mitochondrial transplantation relative to the placebo. Moreover, there were significant increases (approx. two-fold) in protein expression of mitochondrial markers in both glycolytic and oxidative muscles. These enhancements in the muscle translated to significant improvements in exercise tolerance. CONCLUSIONS This study provides initial evidence showing how mitochondrial transplantation can promote skeletal muscle bioenergetics in an aging rodent model.
Collapse
Affiliation(s)
- Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (M.H.)
| | - Gerald A. Hish
- Unit for Laboratory Animal Medicine (ULAM), University of Michigan, Ann Arbor, MI 48109, USA
| | - Kyle J. Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - James D. McCully
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (M.H.)
| | - Moh H. Malek
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Integrative Physiology of Exercise Laboratory, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Kemi OJ, Hoydal MA, Haram PM, Smith GL, Ellingsen O, Koch LG, Britton SL, Wisloff U. Inherited physical capacity: Widening divergence from young to adult to old. Ann N Y Acad Sci 2024; 1534:145-155. [PMID: 38520387 DOI: 10.1111/nyas.15130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Cardiorespiratory performance segregates into rat strains of inherited low- and high-capacity runners (LCRs and HCRs); during adulthood, this segregation remains stable, but widens in senescence and is followed by segregated function, health, and mortality. However, this segregation has not been investigated prior to adulthood. We, therefore, assessed cardiorespiratory performance and cardiac cell (cardiomyocyte) structure-function in 1- and 4-month-old LCRs and HCRs. Maximal oxygen uptake was 23% less in LCRs at 1-month compared to HCRs at 1-month, and 72% less at 4 months. Cardiomyocyte contractility was 37-56% decreased, and Ca2+ release was 34-62% decreased, in 1- and 4-month LCRs versus HCRs. This occurred because HCRs had improved contractility and Ca2+ release during maturation, whereas LCRs did not. In quiescent cardiomyocytes, LCRs displayed 180% and 297% more Ca2+ sparks and 91% and 38% more Ca2+ waves at 1 and 4 months versus HCRs. Cell sizes were not different between LCRs and HCRs, but LCRs showed reduced transverse-tubules versus HCRs, though no discrepant transverse-tubule generation occurred during maturation. In conclusion, LCRs show reduced scores for aerobic capacity and cardiomyocyte structure-function compared to HCRs and there is a widening divergence between LCRs and HCRs during juvenile to near-adult maturation.
Collapse
Affiliation(s)
- Ole J Kemi
- School of Cardiovascular and Metabolic Health, University of Glasgow College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Morten A Hoydal
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Faculty of Medicine and Health Sciences, Trondheim, Norway
| | - Per M Haram
- Department of Cardiothoracic Surgery, St Olav's Hospital, Trondheim, Norway
| | - Godfrey L Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Oyvind Ellingsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Faculty of Medicine and Health Sciences, Trondheim, Norway
- Department of Cardiology, St Olav's Hospital, Trondheim, Norway
| | - Lauren G Koch
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA
| | - Steven L Britton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ulrik Wisloff
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Faculty of Medicine and Health Sciences, Trondheim, Norway
- School of Human Movement and Nutrition Science, University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|
4
|
Zapata Bustos R, Coletta DK, Galons JP, Davidson LB, Langlais PR, Funk JL, Willis WT, Mandarino LJ. Nonequilibrium thermodynamics and mitochondrial protein content predict insulin sensitivity and fuel selection during exercise in human skeletal muscle. Front Physiol 2023; 14:1208186. [PMID: 37485059 PMCID: PMC10361819 DOI: 10.3389/fphys.2023.1208186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Many investigators have attempted to define the molecular nature of changes responsible for insulin resistance in muscle, but a molecular approach may not consider the overall physiological context of muscle. Because the energetic state of ATP (ΔGATP) could affect the rate of insulin-stimulated, energy-consuming processes, the present study was undertaken to determine whether the thermodynamic state of skeletal muscle can partially explain insulin sensitivity and fuel selection independently of molecular changes. Methods: 31P-MRS was used with glucose clamps, exercise studies, muscle biopsies and proteomics to measure insulin sensitivity, thermodynamic variables, mitochondrial protein content, and aerobic capacity in 16 volunteers. Results: After showing calibrated 31P-MRS measurements conformed to a linear electrical circuit model of muscle nonequilibrium thermodynamics, we used these measurements in multiple stepwise regression against rates of insulin-stimulated glucose disposal and fuel oxidation. Multiple linear regression analyses showed 53% of the variance in insulin sensitivity was explained by 1) VO2max (p = 0.001) and the 2) slope of the relationship of ΔGATP with the rate of oxidative phosphorylation (p = 0.007). This slope represents conductance in the linear model (functional content of mitochondria). Mitochondrial protein content from proteomics was an independent predictor of fractional fat oxidation during mild exercise (R2 = 0.55, p = 0.001). Conclusion: Higher mitochondrial functional content is related to the ability of skeletal muscle to maintain a greater ΔGATP, which may lead to faster rates of insulin-stimulated processes. Mitochondrial protein content per se can explain fractional fat oxidation during mild exercise.
Collapse
Affiliation(s)
- Rocio Zapata Bustos
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Dawn K. Coletta
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
- Department of Physiology, The University of Arizona, Tucson, AZ, United States
| | - Jean-Philippe Galons
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States
| | - Lisa B. Davidson
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Paul R. Langlais
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Janet L. Funk
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Wayne T. Willis
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Lawrence J. Mandarino
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| |
Collapse
|